Skip to main content
Log in

Interactive effect of drought and high temperature on physiological traits of soybean (Glycine max)

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

A pot culture experiment was conducted under controlled condition to assess the effect of drought, high temperature and their combined effects during flowering and pod initiation stages in four soybean genotypes. Reponses of genotypes were measured in terms of physiological traits including gas exchange parameters, chlorophyll content, osmotic potential and relative water content. Invariably, drought, high temperature and combination of stresses significantly affected all the physiological parameters studied. Interestingly, differential responses were observed among the genotypes for the physiological parameters which were used to identify the tolerant and susceptible genotypes under drought, high temperature and combination of stresses. In case of photosynthetic rate, high temperature stress showed two-fold reduction, while drought stress displayed more serious effect leading to three-fold reduction in the photosynthetic rate of soybean genotypes. Transpiration rate increased under elevated temperature than control conditions while it decreased in drought and combined stress in all the genotypes. Chlorophyll fluorescence (Fv/Fm) in ADT 1 and CAT 1260 showed least reduction under stress condition indicating the ability to withstand the stress, while susceptible genotypes CAT 2084 showed drastic reduction. Higher stability of chlorophyll under stress was observed in the genotypes ADT 1 followed by CAT 1260 and least in CAT 2084. Relative water content and osmotic potential was found higher in ADT 1 indicating the tolerance to individual and combined stresses. These findings suggest that maintenance of higher transpiration rate and lower leaf temperature under drought, high temperature and combination of stress, as adaptive traits associated with tolerance of ADT 1 and CAT 1260. These identified genotypes can be used directly for the region where the drought and high temperature is predominant or they can be used as parents in breeding program to develop tolerant varieties under combined stresses of drought and high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afzal, A., Gulzar, I., Shahbaz, M., & Ashraf, M. (2014). Water deficit-induced regulation of growth, gas exchange, chlorophyll luorescence, inorganic nutrient accumulation and antioxidative defense mechanism in mungbean [Vigna radiata (L.)] Wilczek. Journal of Applied Botany and Food Quality, 87, 147–156.

    Google Scholar 

  • Arab, M. M., Brown, P. J., Abdollahi-Arpanahi, R., Sohrabi, S. S., Askari, H., Aliniaeifard, S., Mokhtassi-Bidgoli, A., Mesgaran, M. B., Leslie, C. A., Marrano, A., & Neale, D. B. (2022). Genome-wide association analysis and pathway enrichment provide insights into the genetic basis of photosynthetic responses to drought stress in Persian walnut. Horticulture Research, 9, 123–124.

    Article  Google Scholar 

  • Babu, R. C., Pathan, M. S., Blum, A., & Nguyen, H. T. (1999). Comparison of measurement methods of osmotic adjustment in rice cultivars. Crop Science, 39(1), 150–158.

    Article  Google Scholar 

  • Barrs, H., & Weatherley, P. (1962). A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15(3), 413–428.

    Article  Google Scholar 

  • Basavaraj, P. S., & Rane, J. (2020). Avenues to realize potential of phenomics to accelerate crop breeding for heat tolerance. Plant Physiology Reports, 25, 594–610.

    Article  Google Scholar 

  • Carrera, C.S., Solis, S.M., Ferrucci, M.S., Vega, C.C., Galati, B.G., Ergo, V., Andrade, F.H. & Lascano, R.H. (2021). Leaf structure and ultrastructure changes induced by heat stress and drought during seed filling in field-grown soybean and their relationship with grain yield. Anais da Academia Brasileira de Ciências93.

  • Chand, G., Nandwal, A. S., Dogra, S., & Sharma, M. (2020). Biochemical response of Mungbean [Vigna radiata (L.) Wilczek] genotypes under terminal heat stress at reproductive stage. International Journal of Current Microbiology and Applied Sciences, 9(7), 2975–2986.

    Article  CAS  Google Scholar 

  • Chaturvedi, A., Bahuguna, R. N., Shah, D., Pal, M., & Krishna Jagadish, S. V. (2017). High temperature stress during flowering and grain filling offsets beneficial impact of elevated CO2 on assimilate partitioning and sink strength in rice. Scientific Reports, 7, 8227. https://doi.org/10.1038/s41598-017-07464-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen, I., Zandalinas, S. I., Fritschi, F. B., Sengupta, S., Fichman, Y., Azad, R. K., & Mittler, R. (2021a). The impact of water deficit and heat stress combination on the molecular response, physiology, and seed production of soybean. Physiologia Plantarum, 172(1), 41–52.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, I., Zandalinas, S. I., Huck, C., Fritschi, F. B., & Mittler, R. (2021b). Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiologia Plantarum, 171(1), 66–76.

    Article  CAS  PubMed  Google Scholar 

  • Das, A., Eldakak, M., Paudel, B., Kim, D.W., Hemmati, H., Basu, C. & Rohila, J.S. (2016). Leaf proteome analysis reveals prospective drought and heat stress response mechanisms in soybean. BioMed Research International2016.

  • Das, A., Rushton, P. J., & Rohila, J. S. (2017). Metabolomic profiling of soybeans (Glycine max L.) reveals the importance of sugar and nitrogen metabolism under drought and heat stress. Plants, 6(2), 21.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Castro, J. N., Muller, C., Almeida, G. M., & Costa, A. C. (2019). Physiological tolerance to drought under high temperature in soybean cultivars. Australian Journal of Crop Science, 13(6), 976–987.

    Article  Google Scholar 

  • de Moraes, M. T., & Gusmao, A. G. (2021). How do water, compaction and heat stresses affect soybean root elongation? A Review. Rhizosphere, 19, 100403.

    Article  Google Scholar 

  • Dehury, B., Panda, D., Sahu, J., Sahu, M., Sarma, K., Barooah, M., Sen, P., & Modi, M. K. (2013). In silico identification and characterization of conserved miRNAs and their target genes in sweet potato (Ipomoea batatas L.) expressed sequence tags (ESTs). Plant Signaling & Behavior, 8(12), 26543.

    Article  Google Scholar 

  • Dusenge, M. E., Duarte, A. G., & Way, D. A. (2019). Plant carbon metabolism and climate change: Elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytologist, 221(1), 32–49.

    Article  CAS  PubMed  Google Scholar 

  • Elsalahy, H. H., & Reckling, M. (2022). Soybean resilience to drought is supported by partial recovery of photosynthetic traits. Frontiers in Plant Science, 13, 971893.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ergo, V. V., Lascano, R., Vega, C. R., Parola, R., & Carrera, C. S. (2018). Heat and water stressed field-grown soybean: A multivariate study on the relationship between physiological-biochemical traits and yield. Environmental and Experimental Botany, 148, 1–11.

    Article  CAS  Google Scholar 

  • Fahad, S., Bajwa, A.A., Nazir, U., Anjum, S.A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S. & Ihsan, M.Z. (2017). Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science, p.1147.

  • Gomez, K. A., & Gomez, A. A. (2010). Statistical Procedures for Agricultural Research: Wiley.

  • Gururani, M. A., Venkatesh, J., & Tran, L. S. P. (2015). Regulation of photosynthesis during abiotic stress-induced photoinhibition. Molecular Plant, 8(9), 1304–1320.

    Article  CAS  PubMed  Google Scholar 

  • Hamayun, M., Hussain, A., Iqbal, A., Khan, S.A., Khan, M.A. & Lee, I.J. (2021). An Endophytic Fungus Gliocladium cibotii Regulates Metabolic and Antioxidant System of Glycine max and Helianthus annuus under Heat Stress. Polish Journal of Environmental Studies30(2).

  • Hossain, M. M., Liu, X., Qi, X., Lam, H. M., & Zhang, J. (2014). Differences between soybean genotypes in physiological response to sequential soil drying and rewetting. The Crop Journal, 2(6), 366–380.

    Article  Google Scholar 

  • Jianing, G., Yuhong, G., Yijun, G., Rasheed, A., Qian, Z., Zhiming, X., Mahmood, A., Shuheng, Z., Zhuo, Z., Zhuo, Z., & Xiaoxue, W. (2022). Improvement of heat stress tolerance in soybean (Glycine max L.), by using conventional and molecular tools. Frontiers in Plant Science, 13, 993189.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jumrani, K., & Bhatia, V. S. (2018). Impact of combined stress of high temperature and water deficit on growth and seed yield of soybean. Physiology and Molecular Biology of Plants, 24(1), 37–50.

    Article  PubMed  Google Scholar 

  • Jumrani, K., & Bhatia, V. S. (2019). Interactive effect of temperature and water stress on physiological and biochemical processes in soybean. Physiology and Molecular Biology of Plants, 25(3), 667–681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jumrani, K., Bhatia, V. S., & Pandey, G. P. (2017). Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean. Photosynthesis Research, 131(3), 333–350.

    Article  CAS  PubMed  Google Scholar 

  • Katam, R., Shokri, S., Murthy, N., Singh, S. K., Suravajhala, P., Khan, M. N., Bahmani, M., Sakata, K., & Reddy, K. R. (2020). Proteomics, physiological, and biochemical analysis of cross tolerance mechanisms in response to heat and water stresses in soybean. PLoS ONE, 15(6), e0233905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khatun, M., Sarkar, S., Era, F. M., Islam, A. M., Anwar, M. P., Fahad, S., Datta, R., & Islam, A. A. (2021). Drought stress in grain legumes: Effects, tolerance mechanisms and management. Agronomy, 11(12), 2374.

    Article  CAS  Google Scholar 

  • Koleyoras, A. S. (1958). A new method of determining drought resistance. Plant Physiology, 33, 232–233.

    Article  Google Scholar 

  • Luan, X., Bommarco, R., Scaini, A., & Vico, G. (2021). Combined heat and drought suppress rainfed maize and soybean yields and modify irrigation benefits in the USA. Environmental Research Letters, 16(6), 064023.

    Article  Google Scholar 

  • Mak, M., Babla, M., Xu, S. C., O’Carrigan, A., Liu, X. H., Gong, Y. M., Holford, P., & Chen, Z. H. (2014). Leaf mesophyll K+, H+ and Ca2+ fluxes are involved in drought-induced decrease in photosynthesis and stomatal closure in soybean. Environmental and Experimental Botany, 98, 1–12.

    Article  CAS  Google Scholar 

  • Minolta, C. (1989). Manual for chlorophyll meter SPAD-502. Osaka: Minolta Radiometric Instruments Divisions.

  • Monje, O. A., & Bugbee, B. (1992). Inherent limitations of non-destructive chlorophyll meters: A comparison of two types of meters. Hort Science, 27(1), 69–71.

    CAS  PubMed  Google Scholar 

  • Nahakpam, S. (2017). Chlorophyll stability: A better trait for grain yield in rice under drought. Indian Journal of Ecology, 44(4), 77–82.

    Google Scholar 

  • Pandey, P., Irulappan, V., Bagavathiannan, M. V., & Senthil-Kumar, M. (2017). Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers in Plant Science, 8, 537. https://doi.org/10.3389/fpls.2017.00537

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey, P. V., & Senthil-Kumar, M. (2015). Shared and unique responses of plants to multiple individual stresses and stress combinations: Physiological and molecular mechanisms. Frontiers in Plant Science, 6, 723. https://doi.org/10.3389/fpls.2015.00723

    Article  PubMed  PubMed Central  Google Scholar 

  • Poudel, S., Adhikari, B., Dhillon, J., Reddy, K. R., Stetina, S. R., & Bheemanahalli, R. (2023a). Quantifying the physiological, yield, and quality plasticity of Southern USA soybeans under heat stress. Plant Stress, 9, 100195.

    Article  CAS  Google Scholar 

  • Poudel, S., Vennam, R. R., Shrestha, A., Reddy, K. R., Wijewardane, N. K., Reddy, K. N., & Bheemanahalli, R. (2023b). Resilience of soybean cultivars to drought stress during flowering and early-seed setting stages. Scientific Reports, 13(1), 1277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Priya, P., Patil, M., Pandey, P., Singh, A., Babu, V. S., & Senthil-Kumar, M. (2023). Stress combinations and their interactions in plants database: A one-stop resource on combined stress responses in plants. The Plant Journal. https://doi.org/10.1111/tpj.16497

    Article  PubMed  Google Scholar 

  • Ramegowdaa, V., & Senthil-Kumar, M. (2015). The interactive effects of simultaneous biotic and abiotic stresses on plants: Mechanistic understanding from drought and pathogen combination. Journal of Plant Physiology, 176, 47–54. https://doi.org/10.1016/j.jplph.2014.11.008

    Article  CAS  Google Scholar 

  • Rani, A., Devi, P., Jha, U. C., Sharma, K. D., Siddique, K. H., & Nayyar, H. (2020). Developing climate-resilient chickpea involving physiological and molecular approaches with a focus on temperature and drought stresses. Frontiers in Plant Science, 10, 1759.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivero, R. M., Mittler, R., Blumwald, E., & Zandalinas, S. I. (2022). Developing climate-resilient crops: Improving plant tolerance to stress combination. The Plant Journal, 109(2), 373–389.

    Article  CAS  PubMed  Google Scholar 

  • Sedibe, M.M., Mofokeng, A.M. & Masvodza, D.R. (2023). Soybean production, constraints, and future prospects in poorer countries: a review.

  • Sinha, R., Shostak, B., Induri, S. P., Sen, S., Zandalinas, S. I., Joshi, T., Fritschi, F. B., & Mittler, R. (2023). Differential transpiration between pods and leaves during stress combination in soybean. Plant Physiology, 192(2), 753–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talebi, R., Ensafi, M. H., Baghebani, N., Karami, E., & Mohammadi, K. (2013). Physiological responses of chickpea (Cicer arietinum) genotypes to drought stress. Environmental and Experimental Biology, 11(1), 9–15.

    Google Scholar 

  • Vijay, R., Ravichandran, V., & Boominathan, P. (2018). Assessment of soybean genotypes for PEG induced drought tolerance at germination and seedling level. Madras Agricultural Journal, 105(1–3), 1–6.

    Google Scholar 

  • Zhang, J., Liu, J., Yang, C., Du, S., & Yang, W. (2016). Photosynthetic performance of soybean plants to water deficit under high and low light intensity. South African Journal of Botany, 105, 279–287.

    Article  CAS  Google Scholar 

  • Zhang, M., Liu, S., Wang, Z., Yuan, Y., Zhang, Z., Liang, Q., Yang, X., Duan, Z., Liu, Y., Kong, F., & Liu, B. (2022). Progress in soybean functional genomics over the past decade. Plant Biotechnology Journal, 20(2), 256–282.

    Article  CAS  PubMed  Google Scholar 

  • Zhuang, J., Wang, Y., Chi, Y., Zhou, L., Chen, J., Zhou, W., Song, J., Zhao, N., & Ding, J. (2020). Drought stress strengthens the link between chlorophyll fluorescence parameters and photosynthetic traits. PeerJ, 8, 10046.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boominathan Parasuraman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parasuraman, B., Rajamanickam, V., Rathinavelu, S. et al. Interactive effect of drought and high temperature on physiological traits of soybean (Glycine max). Plant Physiol. Rep. 29, 116–124 (2024). https://doi.org/10.1007/s40502-023-00767-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-023-00767-z

Keywords

Navigation