Skip to main content

Genes for NUE in rice: a way forward for molecular breeding and genome editing

Abstract

Nitrogen is one of the most critical nutrients in rice production and increased rice productivity is attributed mostly to the nitrogen fertilizer responsive rice varieties. With its relevance to environment, breeding for nitrogen use efficiency is now a research priority in rice. Based on the physiological, biochemical and genetic studies, several genes have been identified for nitrogen uptake, transport, remobilization and assimilation. Many of the genes and gene families associated with tissues like root, shoot, leaf and panicle have been characterized under differential nitrogen conditions. Functional validation of the identified genes in nitrogen use efficiency, yield and other agro-morphological traits demonstrated their potential for deployment in rice breeding programs. In the present review, the information on possible genes associated with nitrogen use efficiency has been presented. The epigenetic regulation of genes including the non-coding RNA and new breeding technologies like genome editing have also been discussed for identification and validation of genes for NUE. We propose a combinatorial approach of deploying the information available for genes reported to be associated with NUE of rice by haplotyping, allele mining, spatial and temporal expression analyses, gene networking and validation through genome editing towards development of high yielding rice varieties under optimum nitrogen.

This is a preview of subscription content, access via your institution.

References

  1. Alfatih, A., Wu, J., Zhang, Z. S., Xia, J. Q., Jan, S. U., Yu, L. H., & Xiang, C. B. (2020). Rice NIN-LIKE PROTEIN 1 rapidly responds to nitrogen deficiency and improves yield and nitrogen use efficiency. Journal of Experimental Botany, 71(19), 6032–6042. https://doi.org/10.1093/jxb/eraa292

    CAS  Article  PubMed  Google Scholar 

  2. Bao, A., Liang, Z., Zhao, Z., & Cai, H. (2015a). Overexpressing of OsAMT1-3, a high affinity ammonium transporter gene, modifies rice growth and carbon-nitrogen metabolic status. International Journal of Molecular Sciences, 16(5), 9037–9063. https://doi.org/10.3390/ijms16059037

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Bao, A., Zhao, Z., Ding, G., Shi, L., Xu, F., & Cai, H. (2015b). The stable level of Glutamine synthetase 2 plays an important role in rice growth and in carbon-nitrogen metabolic balance. International Journal of Molecular Sciences., 16(6), 12713–12736. https://doi.org/10.3390/ijms160612713

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bao, A., Zhao, Z., Ding, G., Shi, L., Xu, F., et al. (2014). Accumulated expression level of Cytosolic Glutamine Synthetase 1 gene (OsGS1;1 or OsGS1;2) alter plant development and the carbon-nitrogen metabolic status in rice. PLoS ONE, 9(4), e95581. https://doi.org/10.1371/journal.pone.0095581

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Barbadikar, K. M., Aglawe, S. B., Mangrauthia, S. K., Madhav, M. S., & Kumar, S. P. J. (2019). Genome editing: New breeding technologies in plants. OMICS-Based Approaches in Plant Biotechnology, 2019, 245–285.

    Article  Google Scholar 

  6. Beier, M. P., Fujita, T., Sasaki, K., Kanno, K., Ohashi, M., Tamura, W., Konishi, N., Saito, M., Imagawa, F., Ishiyama, K., Miyao, A., Yamaya, T., & Kojima, S. (2019). The urea transporter DUR3 contributes to rice production under nitrogen-deficient and field conditions. Physiologia Plantarum, 167(1), 75–89.

    CAS  Article  Google Scholar 

  7. Beier, M. P., Obara, M., Taniai, A., Sawa, Y., Ishizawa, J., & Yoshida, H. (2018). Lack of ACTPK1, an STY kinase, enhances ammonium uptake and use, and promotes growth of rice seedlings under sufficient external ammonium. Plant Journal, 93(6), 992–1006. https://doi.org/10.1111/tpj.13824

    CAS  Article  Google Scholar 

  8. Bernard, S. M., & Habash, D. Z. (2009). The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytologist, 182(3), 608–620. https://doi.org/10.1111/J.1469-8137.2009.02823.X

    CAS  Article  Google Scholar 

  9. Bhogireddy, S., Mangrauthia, S. K., Kumar, R., Pandey, A. K., Singh, S., Jain, A., Budak, H., Varshney, R. K., & Kudapa, H. (2021). Regulatory non-coding RNAs: a new frontier in regulation of plant biology. Functional and Integrative Genomics, 21(3–4), 313–330. https://doi.org/10.1007/s10142-021-00787-8

    CAS  Article  PubMed  Google Scholar 

  10. Biswal, A. K., Mangrauthia, S. K., Reddy, M. R., & Yugandhar, P. (2019). CRISPR mediated genome engineering to develop climate smart rice: Challenges and opportunities. Seminars in Cell and Developmental Biology, 96, 100–106. https://doi.org/10.1016/j.semcdb.2019.04.005

    CAS  Article  PubMed  Google Scholar 

  11. Budak, H., Kaya, S. B., & Cagirici, H. B. (2020). Long non-coding RNA in plants in the era of reference sequences. Frontiers in Plant Science, 11, 276. https://doi.org/10.3389/fpls.2020.00276

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cai, H., Zhou, Y., Xiao, J., Li, X., Zhang, Q., & Lian, X. (2009). Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Reports, 28, 527–537. https://doi.org/10.1007/s00299-008-0665-z

    CAS  Article  PubMed  Google Scholar 

  13. Chen, G., Guo, S., Kronzucker, H. J., & Shi, W. (2013). Nitrogen use efficiency (NUE) in rice links to NH4+ toxicity and futile NH4+ cycling in roots. Plant and Soil, 369(1–2), 351–363. https://doi.org/10.1007/s11104-012-1575-y

    CAS  Article  Google Scholar 

  14. Chen, J., Fan, X., Qian, K., Zhang, Y., Song, M., Liu, Y., Xu, G., & Fan, X. (2017). pOsNAR2.1:OsNAR2.1 expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants. Plant Biotechnology Journal, 15(10), 1273–1283. https://doi.org/10.1111/pbi.12714

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Chen, Z., Jiang, Q., Jiang, P., Zhang, W., Huang, J., Liu, C., Halford, N. G., & Lu, R. (2020). Novel low-nitrogen stress-responsive long non-coding RNAs (lncRNA) in barley landrace B968 (Liuzhutouzidamai) at seedling stage. BMC Plant Biology. https://doi.org/10.1186/s12870-020-02350-2

    Article  PubMed  PubMed Central  Google Scholar 

  16. Coruzzi, G. M., & Zhou, L. (2001). Carbon and nitrogen sensing and signaling in plants: Emerging matrix effects. Current Opinion in Plant Biology, 4, 247–253. https://doi.org/10.1016/S1369-5266(00)00168-0

    CAS  Article  PubMed  Google Scholar 

  17. De Datta, S. K., & Buresh, R. J. (1989). Integrated nitrogen management in irrigated rice. Advances in Soil Science, 10, 143–169. https://doi.org/10.1007/978-1-4613-8847-0_4

    Article  Google Scholar 

  18. Du, C. Q., Lin, J. Z., Dong, L. A., Liu, C., Tang, D. Y., Yan, L., Chen, M. D., Liu, S., & Liu, X. M. (2019). Overexpression of an NADP(H)-dependent glutamate dehydrogenase gene, TrGDH, from Trichurus improves nitrogen assimilation, growth status and grain weight per plant in rice. Breeding Science, 69(3), 429–438. https://doi.org/10.1270/jsbbs.19014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Fan, T., Yang, W., Zeng, X., Xu, X., Xu, Y., Fan, X., et al. (2020). A rice autophagy gene OsATG8b is involved in nitrogen remobilization and control of grain quality. Frontiers in Plant Science. https://doi.org/10.3389/FPLS.2020.00588

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fan, X., Feng, H., Tan, Y., Xu, Y., Miao, Q., & Xu, G. (2016a). A putative 6-transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen. Journal of Integrative Plant Biology, 58, 590–599. https://doi.org/10.1111/jipb.12382

    CAS  Article  PubMed  Google Scholar 

  21. Fan, X., Liu, L., Qian, K., Chen, J., Zhang, Y., Xie, P., Xu, M., Hu, Z., Yan, W., Wu, Y., & Xu, G. (2021). Plant DNA methylation is sensitive to parent seed N content and influences the growth of rice. BMC Plant Biology, 21(1), 1–18. https://doi.org/10.1186/s12870-021-02953-3

    CAS  Article  Google Scholar 

  22. Fan, X., Shen, Q., Ma, Z., Zhu, H., Yin, X., & Miller, A. J. (2005). A comparison of nitrate transport in four different rice (Oryza sativa L.) cultivars. Science in China Series C Life Sciences, 48(2), 897–911. https://doi.org/10.1007/BF03187128

    CAS  Article  PubMed  Google Scholar 

  23. Fan, X., Tang, Z., Tan, Y., Zhang, Y., Luo, B., Yang, M., Lian, X., Shen, Q., Miller, A. J., & Xu, G. (2016b). Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proceedings of the National Academy of Sciences of the United States of America, 113(26), 7118–7123. https://doi.org/10.1073/pnas.1525184113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Fang, J., Zhang, F., Wang, H., Wang, W., Zhao, F., Li, Z., Sun, C., Chen, F., Xu, F., Chang, S., Wu, L., Bu, Q., Wang, P., Xie, J., Chen, F., Huang, X., Zhang, Y., Zhu, X., Han, B., & Chu, C. (2019). Ef-cd locus shortens rice maturity duration without yield penalty. Proceedings of the National Academy of Sciences of the United States of America, 116(37), 18717–18722. https://doi.org/10.1073/pnas.1815030116

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Fang, Z., Bai, G., Huang, W., Wang, Z., Wang, X., & Zhang, M. (2017). The rice peptide transporter OsNPF7.3 is induced by organic nitrogen, and contributes to nitrogen allocation and grain yield. Frontiers in Plant Science, 8, 1338. https://doi.org/10.3389/fpls.2017.01338

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fang, Z., Wu, B., & Ji, Y. (2021). The amino acid transporter osaap4 contributes to rice tillering and grain yield by regulating neutral amino acid allocation through two splicing variants. Rice. https://doi.org/10.1186/s12284-020-00446-9

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fang, Z., Xia, K., Yang, X., Grotemeyer, M. S., Meier, S., Rentsch, D., Xu, X., & Zhang, M. (2013). Altered expression of the PTR/NRT1 homologue OsPTR9 affects nitrogen utilization efficiency, growth and grain yield in rice. Plant Biotechnology Journal, 11(4), 446–458. https://doi.org/10.1111/pbi.12031

    CAS  Article  PubMed  Google Scholar 

  28. Feng, H., Li, B., Zhi, Y., Chen, J., Li, R., Xia, X., Xu, G., & Fan, X. (2017). Overexpression of the nitrate transporter, OsNRT2.3b, improves rice phosphorus uptake and translocation. Plant Cell Reports, 36(8), 1287–1296. https://doi.org/10.1007/s00299-017-2153-9

    CAS  Article  PubMed  Google Scholar 

  29. Ferreira, L. M., de Souza, V. M., Tavares, O. C. H., Zonta, E., Santa-Catarina, C., de Souza, S. R., et al. (2015). OsAMT1.3 expression alters rice ammonium uptake kinetics and root morphology. Plant Biotechnology Reports, 9(4), 221–229. https://doi.org/10.1007/S11816-015-0359-2

    Article  Google Scholar 

  30. Funayama, K., Kojima, S., Tabuchi-Kobayashi, M., Sawa, Y., Nakayama, Y., Hayakawa, T., & Yamaya, T. (2013). Cytosolic glutamine synthetase1;2 is responsible for the primary assimilation of ammonium in rice roots. Plant and Cell Physiology, 54(6), 934–943. https://doi.org/10.1093/pcp/pct046

    CAS  Article  PubMed  Google Scholar 

  31. Gao, Y., Xu, Z., Zhang, L., Li, S., Wang, S., Yang, H., Liu, X., Zeng, D., Liu, Q., Qian, Q., Zhang, B., & Zhou, Y. (2020). MYB61 is regulated by GRF4 and promotes nitrogen utilization and biomass production in rice. Nature Communications. https://doi.org/10.1038/s41467-020-19019-x

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gao, Z., Wang, Y., Chen, G., Zhang, A., Yang, S., Shang, L., Wang, D., Ruan, B., Liu, C., Jiang, H., et al. (2019). The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nature Communications, 10, 5207. https://doi.org/10.1038/s41467-019-13110-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Gho, Y. S., Song, M. Y., Bae, D. Y., Choi, H., & Jung, K. H. (2021). Rice pin auxin efflux carriers modulate the nitrogen response in a changing nitrogen growth environment. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms22063243

    Article  PubMed  PubMed Central  Google Scholar 

  34. Guo, N., Gu, M., Hu, J., Qu, H., & Xu, G. (2020a). Rice OsLHT1 functions in leaf-to-panicle nitrogen allocation for grain yield and quality. Frontiers in Plant Science, 11, 1150. https://doi.org/10.3389/fpls.2020.01150

    Article  PubMed  PubMed Central  Google Scholar 

  35. Guo, N., Hu, J., Yan, M., Qu, H., Luo, L., Tegeder, M., & Xu, G. (2020b). Oryza sativa Lysine-Histidine-type Transporter 1 functions in root uptake and root-to-shoot allocation of amino acids in rice. Plant Journal, 103(1), 395–411. https://doi.org/10.1111/tpj.14742

    CAS  Article  Google Scholar 

  36. Hu, B., Wang, W., Ou, S., Tang, J., Li, H., Che, R., Zhang, Z., Chai, X., Wang, H., Wang, Y., Liang, C., Liu, L., Piao, Z., Deng, Q., Deng, K., Xu, C., Liang, Y., Zhang, L., Li, L., & Chu, C. (2015). Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics, 47(7), 834–838. https://doi.org/10.1038/ng.3337

    CAS  Article  PubMed  Google Scholar 

  37. Hu, R., Qiu, D., Chen, Y., Miller, A. J., Fan, X., Pan, X., & Zhang, M. (2016). Knock-Down of a tonoplast localized low-affinity nitrate transporter OsNPF7.2 affects rice Growth under high nitrate supply. Frontiers in Plant Science, 7, 1529. https://doi.org/10.3389/fpls.2016.01529

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hua, Y. P., Zhou, T., Huang, J. Y., Yue, C. P., Song, H. X., Guan, C. Y., & Zhang, Z. H. (2020). Genome-wide differential DNA methylation and miRNA expression profiling reveals epigenetic regulatory mechanisms underlying nitrogen-limitation-triggered adaptation and use efficiency enhancement in allotetraploid rapeseed. International Journal of Molecular Science, 21(22), 8453. https://doi.org/10.3390/ijms21228453

    CAS  Article  Google Scholar 

  39. Huang, A., Sang, Y., Sun, W., Fu, Y., & Yang, Z. (2016). Transcriptomic analysis of responses to imbalanced carbon: Nitrogen availabilities in rice seedlings. PLoS ONE, 11(11), e0165732. https://doi.org/10.1371/JOURNAL.PONE.0165732

    Article  PubMed  PubMed Central  Google Scholar 

  40. Huang, W., Bai, G., Wang, J., Zhu, W., Zeng, Q., Lu, K., Sun, S., & Fang, Z. (2018). Two splicing variants of OsNPF7.7 regulate shoot branching and nitrogen utilization efficiency in rice. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2018.00300

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ji, Y., Huang, W., Wu, B., Fang, Z., & Wang, X. (2020). The amino acid transporter AAP1 mediates growth and grain yield by regulating neutral amino acid uptake and reallocation in Oryza sativa. Journal of Experimental Botany, 71(16), 4763–4777. https://doi.org/10.1093/jxb/eraa256

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Kolbert, Z., & Erdei, L. (2008). Involvement of nitrate reductase in auxin-induced NO synthesis. Plant Signaling and Behavior, 3(11), 972–973. https://doi.org/10.4161/psb.6170

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kou, H. P., Li, Y., Song, X. X., Ou, X. F., Xing, S. C., Ma, J., Von Wettstein, D., & Liu, B. (2011). Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.). Journal of Plant Physiology, 168(14), 1685–1693. https://doi.org/10.1016/j.jplph.2011.03.017

    CAS  Article  PubMed  Google Scholar 

  44. Kumagai, E., Araki, T., Hamaoka, N., & Ueno, O. (2011). Ammonia emission from rice leaves in relation to photorespiration and genotypic differences in glutamine synthetase activity. Annals of Botany, 108(7), 1381–1386. https://doi.org/10.1093/aob/mcr245

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Kumari, S., Sharma, N., & Raghuram, N. (2021). Meta-Analysis of yield-related and N-responsive genes reveals chromosomal hotspots, key processes and candidate genes for nitrogen-use efficiency in rice. Frontiers in Plant Science, 12, 627955. https://doi.org/10.3389/fpls.2021.627955

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kurai, T., Wakayama, M., Abiko, T., Yanagisawa, S., Aoki, N., & Ohsugi, R. (2011). Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions. Plant Biotechnology Journal, 9(8), 826–837. https://doi.org/10.1111/J.1467-7652.2011.00592.X

    CAS  Article  PubMed  Google Scholar 

  47. Kusano, M., Fukushima, A., Tabuchi-Kobayashi, M., Funayama, K., Kojima, S., Maruyama, K., Yamamoto, Y. Y., Nishizawa, T., Kobayashi, M., Wakazaki, M., Sato, M., Toyooka, K., Osanai-Kondo, K., Utsumi, Y., Seki, M., Fukai, C., Saito, K., & Yamaya, T. (2020). Cytosolic glutamine synthetase1;1 modulates metabolism and chloroplast development in ROOTs1[open]. Plant Physiology, 182(4), 1894–1909. https://doi.org/10.1104/PP.19.01118

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Ladha, J. K., Jat, M. L., Stirling, C. M., Chakraborty, D., Pradhan, P., Krupnik, T. J., Sapkota, T. B., Pathak, H., Rana, D. S., Tesfaye, K., & Gerard, B. (2020). Achieving the sustainable development goals in agriculture: The crucial role of nitrogen in cereal-based systems. Advances in Agronomy, 163, 39–116.

    Article  Google Scholar 

  49. Lee, S. (2021). Recent advances on nitrogen use efficiency in rice. Agronomy, 11(4), 753. https://doi.org/10.3390/agronomy11040753

    CAS  Article  Google Scholar 

  50. Lee, S., Marmagne, A., Park, J., Fabien, C., Yim, Y., Kim, S. J., Kim, T. H., Lim, P. O., Masclaux-Daubresse, C., & Nam, H. G. (2020a). Concurrent activation of OsAMT1; 2 and OsGOGAT1 in rice leads to enhanced nitrogen use efficiency under nitrogen limitation. The Plant Journal, 103(1), 7–20. https://doi.org/10.1111/tpj.14794

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Lee, S., Park, J., Lee, J., Shin, D., Marmagne, A., Lim, P. O., et al. (2020b). OsASN1 overexpression in rice increases grain protein content and yield under nitrogen-limiting conditions. Plant and Cell Physiology, 61(7), 1309–1320. https://doi.org/10.1093/PCP/PCAA060

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Leran, S., Varala, K., Boyer, J. C., Chiurazzi, M., Crawford, N., Daniel-Vedele, F., David, L., Dickstein, R., Fernandez, E., Forde, B., Gassmann, W., Geiger, D., Gojon, A., Gong, J. M., Halkier, B. A., Harris, J. M., Hedrich, R., Limami, A. M., Rentsch, D., … Lacombe, B. (2014). A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends in Plant Science, 19(1), 5–9. https://doi.org/10.1016/j.tplants.2013.08.008

    CAS  Article  PubMed  Google Scholar 

  53. Li, B., Byrt, C., Qiu, J., Baumann, U., Hrmova, M., Evrard, A., Johnson, A. A. T., Birnbaum, K. D., Mayo, G. M., Jha, D., Henderson, S. W., Tester, M., Gilliham, M., & Roy, S. J. (2016a). Identification of a stelar-localized transport protein that facilitates root-to-shoot transfer of chloride in arabidopsis. Plant Physiology, 170(2), 1014–1029. https://doi.org/10.1104/pp.15.01163

    CAS  Article  PubMed  Google Scholar 

  54. Li, C., Tang, Z., Wei, J., Qu, H., Xie, Y., & Xu, G. (2016b). The OsAMT1.1 gene functions in ammonium uptake and ammonium-potassium homeostasis over low and high ammonium concentration ranges. Journal of Genetics and Genomics, 43, 639–649. https://doi.org/10.1016/j.jgg.2016.11.001

    Article  PubMed  Google Scholar 

  55. Li, H., Hu, B., Wang, W., Zhang, Z., Liang, Y., Gao, X., Li, P., Liu, Y., Zhang, L., & Chu, C. (2016c). Identification of microRNAs in rice root in response to nitrate and ammonium. Journal of Genetics and Genomics, 43(11), 651–661. https://doi.org/10.1016/j.jgg.2015.12.002

    Article  PubMed  Google Scholar 

  56. Li, H., Hu, B., Wang, W., Zhang, Z., Liang, Y., Gao, X., Li, P., Liu, Y., Zhang, L., & Chu, C. (2016d). Identification of microRNAs in rice root in response to nitrate and ammonium. Journal of Genetics and Genomics, 43(11), 651–661. https://doi.org/10.1016/j.jgg.2015.12.002

    Article  PubMed  Google Scholar 

  57. Li, S., Qian, Q., Fu, Z., Zeng, D., Meng, X., Kyozuka, J., Maekawa, M., Zhu, X., Zhang, J., Li, J., & Wang, Y. (2009). Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. Plant Journal, 58, 592–605. https://doi.org/10.1111/j.1365-313X.2009.03799.x

    CAS  Article  Google Scholar 

  58. Li, S., Tian, Y., Wu, K., Ye, Y., Yu, J., Zhang, J., et al. (2018). Modulating plant growth–metabolism coordination for sustainable agriculture. Nature, 560(7720), 595–600. https://doi.org/10.1038/s41586-018-0415-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Li, Y., Ouyang, J., Wang, Y. Y., Hu, R., Xia, K., Duan, J., Wang, Y., Tsay, Y. F., & Zhang, M. (2015a). Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development. Scientific Reports, 5, 9635. https://doi.org/10.1038/srep09635

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Li, Y., Ouyang, J., Wang, Y. Y., Hu, R., Xia, K., Duan, J., Wang, Y., Tsay, Y. F., & Zhang, M. (2015b). Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development. Scentific Reports, 5, 9635. https://doi.org/10.1038/srep09635

    CAS  Article  Google Scholar 

  61. Liang, Y., Wang, J., Zeng, F., Wang, Q., Zhu, L., Li, H., Guo, N., & Chen, H. (2020). Photorespiration regulates carbon-nitrogen metabolism by magnesium chelatase D subunit in rice. Journal of Agricultural and Food Chemistry, 69(1), 112–125. https://doi.org/10.1021/acs.jafc.0c05809

    CAS  Article  PubMed  Google Scholar 

  62. Lu, K., Wu, B., Wang, J., Zhu, W., Nie, H., Qian, J., et al. (2018). Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. Plant Biotechnology Journal, 16(10), 1710–1722. https://doi.org/10.1111/PBI.12907

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Lu, Y., & Zhu, J. K. (2017). Precise Editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Molecular Plant, 10(3), 523–525. https://doi.org/10.1016/j.molp.2016.11.013

    CAS  Article  PubMed  Google Scholar 

  64. Mandal, V. K., Sharma, N., & Raghuram, N. (2018). Molecular targets for improvement of crop nitrogen use efficiency: Current and emerging options. Engineering Nitrogen Utilization in Crop Plants. https://doi.org/10.1007/978-3-319-92958-3_5

    Article  Google Scholar 

  65. Masclaux-Daubresse, C., & Chardon, F. (2011). Exploring nitrogen remobilization for seed filling using natural variation in Arabidopsis thaliana. Journal of Experimental Botany, 62(6), 2131–2142. https://doi.org/10.1093/JXB/ERQ405

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Masclaux-Daubresse, C., Daniel-Vedele, F., Dechorgnat, J., Chardon, F., Gaufichon, L., & Suzuki, A. (2010). Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Annals of Botany, 105(7), 1141–1157. https://doi.org/10.1093/aob/mcq028

    Article  PubMed  PubMed Central  Google Scholar 

  67. Meng, X., Yu, X., Wu, Y., Kim, D. H., Nan, N., Cong, W., Wang, S., Liu, B., & Xu, Z. Y. (2020). Chromatin remodeling protein ZmCHB101 regulates nitrate-responsive gene expression in maize. Frontiers in Plant Science, 11, 52. https://doi.org/10.3389/fpls.2020.00052

    Article  PubMed  PubMed Central  Google Scholar 

  68. Miao, C., Wang, D., He, R., Liu, S., & Zhu, J. K. (2020). Mutations in MIR396e and MIR396f increase grain size and modulate shoot architecture in rice. Plant Biotechnology Journal, 18(2), 491–501. https://doi.org/10.1111/pbi.13214

    CAS  Article  PubMed  Google Scholar 

  69. Moll, R. H., Kamprath, E. J., & Jackson, W. A. (1982). Analysis and interpretation of factors which contribute to efficiency to nitrogen utilization. Agronomy Journal, 74, 562–564.

    Article  Google Scholar 

  70. Nazish, T., Arshad, M., Jan, S. U., Javaid, A., Khan, M. H., Naeem, M. A., et al. (2021). Transporters and transcription factors gene families involved in improving nitrogen use efficiency (NUE) and assimilation in rice (Oryza sativa L.). Transgenic Research, 2021, 1–20. https://doi.org/10.1007/S11248-021-00284-5

    Article  Google Scholar 

  71. Neeraja, C. N., Voleti, S. R., Subrahmanyam, D., Surekha, K., Desiraju, B. S., Krishnakanth, T., & Raghuveer, R. P. (2021). Molecular breeding for improving nitrogen use efficiency in rice: Progress and perspectives. Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality. https://doi.org/10.1002/9781119633174.ch12

    Article  Google Scholar 

  72. Niu, Y. F., Chai, R. S., Jin, G. L., Wang, H., Tang, C. X., & Zhang, Y. S. (2013). Responses of root architecture development to low phosphorus availability: A review. Annals of Botany, 112(2), 391–408. https://doi.org/10.1093/aob/mcs285

    CAS  Article  PubMed  Google Scholar 

  73. Ohashi, M., Ishiyama, K., Kojima, S., Konishi, N., Nakano, K., Kanno, K., et al. (2015). Asparagine synthetase1, but not asparagine synthetase2, is responsible for the biosynthesis of asparagine following the supply of ammonium to rice roots. Plant and Cell Physiology, 56(4), 769–778. https://doi.org/10.1093/PCP/PCV005

    CAS  Article  PubMed  Google Scholar 

  74. Ohashi, M., Ishiyama, K., Kojima, S., Konishi, N., Sasaki, K., Miyao, M., Hayakawa, T., & Yamaya, T. (2018). Outgrowth of rice tillers requires availability of glutamine in the basal portions of shoots. Rice. https://doi.org/10.1186/s12284-018-0225-2

    Article  PubMed  PubMed Central  Google Scholar 

  75. Qiu, X., Xie, W., Lian, X., & Zhang, Q. (2009). Molecular analyses of the rice glutamate dehydrogenase gene family and their response to nitrogen and phosphorous deprivation. Plant Cell Reports, 28(7), 1115–1126. https://doi.org/10.1007/s00299-009-0709-z

    CAS  Article  PubMed  Google Scholar 

  76. Raghuram, N., Sutton, M. A., Jeffery, R., Ramachandran, R., & Adhya, T. K. (2021). From South Asia to the world: Embracing the challenge of global sustainable nitrogen management. One Earth, 4(1), 22–27. https://doi.org/10.1016/j.oneear.2020.12.017

    Article  Google Scholar 

  77. Ranathunge, K., El-Kereamy, A., Gidda, S., Bi, Y. M., & Rothstein, S. J. (2014). AMT1;1 transgenic rice plants with enhanced NH4+ permeability show superior growth and higher yield under optimal and suboptimal NH4+ conditions. Journal of Experimental Botany, 65(4), 965–979. https://doi.org/10.1093/jxb/ert458

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. Sevanthi, A. M., Sinha, S. K., Sureshkumar, V., Rani, M., Saini, M. R., Kumari, S., Kaushik, M., Prakash, C., Venkatesh, K., Singh, G. P., & Mohapatra, T. (2021). Integration of dual stress transcriptomes and major qtls from a pair of genotypes contrasting for drought and chronic nitrogen starvation identifies key stress responsive genes in rice. Rice, 14, 49. https://doi.org/10.1186/s12284-021-00487-8

    Article  PubMed  PubMed Central  Google Scholar 

  79. Shin, S. Y., Jeong, J. S., Lim, J. Y., Kim, T., Park, J. H., Kim, J. K., & Shin, C. (2018). Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies. BMC Genomics, 19(1), 1–20. https://doi.org/10.1186/s12864-018-4897-1

    CAS  Article  Google Scholar 

  80. Sinha, S. K., Sevanthi, V. A. M., Chaudhary, S., Tyagi, P., Venkadesan, S., Rani, M., & Mandal, P. K. (2018). Transcriptome analysis of two rice varieties contrasting for nitrogen use efficiency under chronic N starvation reveals differences in chloroplast and starch metabolism-related genes. Genes, 9(4), 206. https://doi.org/10.3390/genes9040206

    CAS  Article  PubMed Central  Google Scholar 

  81. Sonoda, Y., Ikeda, A., Saiki, S., von Wirén, N., Yamaya, T., & Yamaguchi, J. (2003). Distinct expression and function of three ammonium transporter genes (OsAMT1;1–1;3) in rice. Plant Cell Physiology, 44(7), 726–734.

    CAS  Article  Google Scholar 

  82. Suenaga, A., Moriya, K., Sonoda, Y., Ikeda, A., von Wirén, N., Hayakawa, T., Yamaguchi, J., & Yamaya, T. (2003). Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. Plant Cell Physiology, 44(2), 206–211.

    CAS  Article  Google Scholar 

  83. Sun, H., Tao, J., Bi, Y., Hou, M., Lou, J., Chen, X., Zhang, X., Luo, L., Xie, X., Yoneyama, K., Zhao, Q., Xu, G., & Zhang, Y. (2018). OsPIN1b is involved in rice seminal root elongation by regulating root apical meristem activity in response to low nitrogen and phosphate. Scientific Reports, 8(13014), 10–20. https://doi.org/10.1038/s41598-018-29784-x

    CAS  Article  Google Scholar 

  84. Surekha, K., Kumar, R. M., Subhramanyam, D., Neeraja, C. N., Rajesh, K., & Voleti, S. R. (2019). All India co-ordinated rice improvement programme aprroaches in improving nitrogen use efficiency in rice. Indian Journal of Fertilisers, 15(4), 64–75.

    Google Scholar 

  85. Sutton, M. A., Howard, C. M., Kanter, D. R., Lassaletta, L., Móring, A., Raghuram, N., & Read, N. (2021). The nitrogen decade: Mobilizing global action on nitrogen to 2030 and beyond. One Earth, 4(1), 10–14. https://doi.org/10.1016/j.oneear.2020.12.016

    Article  Google Scholar 

  86. Tabuchi, M., Abiko, T., & Yamaya, T. (2007). Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). Journal of Experimental Botany, 58, 2319–2327. https://doi.org/10.1093/jxb/erm016

    CAS  Article  PubMed  Google Scholar 

  87. Tabuchi, M., Sugiyama, K., Ishiyama, K., Inoue, E., Sato, T., Takahashi, H., & Yamaya, T. (2005). Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1. Plant Journal, 42(5), 641–651. https://doi.org/10.1111/j.1365-313X.2005.02406.x

    CAS  Article  Google Scholar 

  88. Tamura, W., Hidaka, Y., Tabuchi, M., Kojima, S., Hayakawa, T., Sato, T., Obara, M., Kojima, M., Sakakibara, H., & Yamaya, T. (2010). Reverse genetics approach to characterize a function of NADH-glutamate synthase1 in rice plants. Amino Acids, 39(4), 1003–1012. https://doi.org/10.1007/s00726-010-0531-5

    CAS  Article  PubMed  Google Scholar 

  89. Tamura, W., Kojima, S., Toyokawa, A., Watanabe, H., Tabuchi-Kobayashi, M., Hayakawa, T., & Yamaya, T. (2011). Disruption of a novel NADH-glutamate synthase2 gene caused marked reduction in spikelet number of rice. Frontiers in Plant Science, 2, 57. https://doi.org/10.3389/fpls.2011.00057

    Article  PubMed  PubMed Central  Google Scholar 

  90. Tang, W., Ye, J., Yao, X., Zhao, P., Xuan, W., Tian, Y., Zhang, Y., Xu, S., An, H., Chen, G., Yu, J., Wu, W., Ge, Y., Liu, X., Li, J., Zhang, H., Zhao, Y., Yang, B., Jiang, X., & Wan, J. (2019). Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nature Communications. https://doi.org/10.1038/s41467-019-13187-1

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tang, Z., Fan, X., Li, Q., Feng, H., Miller, A. J., Shen, Q., & Xu, G. (2012). Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Plant Physiology., 160, 2052–2063. https://doi.org/10.1104/pp.112.204461

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. Taylor, M. R., Reinders, A., & Ward, J. M. (2015). Transport function of rice amino acid permeases (AAPs). Plant and Cell Physiology, 56(7), 1355–1363. https://doi.org/10.1093/pcp/pcv053

    CAS  Article  PubMed  Google Scholar 

  93. Tegeder, M., & Rentsch, D. (2010). Uptake and partitioning of amino acids and peptides. Molecular Plant, 3(6), 997–1011. https://doi.org/10.1093/mp/ssq047

    CAS  Article  PubMed  Google Scholar 

  94. The, S. V., Snyder, R., & Tegeder, M. (2021). Targeting nitrogen metabolism and transport processes to improve plant nitrogen use efficiency. Frontiers in Plant Science, 11, 628366. https://doi.org/10.3389/fpls.2020.628366

    Article  PubMed  PubMed Central  Google Scholar 

  95. Tiong, J., Sharma, N., Sampath, R., MacKenzie, N., Watanabe, S., Metot, C., Lu, Z., Skinner, W., Lu, Y., Kridl, J., Baumann, U., Heuer, S., Kaiser, B., & Okamoto, M. (2021). Improving nitrogen use efficiency through overexpression of alanine aminotransferase in rice, wheat, and barley. Frontiers in Plant Science, 12, 628521. https://doi.org/10.3389/fpls.2021.628521

    Article  PubMed  PubMed Central  Google Scholar 

  96. Udvardi, M., Below, F. E., Castellano, M. J., Eagle, A. J., Giller, K. E., Ladha, J. K., Liu, X., Maaz, T. M. C., Nova-Franco, B., Raghuram, N., Robertson, G. P., Roy, S., Saha, M., Schmidt, S., Tegeder, M., York, L. M., & Peters, J. W. (2021). A research road map for responsible use of agricultural nitrogen. Frontiers in Sustainable Food Systems. https://doi.org/10.3389/fsufs.2021.660155

    Article  Google Scholar 

  97. Vinod, K. K., & Heuer, S. (2012). Approaches towards nitrogen- and phosphorus-efficient rice. Annals of Botany Plants. https://doi.org/10.1093/aobpla/pls028

    Article  Google Scholar 

  98. Wang, D., Xu, T., Yin, Z., Wu, W., Geng, H., Li, L., et al. (2020a). Overexpression of OsMYB305 in rice enhances the nitrogen uptake under low-nitrogen condition. Frontiers in Plant Science. https://doi.org/10.3389/FPLS.2020.00369

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wang, J., Lu, K., Nie, H., Zeng, Q., Wu, B., Qian, J., & Fang, Z. (2018a). Rice nitrate transporter OsNPF72 positively regulates tiller number and grain yield. Rice, 11(1), 1–13. https://doi.org/10.1186/S12284-018-0205-6

    Article  Google Scholar 

  100. Wang, J., Wu, B., Lu, K., Wei, Q., Qian, J., Chen, Y., & Fang, Z. (2019). The Amino Acid Permease 5 (OsAAP5) regulates tiller number and grain yield in rice. Plant Physiology, 180, 1031–1045. https://doi.org/10.1104/pp.19.00034

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  101. Wang, Q., Su, Q., Nian, J., Zhang, J., Guo, M., Dong, G., et al. (2021a). The Ghd7 transcription factor represses ARE1 expression to enhance nitrogen utilization and grain yield in rice. Molecular Plant, 14(6), 1012–1023. https://doi.org/10.1016/J.MOLP.2021.04.012

    CAS  Article  PubMed  Google Scholar 

  102. Wang, Q., Su, Q., Nian, J., Zhang, J., Guo, M., Dong, G., Hu, J., Wang, R., Wei, C., Li, G., Wang, W., Guo, H. S., Lin, S., Qian, W., Xie, X., Qian, Q., Chen, F., & Zuo, J. (2021b). The Ghd7 transcription factor represses ARE1 expression to enhance nitrogen utilization and grain yield in rice. Molecular Plant., 14, 1012–1023.

    CAS  Article  Google Scholar 

  103. Wang, S., Chen, A., Xie, K., Yang, X., Luo, Z., Chen, J., Zeng, D., Ren, Y., Yang, C., Wang, L., Feng, H., Lizbeth López-Arredondo, D., Rafael Herrera-Estrella, L., Xu, G., Gojon, A., Harrison, M. J., & Wang, E. (2020b). Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2000926117

    Article  Google Scholar 

  104. Wang, W. H., Köhler, B., Cao, F. Q., Liu, G. W., Gong, Y. Y., Sheng, S., Song, Q. C., Cheng, X. Y., Garnett, T., Okamoto, M., Qin, R., Mueller-Roeber, B., Tester, M., & Liu, L. H. (2012). Rice DUR3 mediates high-affinity urea transport and plays an effective role in improvement of urea acquisition and utilization when expressed in Arabidopsis. New Phytologist, 193(2), 432–444. https://doi.org/10.1111/j.1469-8137.2011.03929.x

    CAS  Article  Google Scholar 

  105. Wang, W., Hu, B., Yuan, D., Liu, Y., Che, R., Hu, Y., et al. (2018b). Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. The Plant Cell, 30(3), 638–651. https://doi.org/10.1105/TPC.17.00809

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  106. Wang, W., Hu, B., Yuan, D., Liu, Y., Che, R., Hu, Y., Ou, S., Liu, Y., Zhang, Z., Wang, H., & Li, H. (2018c). Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. The Plant Cell, 30(3), 638–651. https://doi.org/10.1105/tpc.17.00809

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. Wei, J., Zheng, Y., Feng, H., Qu, H., Fan, X., Yamaji, N., Ma, J. F., & Xu, G. (2018). OsNRT2.4 encodes a dual-affinity nitrate transporter and functions in nitrate-regulated root growth and nitrate distribution in rice. Journal of Experimental Botany, 69(5), 1095–1107. https://doi.org/10.1093/jxb/erx486

    CAS  Article  PubMed  Google Scholar 

  108. Wu, J., Zhang, Z. S., Xia, J. Q., Alfatih, A., Song, Y., Huang, Y. J., Wan, G. Y., Sun, L. Q., Tang, H., Liu, Y., Wang, S. M., Zhu, Q. S., Qin, P., Wang, Y. P., Li, S. G., Mao, C. Z., Zhang, G. Q., Chu, C., Yu, L. H., & Xiang, C. B. (2021). Rice NIN-LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency. Plant Biotechnology Journal, 19(3), 448–461. https://doi.org/10.1111/pbi.13475

    CAS  Article  PubMed  Google Scholar 

  109. Wu, Y., Yang, W., Wei, J., Yoon, H., & An, G. (2017). Transcription Factor OsDOF18 controls ammonium uptake by inducing ammonium transporters in rice roots. Molecules and Cells, 40(3), 178–185. https://doi.org/10.14348/molcells.2017.2261

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  110. Xia, X., Fan, X., Wei, J., Feng, H., Qu, H., Xie, D., Miller, A. J., & Xu, G. (2015a). Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport. Journal of Experimental Botany, 66(1), 317–331. https://doi.org/10.1093/jxb/eru425

    CAS  Article  PubMed  Google Scholar 

  111. Xia, Y., DeBolt, S., Dreyer, J., Scott, D., & Williams, M. A. (2015b). Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2015.00490

    Article  PubMed  PubMed Central  Google Scholar 

  112. Xu, G., Fan, X., & Miller, A. J. (2012). Plant nitrogen assimilation and use efficiency. Annual Review in Plant Biology., 63, 153–182. https://doi.org/10.1146/annurev-arplant-042811-105532

    CAS  Article  Google Scholar 

  113. Yamaya, T., & Kusano, M. (2014). Evidence supporting distinct functions of three cytosolic glutamine synthetases and two NADH-glutamate synthases in rice. Journal of Experimental Botany, 65(19), 5519–5525. https://doi.org/10.1093/jxb/eru103

    CAS  Article  PubMed  Google Scholar 

  114. Yan, M., Fan, X., Feng, H., Miller, A. J., Shen, Q., & Xu, G. (2011). Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3 a nitrate transporters to provide uptake over high and low concentration ranges. Plant Cell Environment, 34, 1360–1372. https://doi.org/10.1111/j.1365-3040.2011.02335.x

    CAS  Article  Google Scholar 

  115. Yang, X., Nian, J., Xie, Q., Feng, J., Zhang, F., Jing, H., Zhang, J., Dong, G., Liang, Y., Peng, J., Wang, G., Qian, Q., & Zuo, J. (2016). Rice ferredoxin-dependent glutamate synthase regulates nitrogen-carbon metabolomes and is genetically differentiated between japonica and indica subspecies. Molecular Plant, 9(11), 1520–1534. https://doi.org/10.1016/j.molp.2016.09.004

    CAS  Article  PubMed  Google Scholar 

  116. Yu, J., Xuan, W., Tian, Y., Fan, L., Sun, J., Tang, W., Chen, G., Wang, B., Liu, Y., Wu, W., Liu, X., Jiang, X., Zhou, C., Dai, Z., Xu, D., Wang, C., & Wan, J. (2021a). Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice. Plant Biotechnology Journal, 19(1), 167–176. https://doi.org/10.1111/pbi.13450

    CAS  Article  PubMed  Google Scholar 

  117. Yu, J., Xuan, W., Tian, Y., Fan, L., Sun, J., Tang, W., Chen, G., Wang, B., Liu, Y., Wu, W., & Liu, X. (2021b). Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice. Plant Biotechnology Journal, 19(1), 167–176. https://doi.org/10.1111/pbi.13450

    CAS  Article  PubMed  Google Scholar 

  118. Yu, J., Zhen, X., Li, X., Li, N., & Xu, F. (2019). Increased autophagy of rice can increase yield and nitrogen use efficiency (NUE). Frontiers in Plant Science. https://doi.org/10.3389/FPLS.2019.00584

    Article  PubMed  PubMed Central  Google Scholar 

  119. Zamani-Nour, S., Lin, H. C., Walker, B. J., Mettler-Altmann, T., Khoshravesh, R., Karki, S., Bagunu, E., Sage, T. L., Quick, W. P., & Weber, A. P. (2021). Overexpression of the chloroplastic 2-oxoglutarate/malate transporter disturbs carbon and nitrogen homeostasis in rice. Journal of Experimental Botany, 72(1), 137–152. https://doi.org/10.1093/jxb/eraa343

    CAS  Article  PubMed  Google Scholar 

  120. Zeng, D. D., Qin, R., Li, M., Alamin, M., Jin, X. L., Liu, Y., & Shi, C. H. (2017). The ferredoxin-dependent glutamate synthase (OsFd-GOGAT) participates in leaf senescence and the nitrogen remobilization in rice. Molecular Genetics and Genomics, 292(2), 385–395. https://doi.org/10.1007/s00438-016-1275-z

    CAS  Article  PubMed  Google Scholar 

  121. Zhang, J., Zhou, Z., Bai, J., Tao, X., Wang, L., Zhang, H., & Zhu, J. K. (2020). Disruption of MIR396e and MIR396f improves rice yield under nitrogen-deficient conditions. National Science Review, 7(1), 102–112. https://doi.org/10.1093/nsr/nwz142

    CAS  Article  PubMed  Google Scholar 

  122. Zhang, M., Wang, Y., Chen, X., Xu, F., Ding, M., Ye, W., Kawai, Y., Toda, Y., Hayashi, Y., Suzuki, T., Zeng, H., Xiao, L., Xiao, X., Xu, J., Guo, S., Yan, F., Shen, Q., Xu, G., Kinoshita, T., & Zhu, Y. (2021). Plasma membrane H+-ATPase overexpression increases rice yield via simultaneous enhancement of nutrient uptake and photosynthesis. Nature Communications. https://doi.org/10.1038/s41467-021-20964-4

    Article  PubMed  PubMed Central  Google Scholar 

  123. Zhen, X., Li, X., Yu, J., & Xu, F. (2019a). OsATG8c-mediated increased autophagy regulates the yield and nitrogen use efficiency in rice. International Journal of Molecular Sciences, 20(19), 4956. https://doi.org/10.3390/IJMS20194956

    CAS  Article  PubMed Central  Google Scholar 

  124. Zhen, X., Xu, F., Zhang, W., Li, N., & Li, X. (2019b). Overexpression of rice gene OsATG8b confers tolerance to nitrogen starvation and increases yield and nitrogen use efficiency (NUE) in Arabidopsis. PLoS ONE. https://doi.org/10.1371/journal.pone.0223011

    Article  PubMed  PubMed Central  Google Scholar 

  125. Zhen, X., Zheng, N., Yu, J., Bi, C., & Xu, F. (2021). Autophagy mediates grain yield and nitrogen stress resistance by modulating nitrogen remobilization in rice. PLoS ONE, 16(1), e0244996. https://doi.org/10.1371/JOURNAL.PONE.0244996

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  126. Zheng, Z. L. (2009). Carbon and nitrogen nutrient balance signaling in plants. Plant Signaling and Behavior, 4(7), 584–591. https://doi.org/10.4161/psb.4.7.8540

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. Zhou, Y., Cai, H., Xiao, J., Li, X., Zhang, Q., & Lian, X. (2009). Over-expression of aspartate aminotransferase genes in rice resulted in altered nitrogen metabolism and increased amino acid content in seeds. Theoretical and Applied Genetics, 118(7), 1381–1390. https://doi.org/10.1007/s00122-009-0988-3

    CAS  Article  PubMed  Google Scholar 

  128. Zhou, Y., Zhang, C., Lin, J., Yang, Y., Peng, Y., Tang, D., Zhao, X., Zhu, Y., & Liu, X. (2015). Over-expression of a glutamate dehydrogenase gene, MgGDH, from Magnaporthe grisea confers tolerance to dehydration stress in transgenic rice. Planta, 241(3), 727–740. https://doi.org/10.1007/s00425-014-2214-z

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding agencies viz., NICRA, NEWS and SANH for providing grants and to the Director for providing research facilities.

Funding

National Initiative on Climate Resilient Agriculture (NICRA), Indian Council of Agricultural Research (ICAR), Ministry of Agriculture, Govt. of India, 2. Indo-UK Virtual Centre on Nitrogen Efficiency of Whole cropping Systems (NEWS) BT/IN/UK-VNC/44/NR/2015-16 and 3. UKRI GCRF South Asian Nitrogen Hub (SANH) (NE/S009019/1).

Author information

Affiliations

Authors

Contributions

CNN: conceptualization, designing, drafting; KMB: drafting, integration, editing; SKM: editing; PRR, DS, RMS: critical reviewing.

Corresponding author

Correspondence to Chirravuri Naga Neeraja.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Consent for publication

All the authors have read the manuscript and agree to the submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Neeraja, C.N., Barbadikar, K.M., Mangrauthia, S.K. et al. Genes for NUE in rice: a way forward for molecular breeding and genome editing. Plant Physiol. Rep. (2021). https://doi.org/10.1007/s40502-021-00632-x

Download citation

Keywords

  • Rice
  • Nitrogen use efficiency
  • Metabolism
  • Uptake
  • Remobilization
  • Regulation
  • Genes