Skip to main content
Log in

Differential drought responses in deep and shallow-rooted rice genotypes: enzymatic and non-enzymatic insights

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

This study was undertaken to understand the root-driven differential response of enzymatic and non-enzymatic adaptive systems to drought in rice using 30 contrasting deep and shallow-rooted rice genotypes from the temperate rice diversity of Western Himalayan Kashmir under drought stress conditions. Our analysis focused on root and shoot traits and the assessment of 12 biochemical parameters encompassing both enzymatic and non-enzymatic responses. Under drought stress, deep-rooted genotypes exhibited significantly higher mean root depths, root biomass, and root-to-shoot ratios than their shallow-rooted counterparts. Interestingly, most of the biochemical parameters displayed an increasing trend in deep-rooted genotypes but decreased or showed non-significant increases in shallow-rooted genotypes under drought stress. Drought stress induced substantial changes in root and shoot parameters, with more pronounced effects observed in root traits. Deep-rooted genotypes demonstrated a remarkable 176.7% increase in root depth under drought conditions, compared to a modest 25.7% increase in irrigated conditions. Moreover, both enzymatic and non-enzymatic parameters exhibited higher increases in deep-rooted genotypes than shallow-rooted ones under drought stress. Our study unveiled significant associations among root and shoot traits and biochemical parameters, emphasizing the crucial role of roots in maintaining cellular homeostasis under stress conditions. These findings provide insights into the root-driven modulation of differential biochemical response of rice under drought stress, providing a foundation for further investigations into the molecular mechanisms through a multi-omics approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akram, N. A., Shafiq, F., & Ashraf, M. (2017). Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Frontiers in Plant Science, 8, 238088.

    Article  Google Scholar 

  • Al-Taweel, K., Iwaki, T., Yabuta, Y., Shigeoka, S., Murata, N., & Wadano, A. (2007). A bacterial transgene for catalase protects translation of D1 protein during exposure of salt-stressed tobacco leaves to strong light. Plant Physiology, 145(1), 258–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves, A. A., & Setter, T. L. (2004). Response of cassava leaf area expansion to water deficit: Cell proliferation, cell expansion and delayed development. Annals of Botany, 94(4), 605–613.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aslam, M. M., Rashid, M. A. R., Siddiqui, M. A., Khan, M. T., Farhat, F., Yasmeen, S., & Yan, Z. (2022). Recent insights into signaling responses to cope drought stress in rice. Rice Science, 29(2), 105–117.

    Article  Google Scholar 

  • Bates, L. S., Waldren, R. A., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44(1), 276–287.

    Article  CAS  PubMed  Google Scholar 

  • Beena, R., Kirubakaran, S., Nithya, N., Manickavelu, A., Sah, R. P., Abida, P. S., & Siddique, K. H. (2021). Association mapping of drought tolerance and agronomic traits in rice (Oryza sativa L.) landraces. BMC Plant Biology, 21(1), 1–21.

    Article  Google Scholar 

  • Cvikrova, M., Gemperlova, L., Martincova, O., & Vankova, R. (2013). Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Physiology and Biochemistry, 73, 7–15.

    Article  CAS  PubMed  Google Scholar 

  • Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2, 53.

    Article  Google Scholar 

  • Farooq, M. A., Ali, S., Hameed, A., Bharwana, S. A., Rizwan, M., Ishaque, W., & Iqbal, Z. (2016). Cadmium stress in cotton seedlings: Physiological, photosynthesis and oxidative damages alleviated by glycinebetaine. South African Journal of Botany, 104, 61–68.

    Article  CAS  Google Scholar 

  • Fukai, S., & Cooper, M. (1995). Development of drought-resistant cultivars using physiomorphological traits in rice. Field Crops Research, 40(2), 67–86.

    Article  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930.

    Article  CAS  PubMed  Google Scholar 

  • Hassan, M. A., Dahu, N., Hongning, T., Qian, Z., Yueming, Y., Yiru, L., & Shimei, W. (2023). Drought stress in rice: Morpho-physiological and molecular responses and marker-assisted breeding. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2023.1215371

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, 604–611.

    Article  CAS  Google Scholar 

  • Hsiao, T. C., & Xu, L. K. (2000). Sensitivity of growth of roots versus leaves to water stress: Biophysical analysis and relation to water transport. Journal of Experimental Botany, 51(350), 1595–1616.

    Article  CAS  PubMed  Google Scholar 

  • Hussain, S., Khalid, M. F., Saqib, M., Ahmad, S., Zafar, W., Rao, M. J., & Anjum, M. A. (2018). Drought tolerance in citrus rootstocks is associated with better antioxidant defense mechanism. Acta Physiologiae Plantarum, 40, 1–10.

    Article  Google Scholar 

  • Impa, S. M., Nadaradjan, S. & Jagadish, S. V. K. (2012). Drought stress induced reactive oxygen species and anti-oxidants in plants. Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability, pp. 131–147.

  • Jongdee, B., Fukai, S., & Cooper, M. (1998). Genotypic variation for grain yield of rice under water-deficit conditions. In: Proceedings of 9th Australian Agronomy Conference, Wagga Wagga. pp. 403–406.

  • Kaisangsri, N., Kowalski, R. J., Wijesekara, I., Kerdchoechuen, O., Laohakunjit, N., & Ganjyal, G. M. (2016). Carrot pomace enhances the expansion and nutritional quality of corn starch extrudates. LWT-Food Science and Technology, 68, 391–399.

    Article  CAS  Google Scholar 

  • Kang, J., Peng, Y., & Xu, W. (2022). Crop root responses to drought stress: Molecular mechanisms, nutrient regulations, and interactions with microorganisms in the rhizosphere. International Journal of Molecular Sciences, 23(16), 9310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, S., Seem, K., & Mohapatra, T. (2023). Biochemical and epigenetic modulations under drought: Remembering the stress tolerance mechanism in rice. Life, 13(5), 1156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maehly, A. C. (1954). The assay of catalases and peroxidases. Methods Biochem Analysis, 1, 357–408. https://doi.org/10.1002/9780470110171.ch14

    Article  CAS  Google Scholar 

  • Marimuthu, R., Gurunathan, S., Sellamuthu, R., & Dhanarajan, A. (2023). Physio-biochemical characterizations in the drought induced rice (Oryza sativa L.): Pathway to understand the drought tolerance mechanisms. Plant Physiology Reports, 28(3), 388–404.

    Article  Google Scholar 

  • Menge, D. M., Kameoka, E., Kano-Nakata, M., Yamauchi, A., Asanuma, S., Asai, H., & Makihara, D. (2016). Drought-induced root plasticity of two upland NERICA varieties under conditions with contrasting soil depth characteristics. Plant Production Science, 19(3), 389–400.

    Article  CAS  Google Scholar 

  • Nahar, S., Vemireddy, L. R., Sahoo, L., & Tanti, B. (2018). Antioxidant protection mechanisms reveal significant response in drought-induced oxidative stress in some traditional rice of Assam, India. Rice Science, 25(4), 185–196.

    Article  Google Scholar 

  • Naikoo, M. I., Dar, M. I., Raghib, F., Jaleel, H., Ahmad, B., Raina, A., & Naushin, F. (2019). Role and regulation of plants phenolics in abiotic stress tolerance: An overview. Plant Signaling Molecules. https://doi.org/10.1016/B978-0-12-816451-8.00009-5

    Article  Google Scholar 

  • Naz, H. I. R. A., Akram, N. A., & Ashraf, M. (2016). Impact of ascorbic acid on growth and some physiological attributes of cucumber (Cucumis sativus) plants under water-deficit conditions. Pakistan Journal of Botany, 48(3), 877–883.

    CAS  Google Scholar 

  • Nicotra, A. B., & Davidson, A. (2010). Adaptive phenotypic plasticity and plant water use. Functional Plant Biology, 37(2), 117–127.

    Article  Google Scholar 

  • Panda, D., Mishra, S. S., & Behera, P. K. (2021). Drought tolerance in rice: Focus on recent mechanisms and approaches. Rice Science, 28(2), 119–132.

    Article  Google Scholar 

  • Pandey, V., & Shukla, A. (2015). Acclimation and tolerance strategies of rice under drought stress. Rice Science, 22(4), 147–161.

    Article  Google Scholar 

  • Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337–341.

    Article  CAS  PubMed  Google Scholar 

  • Priya, P., Patil, M., Pandey, P., Singh, A., Babu, V. S., & Senthil-Kumar, M. (2023). Stress combinations and their interactions in plants database: A one-stop resource on combined stress responses in plants. The Plant Journal, 116, 1097–1117.

    Article  CAS  PubMed  Google Scholar 

  • Riemschneider, R., Abedin, M. Z., & Mocellin, R. P. (1976). Qualitats and stabilisierungprufung hitzekonservierter Nahrungsmittel unter verwendung von Vit C als kriterium-Mitt 1. Alimenta, 15, 171–171.

    Google Scholar 

  • Sandhu, N., Raman, K. A., Torres, R. O., Audebert, A., Dardou, A., Kumar, A., & Henry, A. (2016). Rice root architectural plasticity traits and genetic regions for adaptability to variable cultivation and stress conditions. Plant Physiology, 171(4), 2562–2576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandhu, N., Singh, A., Dixit, S., Sta Cruz, M. T., Maturan, P. C., Jain, R. K., & Kumar, A. (2014). Identification and mapping of stable QTL with main and epistasis effect on rice grain yield under upland drought stress. BMC Genetics, 15, 1–15.

    Article  Google Scholar 

  • Serraj, R. A. C. H. I. D., & Sinclair, T. R. (2002). Osmolyte accumulation: Can it really help increase crop yield under drought conditions? Plant, Cell and Environment, 25(2), 333–341.

    Article  PubMed  Google Scholar 

  • Shafi, S., Shafi, I., Zaffar, A., Zargar, S. M., Shikari, A. B., Ranjan, A., & Sofi, P. A. (2023). The resilience of rice under water stress will be driven by better roots: Evidence from root phenotyping, physiological, and yield experiments. Plant Stress, 10, 100211.

    Article  CAS  Google Scholar 

  • Shikari, A. B., Najeeb, S., Khan, G., Mohidin, F. A., Shah, A. H., Nehvi, F. A., & Witcombe, J. R. (2021). KASP™ based markers reveal a population sub-structure in temperate rice (Oryza sativa L.) germplasm and local landraces grown in the Kashmir valley, north-western Himalayas. Genetic Resources and Crop Evolution, 68, 821–834.

    Article  CAS  Google Scholar 

  • Shukla, N., & Varma, Y. (2019). Enzymatic analysis of superoxide dismutase (SOD) from Hordeum vulgare: Its role in drought stress tolerance. Journal of Plant Biochemistry and Physiology, 7, 238.

    Google Scholar 

  • Sibounheuang, V., Basnayake, J., & Fukai, S. (2006). Genotypic consistency in the expression of leaf water potential in rice (Oryza sativa L.). Field Crops Research, 97(2–3), 142–154.

    Article  Google Scholar 

  • Singh, A., Shamim, M. D., & Singh, K. N. (2013). Genotypic variation in root anatomy, starch accumulation, and protein induction in upland rice (Oryza sativa) varieties under water stress. Agricultural Research, 2, 24–30.

    Article  CAS  Google Scholar 

  • Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In: Methods in enzymology Academic press. pp. 152–178.

  • Uga, Y., Okuno, K., & Yano, M. (2011). Dro1, a major QTL involved in deep rooting of rice under upland field conditions. Journal of Experimental Botany, 62(8), 2485–2494.

    Article  CAS  PubMed  Google Scholar 

  • Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., & Yano, M. (2013). Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 45(9), 1097–1102.

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya, H. & Panda, S. K. (2019). Drought stress responses and its management in rice. In: Advances in Rice Research for Abiotic Stress Tolerance, Woodhead Publishing. pp. 177–200.

  • Uzilday, B., Turkan, I., Sekmen, A. H., Ozgur, R. E. N. G., & Karakaya, H. C. (2012). Comparison of ROS formation and antioxidant enzymes in Cleome gynandra (C4) and Cleome spinosa (C3) under drought stress. Plant Science, 182, 59–70.

    Article  CAS  PubMed  Google Scholar 

  • Vighi, I. L., Benitez, L. C., Amaral, M. N., Moraes, G. P., Auler, P. A., Rodrigues, G. S., & Braga, E. J. B. (2017). Functional characterization of the antioxidant enzymes in rice plants exposed to salinity stress. Biologia Plantarum, 61(3), 540–550.

    Article  CAS  Google Scholar 

  • Wade, L. J. (1999). Critical characteristics of rainfed rice environments and implications for rice improvement. In: Genetic Improvement of Rice for Water-limited Environments. International Rice Research Institute, Los Baños, Philippines, pp: 1–10.

  • Waterman, P. G., & Mole, S. (1994). Analysis of phenolic plant metabolites. Blackwell Scientific Publications.

    Google Scholar 

  • Xu, W., Cui, K., Xu, A., Nie, L., Huang, J., & Peng, S. (2015). Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta Physiologiae Plantarum, 37, 1–11.

    Article  Google Scholar 

  • Zhang, J. X., Nguyen, H. T., & Blum, A. (1999). Genetic analysis of osmotic adjustment in crop plants. Journal of Experimental Botany, 50, 291–302.

    Article  CAS  Google Scholar 

  • Zhang, Y., Luan, Q., Jiang, J., & Li, Y. (2021). Prediction and utilization of malondehyde in exotic pine under drought stress using near-infrared spectroscopy. Frontiers in Plant Sciences, 12, 735275.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Djanaguiraman or Parvaze A. Sofi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafi, S., Zaffar, A., Riyaz, I. et al. Differential drought responses in deep and shallow-rooted rice genotypes: enzymatic and non-enzymatic insights. Plant Physiol. Rep. (2024). https://doi.org/10.1007/s40502-024-00788-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40502-024-00788-2

Keywords

Navigation