Skip to main content
Log in

The effect of NaCl on some physiological and biochemical parameters in Triticum aestivum L. genotypes

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Effects of salinity caused by different concentrations of NaCl (100 and 200 mM) have been studied in two genotypes of Triticum aestivum L. (salt tolerant Saratovskaya-29 and salt sensitive Gyrmyzygul-1) with contrasting salt tolerance. Stress caused by salinity influenced differently on the content of photosynthetic pigments (chlorophyll a, b and carotenoids) in 14 to 16-day-old seedlings. In plants exposed to 100 mM NaCl an increase in quantity of photosynthetic pigments was observed in leaves, while 200 mM concentration of NaCl caused a reduction of the pigment content in leaves. A slightly higher amount of photosynthetic pigments were observed in the salt tolerant genotype Saratovskaya-29 at 200 mM NaCl. Lipid peroxidation level was higher in the sensitive Gyrmyzygul-1 genotype compared with tolerant Saratovskaya-29. It was found that, salinity stress caused an accumulation of soluble sugars and secondary metabolites—phenolic compounds. The amounts of soluble sugars and phenolic compounds were high in the salt sensitive genotype exposed to salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

ROS:

Reactive oxygen species

MDA:

Malondialdehyde

TBA:

Thiobarbituric acid

TCA:

Thrichloracetic acid

References

  • Abbasdokht, H. (2011). The effect of hydropriming and halopriming on germination and early growth stage of wheat (Triticum aestivum L.). Desert,16(1), 61–68.

    Google Scholar 

  • Akbari, G., Izadi-Darbandi, A., & Borzouei, A. (2012). Effect of salinity on some physiological traits in wheat (Triticum aestivum L.) cultivars. Indian Journal of Science and Technology,5(1), 1901–1906.

    Google Scholar 

  • Arora, A., Byrem, T. M., Nair, M. G., & Strasburg, G. M. (2000). Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. Archives of Biochemistry and Biophysics,373(1), 102–109.

    Article  CAS  PubMed  Google Scholar 

  • Cevallos-Casals, B. A., & Cisneros-Zevallos, L. (2010). Impact of germination on phenolic content and antioxidant activity of 13 edible seed species. Food Chemistry,119(4), 1485–1490.

    Article  CAS  Google Scholar 

  • Cheeseman, J. M. (1988). Mechanisms of salinity tolerance in plants. Plant Physiology,87(3), 547–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheynier, V., Comte, G., Davies, K. M., Lattanzio, V., & Martens, S. (2013). Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry,72, 1–20.

    Article  CAS  PubMed  Google Scholar 

  • Elkahoui, S., Hernandez, J. A., Abdelly, C., Ghrir, R., & Limam, F. (2005). Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Science,168(3), 607–613.

    Article  CAS  Google Scholar 

  • Evelin, H., Kapoor, R., & Giri, B. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress. Annals of Botany,104(7), 1263–1280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fales, F. W. (1951). The assimilation and degradation of carbohydrates by yeast cells. Journal of Biological Chemistry,193(1), 113–118.

    CAS  Google Scholar 

  • Folin, O., & Ciocalteu, V. (1927). On tyrosine and tryptophan determinations in proteins. Journal Biological Chemistry,73(2), 627–650.

    CAS  Google Scholar 

  • Gadallah, M. A. A. (1999). Effects of proline and glycinbetaine on Vicia faba response to salt stress. Biologia Plantarum,42(2), 249–257.

    Article  CAS  Google Scholar 

  • Gould, K. S., & Lister, C. (2006). Flavonoid functions in plants. In O. M. Andersen & K. R. Markham (Eds.), Flavonoids: Chemistry, biochemistry and application (pp. 397–442). Boca Raton: CRC Press.

    Google Scholar 

  • Hellebusi, J. A. (1976). Osmoregulation. Annual Review of Plant Physiology,27, 485–505.

    Article  Google Scholar 

  • Jaleel, C. A., Manivannan, P., Lakshmanan, G. M., Gomathinayagam, M., & Panneerselvam, R. (2008). Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. Colloids and Surfaces B: Biointerfaces,61(2), 298–303.

    Article  CAS  PubMed  Google Scholar 

  • Jouve, L., Hoffman, L., & Hausman, J. F. (2004). Polyamine carbohydrate and proline content changes during salt stress exposure of Aspen (Populis tremula L.) involvement of oxidation and osmoregulation metabolism. Plant Biology,6(1), 74–80.

    Article  CAS  PubMed  Google Scholar 

  • Keutgen, A. J., & Pawelzik, E. (2008). Quality and nutritional value of strawberry fruit under long-term salt stress. Food Chemistry,107(4), 1413–1420.

    Article  CAS  Google Scholar 

  • Ksouri, R., Megdiche, W., Debez, A., Falleh, H., Grignon, C., & Abdelly, C. (2007). Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritime. Plant Physiology and Biochemistry,45(3–4), 244–249.

    Article  CAS  PubMed  Google Scholar 

  • Ksouri, R., Megdiche, W., Falleh, H., Trabelsi, N., Boulaaba, M., Smaoui, A., et al. (2008). Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. Comptes Rendus Biologies,331(11), 865–873.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, G. N. M., & Knowles, N. R. (1993). Changes in lipid peroxidation and lipolytic and free radical scavenging enzyme activities during aging and sprouting of potato (Solanum tuberosum) seed-tubers. Plant Physiology,102(1), 115–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, J. H., Park, K. J., Kim, B. K., Jeong, J. W., & Kim, H. J. (2012). Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout. Food Chemistry,135(3), 1065–1070.

    Article  CAS  PubMed  Google Scholar 

  • MacKinney, G. (1941). Absorption of light by chlorophyll solutions. Journal of Biological Chemistry,140(2), 315–322.

    CAS  Google Scholar 

  • Mehta, P., Allakhverdiev, S. I., & Jajoo, A. (2010a). Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosynthesis Research,105(3), 249–255.

    Article  CAS  PubMed  Google Scholar 

  • Mehta, P., Jajoo, A., Mathur, S., & Bharti, S. (2010b). Chlorophyll a fluorescence study reveling effects of high salt stress on photosystem II in wheat leaves. Plant Physiology and Biochemistry,48(1), 16–20.

    Article  CAS  PubMed  Google Scholar 

  • Mehta, S., Kamboj, P., Faujdar, S., Sawale, J., & Kalia, A. N. (2010c). In-vitro antioxidant activity of Cassia occidentalis seeds. Pharmacologyonline,3, 217–224.

    Google Scholar 

  • Mosahebeh, M., Khorshidi, M., & Faridnoure, H. (2016). Investigation of physiological responses of wheat under salt stress. International Journal of Farming Allied Sciences,5(2), 199–204.

    Google Scholar 

  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology,59, 651–681.

    Article  CAS  PubMed  Google Scholar 

  • Murakeözy, E. P., Nagy, Z., Duhaze, C., Bouchereau, A., & Tuba, Z. (2003). Seasonal changes in the leaves of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. Journal of Plant Physiology,160(4), 395–401.

    Article  PubMed  Google Scholar 

  • Naffeti, M., Sriti, J., Hamdaoui, G., Kchouk, E. M., & Marzouk, B. (2011). Salinity impact on fruit yield, essential oil composition and antioxidant activities of Coriandrum sativum fruit extracts. Food Chemistry,124(1), 221–225.

    Article  CAS  Google Scholar 

  • Parr, A. J., & Bolwell, G. P. (2000). Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. Journal of the Science of Food and Agriculture,80(7), 985–1012.

    Article  CAS  Google Scholar 

  • Popp, M., & Smirnoff, N. (1995). Polyol accumulation and metabolism during water deficit. In N. Smirnoff (Ed.), Environment and Plant metabolism: Flexibility and Acclimation (pp. 199–215). Oxford: Bios Scientific Publishers.

    Google Scholar 

  • Radi, A. A., Farghali, F. A., & Hamada, A. M. (2013). Physiological and biochemical responses of salt tolerant and salt sensitive wheat and bean cultivars to salinity. Journal of Biology and Earth Sciences,3(1), 72–88.

    Google Scholar 

  • Rhodes, D. (1987). Metabolic responses to stress. In D. D. Davies (Ed.), The biochemitry of plants: A comprehensive treatise (Vol. 12, pp. 201–241). San Diego: Academic Press Inc.

    Google Scholar 

  • Sabater, B., & Rodriguez, M. T. (1978). Control of chlorophyll degradation in detached leaves of barley and oat through effect of kinetin on chlorophyllase levels. Physiologia Plantarum,43(3), 274–276.

    Article  CAS  Google Scholar 

  • Sabra, A., Daayf, F., & Renault, S. (2012). Differential physiological and biochemical responses of three Echinacea species to salinity stress. Scientia Horticulturae,135(23), 23–31.

    Article  CAS  Google Scholar 

  • Salama, S., Trivedi, S., Busheva, M., Arafa, A. A., Garab, G., & Erdei, L. (1994). Effects of NaCl salinity on growth, cation accumulation, chloroplast structure and function in wheat cultivars differing in salt tolerance. Journal of Plant Physiology,144(2), 241–247.

    Article  CAS  Google Scholar 

  • Santos, C. V. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae,103(1), 93–99.

    Article  CAS  Google Scholar 

  • Smirnoff, N., & Cumbes, Q. J. (1989). Hydroxyl radicals scavenging activity of compatible isolates. Phytochemistry,28(4), 1057–1060.

    Article  CAS  Google Scholar 

  • Tomar, R. S., Mathur, S., Allakhverdiev, S. I., & Jajoo, A. (2012). Changes in PSII heterogeneity in response to osmotic and ionic stress in wheat leaves (Triticum aestivum). Journal of Bioenergetics and Biomembranes,44(4), 411–419.

    Article  CAS  Google Scholar 

  • Turkan, I., & Demiral, T. (2009). Recent developments in understanding salinity tolerance. Environmental and Experimental Botany,67(1), 2–9.

    Article  CAS  Google Scholar 

  • Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta,218(1), 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Wettstein, D. (1957). Chlorophyll-lethal and submicroscopic form changing of plastids. Experimental Cell Research,12(3), 427–506.

    Article  Google Scholar 

  • Xu, F., Li, L., Huang, X., Cheng, H., Wang, Y., & Cheng, S. (2010). Antioxidant and antibacterial properties of the leaves and stems of Premna microphylla. Journal of Medicinal Plants Research.,4(23), 2544–2550.

    Article  Google Scholar 

  • Xu, G., Magen, H., Tarchitzky, J., & Kafkafi, U. (2000). Advances in chloride nutrition of plants. Advances in Agronomy,68, 97–150.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. M. Feyziyev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahimova, U.F., Mammadov, A.C. & Feyziyev, Y.M. The effect of NaCl on some physiological and biochemical parameters in Triticum aestivum L. genotypes. Plant Physiol. Rep. 24, 370–375 (2019). https://doi.org/10.1007/s40502-019-00461-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-019-00461-z

Keywords

Navigation