Skip to main content
Log in

Genetic dissection of photochemical efficiency under water-deficit stress in rice

  • Short Communications
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Chlorophyll fluorescence (Chl-F) measurements together with non-invasive estimations of chlorophyll content, can be used to investigate functionally rich or poor photosystem II (PSII), relating to alterations in photosynthetic performances under different abiotic stresses. The aim was to identify genetic loci that control rice capacity to cope with different soil moisture conditions such as non-stress (control), water deficit and recovery during the reproductive stage. A genome-wide association study was performed for effective quantum yield of photosystem II (QY) and chlorophyll index across all three treatments. Accessions showed significant variability in traits within each treatment. A total of 43 genetic loci associated with QY and chlorophyll index were identified. Of the total genetic loci identified, 14 were for control, 13 for water-deficit stress and 16 for recovery responses. Interestingly, the majority of the identified genetic loci were co-localized either with chlorophyll synthesis or degradation pathways, components of PSII, transcription factors, protein kinases, transporters, kinases, and antioxidants genes. Favorable alleles and donor accessions found in our study would complement efforts aimed at stacking of traits. Moreover, our results provide promising genetic information for future validation and a potential resource for improving photochemical efficiency and subsequently enhancing carbon gain in rice under water-limited conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Al-Tamimi, N., Brien, C., Oakey, H., Berger, B., Saade, S., Ho, Y. S., et al. (2016). Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nature Communications,7, 13342.

    PubMed  PubMed Central  Google Scholar 

  • Baker, N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology,59, 89–113.

    CAS  PubMed  Google Scholar 

  • Bernier, J., Kumar, A., Ramaiah, V., Spaner, D., & Atlin, G. (2007). A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Science,47(2), 507–516.

    Google Scholar 

  • Björkman, O., & Powles, S. B. (1984). Inhibition of photosynthetic reactions under water stress: interaction with light level. Planta,161(6), 490–504.

    PubMed  Google Scholar 

  • Booker, M. A., & DeLong, A. (2015). Producing the ethylene signal: regulation and diversification of ethylene biosynthetic enzymes. Plant Physiology,169(1), 42–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, Y., Gong, L., Yuan, W., Li, X., Chen, G., Li, X., et al. (2009). Replication protein A (RPA1a) is required for meiotic and somatic DNA repair but is dispensable for DNA replication and homologous recombination in rice. Plant Physiology,151(4), 2162–2173.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, H., Li, B., Zhi, Y., Chen, J., Li, R., Xia, X., et al. (2017). Overexpression of the nitrate transporter, OsNRT2. 3b, improves rice phosphorus uptake and translocation. Plant Cell Reports,36(8), 1287–1296.

    CAS  PubMed  Google Scholar 

  • Flexas, J., Escalona, J. M., & Medrano, H. (1999). Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines. Plant, Cell and Environment,22(1), 39–48.

    Google Scholar 

  • Fukuda, A., Kondo, K., Ikka, T., Takai, T., Tanabata, T., & Yamamoto, T. (2018). A novel QTL associated with rice canopy temperature difference affects stomatal conductance and leaf photosynthesis. Breeding Science, 68(3), 305–315.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ganeteg, U., Klimmek, F., & Jansson, S. (2004). Lhca5- an LHC-type protein associated with photosystem I. Plant Molecular Biology,54(5), 641–651.

    CAS  PubMed  Google Scholar 

  • Gao, Q., Yang, Z., Zhou, Y., Yin, Z., Qiu, J., Liang, G., et al. (2012). Characterization of an Abc1 kinase family gene OsABC1-2 conferring enhanced tolerance to dark-induced stress in rice. Gene,498(2), 155–163.

    CAS  PubMed  Google Scholar 

  • Genty, B., Briantais, J. M., & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA)-General Subjects,990(1), 87–92.

    CAS  Google Scholar 

  • Gu, J., Yin, X., Struik, P. C., Stomph, T. J., & Wang, H. (2011). Using chromosome introgression lines to map quantitative trait loci for photosynthesis parameters in rice (Oryza sativa L.) leaves under drought and well-watered field conditions. Journal of Experimental Botany,63(1), 455–469.

    PubMed  PubMed Central  Google Scholar 

  • Hao, D., Chao, M., Yin, Z., & Yu, D. (2012). Genome-wide association analysis detecting significant single nucleotide polymorphisms for chlorophyll and chlorophyll fluorescence parameters in soybean (Glycine max) landraces. Euphytica,186, 919–931.

    CAS  Google Scholar 

  • IPCC. (2014). Climate change 2014: synthesis report. In Core Writing Team, R. K. Pachauri, & L. A. Meyer (Eds.), Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva: IPCC.

    Google Scholar 

  • Jiang, G., Yin, D., Zhao, J., Chen, H., Guo, L., Zhu, L., et al. (2016). The rice thylakoid membrane-bound ascorbate peroxidase OsAPX8 functions in tolerance to bacterial blight. Scientific Reports,6, 26104.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kadam, N. N., Struik, P. C., Rebolledo, M. C., Yin, X., & Jagadish, S. V. (2018). Genome wide association provides novel genomic loci controlling rice grain yield and its component traits under water-deficit stress during the reproductive stage. Journal of Experimental Botany,69, 4017–4032.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kadam, N. N., Tamilselvan, A., Lawas, L. M., Quinones, C., Bahuguna, R. N., Thomson, M. J., et al. (2017). Genetic control of plasticity in root morphology and anatomy of rice in response to water deficit. Plant Physiology,174(4), 2302–2315.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kasajima, I., Ebana, K., Yamamoto, T., Takahara, K., Yano, M., Kawai-Yamada, M., et al. (2011). Molecular distinction in genetic regulation of nonphotochemical quenching in rice. Proceedings of the National Academy of Sciences,108(33), 13835–13840.

    CAS  Google Scholar 

  • Kikuchi, S., Bheemanahalli, R., Jagadish, K. S., Kumagai, E., Masuya, Y., Kuroda, E., et al. (2017). Genome-wide association mapping for phenotypic plasticity in rice. Plant, Cell and Environment,40(8), 1565–1575.

    CAS  PubMed  Google Scholar 

  • Kimura, E., Abe, T., Murata, K., Kimura, T., Otoki, Y., Yoshida, T., et al. (2018). Identification of OsGGR2, a second geranylgeranyl reductase involved in α-tocopherol synthesis in rice. Scientific Reports,8(1), 1870.

    PubMed  PubMed Central  Google Scholar 

  • Klimmek, F., Sjödin, A., Noutsos, C., Leister, D., & Jansson, S. (2006). Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants. Plant Physiology,140(3), 793–804.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koffler, B. E., Luschin-Ebengreuth, N., Stabentheiner, E., Müller, M., & Zechmann, B. (2014). Compartment specific response of antioxidants to drought stress in Arabidopsis. Plant Science,227, 133–144.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, T., Oh, T., Yang, S., Shin, J., Hwang, S., Kim, C. Y., et al. (2015). RiceNet v2: an improved network prioritization server for rice genes. Nucleic Acids Research,43, 122–127.

    Google Scholar 

  • Lipka, A. E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P. J., et al. (2012). GAPIT: genome association and prediction integrated tool. Bioinformatics,28(18), 2397–2399.

    CAS  PubMed  Google Scholar 

  • Raghuram, B., Sheikh, A. H., Rustagi, Y., & Sinha, A. K. (2015). Micro RNA biogenesis factor DRB 1 is a phosphorylation target of mitogen activated protein kinase MPK 3 in both rice and Arabidopsis. The FEBS Journal,282(3), 521–536.

    CAS  PubMed  Google Scholar 

  • Raju, B. R., Narayanaswamy, B. R., Mohankumar, M. V., Sumanth, K. K., Rajanna, M. P., Mohanraju, B., et al. (2014). Root traits and cellular level tolerance hold the key in maintaining higher spikelet fertility of rice under water limited conditions. Functional Plant Biology,41(9), 930–939.

    Google Scholar 

  • Rebolledo, M. C., Peña, A. L., Duitama, J., Cruz, D. F., Dingkuhn, M., Grenier, C., et al. (2016). Combining image analysis, genome wide association studies and different field trials to reveal stable genetic regions related to panicle architecture and the number of spikelets per panicle in rice. Frontiers in Plant Science,7, 1384.

    PubMed  PubMed Central  Google Scholar 

  • Sakai, T., Kagawa, T., Kasahara, M., Swartz, T. E., Christie, J. M., Briggs, W. R., et al. (2001). Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proceedings of the National Academy of Sciences,98(12), 6969–6974.

    CAS  Google Scholar 

  • Sakata, S., Mizusawa, N., Kubota-Kawai, H., Sakurai, I., & Wada, H. (2013). Psb28 is involved in recovery of photosystem II at high temperature in Synechocystis sp. PCC 6803. Biochimica et Biophysica Acta (BBA)-Bioenergetics,1827(1), 50–59.

    CAS  Google Scholar 

  • Šebela, D., Quinones, C., Cruz, C. V., Ona, I., Olejníčková, J., & Jagadish, K. S. (2017). Chlorophyll fluorescence and reflectance-based non-invasive quantification of blast, bacterial blight and drought stresses in rice. Plant and Cell Physiology,59(1), 30–43.

    Google Scholar 

  • Šebela, D., Quiñones, C., Olejníčková, J., & Jagadish, K. S. (2015). Temporal chlorophyll fluorescence signals to track changes in optical properties of maturing rice panicles exposed to high night temperature. Field Crops Research,177, 75–85.

    Google Scholar 

  • Segura, V., Vilhjálmsson, B. J., Platt, A., Korte, A., Seren, Ü., Long, Q., et al. (2012). An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nature Genetics,44(7), 825.

    CAS  PubMed  PubMed Central  Google Scholar 

  • von Sydow, L., Schwenkert, S., Meurer, J., Funk, C., Mamedov, F., & Schröder, W. P. (2016). The PsbY protein of Arabidopsis Photosystem II is important for the redox control of cytochrome b559. Biochimica et Biophysica Acta (BBA)-Bioenergetics,1857(9), 1524–1533.

    Google Scholar 

  • Wang, P., Li, C., Wang, Y., Huang, R., Sun, C., Xu, Z., et al. (2014). Identification of a geranylgeranyl reductase gene for chlorophyll synthesis in rice. SpringerPlus,3(1), 201.

    PubMed  PubMed Central  Google Scholar 

  • Wang, Q., Zhao, H., Jiang, J., Xu, J., Xie, W., Fu, X., et al. (2017). Genetic architecture of natural variation in rice nonphotochemical quenching capacity revealed by genome-wide association study. Frontiers in Plant Science,8, 1773.

    PubMed  PubMed Central  Google Scholar 

  • Yin, Z., Meng, F., Song, H., He, X., Xu, X., & Yu, D. (2010). Mapping quantitative trait loci associated with chlorophyll a fluorescence parameters in soybean (Glycine max (L.) Merr.). Planta,231, 875–885.

    CAS  PubMed  Google Scholar 

  • Yue, B., Xiong, L., Xue, W., Xing, Y., Luo, L., & Xu, C. (2005). Genetic analysis for drought resistance of rice at reproductive stage in field with different types of soil. Theoretical and Applied Genetics,111(6), 1127–1136.

    PubMed  Google Scholar 

  • Yue, B., Xue, W., Xiong, L., Yu, X., Luo, L., Cui, K., et al. (2006). Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics,172(2), 1213–1228.

    PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Ersoz, E., Lai, C. Q., Todhunter, R. J., Tiwari, H. K., Gore, M. A., et al. (2010). Mixed linear model approach adapted for genome-wide association studies. Nature Genetics,42(4), 355.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, X. F., De Peng Yuan, C. Z., Li, T. Y., & Xuan, Y. H. (2018). RAVL1, an upstream component of brassinosteroid signalling and biosynthesis, regulates ethylene signalling via activation of EIL1 in rice. Plant Biotechnology Journal,16(8), 399.

    Google Scholar 

Download references

Acknowledgements

We thank The Federal Ministry for Economic Cooperation and Development, Germany, and the USAID-Bill and Melinda Gates Foundation for their financial support. We also thank the GRiSP (Global Rice Science Partnerships; now renamed to RICE CRP consortium) for establishing the PRAY Global Phenotyping Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Krishna Jagadish.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

David Šebela and Raju Bheemanahalli: Joint first authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šebela, D., Bheemanahalli, R., Tamilselvan, A. et al. Genetic dissection of photochemical efficiency under water-deficit stress in rice. Plant Physiol. Rep. 24, 328–339 (2019). https://doi.org/10.1007/s40502-019-00467-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-019-00467-7

Keywords

Navigation