Plant Physiology Reports

, Volume 24, Issue 2, pp 155–167 | Cite as

Root anatomical traits of wild-rices reveal links between flooded rice and dryland sorghum

  • Raju Bheemanahalli
  • Sherry Hechanova
  • Jena K. Kshirod
  • S. V. Krishna JagadishEmail author
Original Article


The root anatomical and morphological traits and their plasticity under water deficit are essential to improve adaptation of rice cultivars to water-limited conditions. We investigated wild-rice accessions along with a dryland cereal (Sorghum bicolor) for root related traits under non-stress and water deficit during panicle initiation and flowering. Wild-rices from GG genome (Oryza granulata and Oryza meyeriana) recorded high similarity with sorghum in key root anatomical parameters such as larger stele diameter in proportion to root diameter (SD:RD [%]) and more late metaxylem number (LMXN). Comparative analyses between wild-rice accessions and a diverse indica panel revealed narrow genetic variability in LMXN and SD:RD in Oryza sativa panel compared to O. granulata and O. meyeriana. Wild-rices from GG genome had a combination of favorable anatomy (larger SD:RD and more but smaller late metaxylem) and root morphology (thinner roots and higher root surface area) during panicle initiation and flowering compared to popular rice cultivar IR64. The above combination can help facilitate effective water use by regulating axial water flow under water-deficit conditions, while the opposite was noticed in the drought susceptible IR64. Novel sources for root anatomical traits identified from wild-rice accessions can be utilized in rice breeding programs to develop water-deficit stress tolerant rice cultivars.


Oryza Root anatomy Water-deficit stress Wild-rices Sorghum Panicle initiation Flowering 



This work was supported by the USAID-BMGF-funded Cereal Systems Initiative for South Asia (Phase II). Partial support from The Federal Ministry for Economic Cooperation and Development, Germany (Contract No. 81141844; Project No. 11.7860.7-001.00) is also acknowledged.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

40502_2019_451_MOESM1_ESM.docx (5.1 mb)
Supplementary material 1 (DOCX 5198 kb)


  1. Abràmoff, M. D., Magalhães, P. J., & Ram, S. J. (2004). Image processing with ImageJ. Biophotonics International, 11, 36–43.Google Scholar
  2. Atwell, B. J., Wang, H., & Scafaro, A. P. (2014). Could abiotic stress tolerance in wild relatives of rice be used to improve Oryza sativa? Plant Science, 215, 48–58.CrossRefPubMedGoogle Scholar
  3. Bennetzen, J. L., & Freeling, M. (1993). Grasses as a single genetic system: Genome composition, collinearity and compatibility. Trends in Genetics, 9, 259–261.CrossRefPubMedGoogle Scholar
  4. Bouman, B. A. M., Peng, S., Castaneda, A. R., & Visperas, R. M. (2005). Yield and water use of irrigated tropical aerobic rice systems. Agricultural Water Management, 74, 87–105.CrossRefGoogle Scholar
  5. Chimungu, J. G., Brown, K. M., & Lynch, J. P. (2014a). Reduced root cortical cell file number improves drought tolerance in maize. Plant Physiology, 166, 1943–1955.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chimungu, J. G., Brown, K. M., & Lynch, J. P. (2014b). Large root cortical cell size improves drought tolerance in maize. Plant Physiology, 166, 2166–2178.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chimungu, J. G., Loades, K. W., & Lynch, J. P. (2015a). Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea mays). Journal of Experimental Botany, 66, 3151–3162.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chimungu, J. G., Maliro, M. F., Nalivata, P. C., Kanyama-Phiri, G., Brown, K. M., & Lynch, J. P. (2015b). Utility of root cortical aerenchyma under water limited conditions in tropical maize (Zea mays L.). Field Crops Research, 171, 86–98.CrossRefGoogle Scholar
  9. Christin, P. A., Osborne, C. P., Chatelet, D. S., Columbus, J. T., Besnard, G., Hodkinson, T. R., et al. (2013). Anatomical enablers and the evolution of C4 photosynthesis in grasses. Proceedings of the National Academy of Sciences, 110, 1381–1386.CrossRefGoogle Scholar
  10. Comas, L., Becker, S., Cruz, V. M. V., Byrne, P. F., & Dierig, D. A. (2013). Root traits contributing to plant productivity under drought. Frontiers in plant science, 4, 442.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Devos, K. M., & Gale, M. D. (1997). Comparative genetics in the grasses. Plant Molecular Biology, 35, 3–15.CrossRefPubMedGoogle Scholar
  12. Dharmappa, P. M., Doddaraju, P., Malagondanahalli, M. V., Rangappa, R. B., Mallikarjuna, N. M., Rajendrareddy, S. H., et al. (2019). Introgression of root and water use efficiency traits enhances water productivity: An evidence for physiological breeding in rice (Oryza sativa L.). Rice, 12(1), 14.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dixit, S., Grondin, A., Lee, C. R., Henry, A., Olds, T. M., & Kumar, A. (2015). Understanding rice adaptation to varying agro-ecosystems: Trait interactions and quantitative trait loci. BMC Genetics, 16, 86.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dvorak, J., Wang, L., Zhu, T., Jorgensen, C. M., Deal, K. R., Dai, X., et al. (2018). Structural variation and rates of genome evolution in the grass family seen through comparison of sequences of genomes greatly differing in size. The Plant Journal, 95, 487–503.CrossRefPubMedGoogle Scholar
  15. Galindo-Castañeda, T., Brown, K. M., & Lynch, J. P. (2018). Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize. Plant, Cell and Environment, 41, 1579–1592.CrossRefPubMedGoogle Scholar
  16. Gowda, V. R., Henry, A., Yamauchi, A., Shashidhar, H., & Serraj, R. (2011). Root biology and genetic improvement for drought avoidance in rice. Field Crops Research, 122, 1–13.CrossRefGoogle Scholar
  17. Hadebe, S. T., Modi, A. T., & Mabhaudhi, T. (2017). Drought tolerance and water use of cereal crops: A focus on sorghum as a food security crop in Sub-Saharan Africa. Journal of Agronomy and Crop Science, 203, 177–191.CrossRefGoogle Scholar
  18. Henry, A., Cal, A. J., Batoto, T. C., Torres, R. O., & Serraj, R. (2012). Root attributes affecting water uptake of rice (Oryza sativa) under drought. Journal of Experimental Botany, 63, 4751–4763.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hirabayashi, H., Sasaki, K., Kambe, T., Gannaban, R. B., Miras, M. A., Mendioro, M. S., et al. (2014). qEMF3, a novel QTL for the early-morning flowering trait from wild rice, Oryza officinalis, to mitigate heat stress damage at flowering in rice, O. sativa. Journal of Experimental Botany, 66, 1227–1236.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ishimaru, T., Hirabayashi, H., Ida, M., Takai, T., San-Oh, Y. A., Yoshinaga, S., et al. (2010). A genetic resource for early-morning flowering trait of wild rice Oryza officinalis to mitigate high temperature-induced spikelet sterility at anthesis. Annals of Botany, 106, 515–520.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jackson, R. B., Sperry, J. S., & Dawson, T. E. (2000). Root water uptake and transport: Using physiological processes in global predictions. Trends in Plant Science, 5, 482–488.CrossRefPubMedGoogle Scholar
  22. Jaramillo, R. E., Nord, E. A., Chimungu, J. G., Brown, K. M., & Lynch, J. P. (2013). Root cortical burden influences drought tolerance in maize. Annals of Botany, 112, 429–437.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kadam, N., Tamilselvan, A., Lawas, L. M. F., Quinones, C., Bahuguna, R., Thomson, M. J., et al. (2017). Genetic control of plasticity in root morphology and anatomy of rice in response to water-deficit. Plant Physiology, 174, 2302–2315.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kadam, N., Yin, X., Bindraban, P., Struik, P., & Jagadish, S. V. K. (2015). Does morphological and anatomical plasticity during the vegetative stage make wheat more tolerant of water-deficit stress than rice? Plant Physiology, 167, 1389–1401.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kumar, A., Dixit, S., Ram, T., Yadaw, R. B., Mishra, K. K., & Mandal, N. P. (2014). Breeding high-yielding drought-tolerant rice: Genetic variations and conventional and molecular approaches. Journal of Experimental Botany, 65, 6265–6278.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Li, R., Han, Y., Lv, P., Du, R., & Liu, G. (2014). Molecular mapping of the brace root traits in sorghum (Sorghum bicolor L. Moench). Breeding Science, 64, 193–198.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lynch, J. P. (2013). Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 112, 347–357.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mace, E., Singh, V., Van-Oosterom, E., Hammer, G., Hunt, C., & Jordan, D. (2012). QTL for nodal root angle in sorghum Sorghum bicolor L. Moench co-locate with QTL for traits associated with drought adaptation. Theoretical and Applied Genetics, 124, 97–109.CrossRefPubMedGoogle Scholar
  29. McDonald, M. P., Galwey, N. W., & Colmer, T. D. (2002). Similarity and diversity in adventitious root anatomy as related to root aeration among a range of wetland and dryland grass species. Plant, Cell and Environment, 25, 441–451.CrossRefGoogle Scholar
  30. Miyamoto, N., Steudle, E., Hirasawa, T., & Lafitte, R. (2001). Hydraulic conductivity of rice roots. Journal of Experimental Botany, 52, 1835–1846.CrossRefPubMedGoogle Scholar
  31. Prince, S. J., Murphy, M., Mutava, R. N., Durnell, L. A., Valliyodan, B., Shannon, J. G., et al. (2017). Root xylem plasticity to improve water use and yield in water-stressed soybean. Journal of Experimental Botany, 68, 2027–2036.PubMedPubMedCentralGoogle Scholar
  32. Raju, B. R., Mohankumar, M. V., Sumanth, K. K., Rajanna, M. P., Udayakumar, M., Prasad, T. G., et al. (2016). Discovery of QTLs for water mining and water use efficiency traits in rice under water-limited condition through association mapping. Molecular Breeding, 36, 1–16.CrossRefGoogle Scholar
  33. Raju, B. R., Narayanaswamy, B. R., Mohankumar, M. V., Sumanth, K. K., Rajanna, M. P., Mohanraju, B., et al. (2014). Root traits and cellular level tolerance hold the key in maintaining higher spikelet fertility of rice under water limited conditions. Functional Plant Biology, 41, 930–939.CrossRefGoogle Scholar
  34. Ramirez-Villegas, J., Heinemann, A. B., Pereira de Castro, A., Breseghello, F., Navarro-Racines, C., Li, T., et al. (2018). Breeding implications of drought stress under future climate for upland rice in Brazil. Global Change Biology, 24, 2035–2050.CrossRefPubMedGoogle Scholar
  35. Rang, Z. W., Jagadish, S. V. K., Zhou, Q. M., Craufurd, P. Q., & Heuer, S. (2011). Effect of heat and drought stress on pollen germination and spikelet fertility in rice. Environmental and Experimental Botany, 70, 58–65.CrossRefGoogle Scholar
  36. Reynolds, M. P., Quilligan, E., Aggarwal, P. K., Bansal, K. C., Cavalieri, A. J., Chapman, S. C., et al. (2016). An integrated approach to maintaining cereal productivity under climate change. Global Food Security, 8, 9–18.CrossRefGoogle Scholar
  37. Richards, R. A., & Passioura, J. B. (1989). A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain yield in rain-fed environments. Australian Journal of Agricultural Research, 40, 943–950.CrossRefGoogle Scholar
  38. Rieger, M., & Litvin, P. (1999). Root system hydraulic conductivity in species with contrasting root anatomy. Journal of Experimental Botany, 50, 201–209.CrossRefGoogle Scholar
  39. Sandhu, N., Raman, K. A., Torres, R. O., Audebert, A., Dardou, A., Kumar, A., et al. (2016). Rice root architectural plasticity traits and genetic regions for adaptability to variable cultivation and stress conditions. Plant Physiology, 171, 2562–2576.PubMedPubMedCentralGoogle Scholar
  40. Scafaro, A. P., Yamori, W., Carmo-Silva, A. E., Salvucci, M. E., Von Caemmerer, S., & Atwell, B. J. (2012). Rubisco activity is associated with photosynthetic thermotolerance in a wild rice Oryza meridionalis. Physiologia Plantarum, 146, 99–109.CrossRefPubMedGoogle Scholar
  41. Schmidt, J. E., & Gaudin, A. C. (2017). Toward an integrated root ideotype for irrigated systems. Trends Plant Sciences, 22, 433–443.CrossRefGoogle Scholar
  42. Sengupta, S., & Majumder, A. L. (2010). Porteresia coarctata Roxb. Tateoka, a wild rice: A potential model for studying salt-stress biology in rice. Plant, Cell and Environment, 33, 526–542.CrossRefPubMedGoogle Scholar
  43. Tardieu, F., Simonneau, T., & Muller, B. (2018). The physiological basis of drought tolerance in crop plants: A scenario-dependent probabilistic approach. Annual Review of Plant Biology, 69, 733–759.CrossRefPubMedGoogle Scholar
  44. Tombesi, S., Johnson, R. S., Day, K. R., & DeJong, T. M. (2009). Relationships between xylem vessel characteristics, calculated axial hydraulic conductance and size-controlling capacity of peach rootstocks. Annals of Botany, 105, 327–331.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Tyree, M. T., & Ewers, F. W. (1991). The hydraulic architecture of trees and other woody plants. New Phytologist, 119, 345–360.CrossRefGoogle Scholar
  46. Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., et al. (2013). Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 45, 1097–1102.CrossRefPubMedGoogle Scholar
  47. Vadez, V. (2014). Root hydraulics: The forgotten side of roots in drought adaptation. Field Crops Research, 165, 15–24.CrossRefGoogle Scholar
  48. Yoshida, S., & Hasegawa, S. (1982). The rice root system: its development and function. Drought resistance in crops with emphasis on rice (Vol. 10, pp. 97–134). Manila: International Rice Research Institute.Google Scholar

Copyright information

© Indian Society for Plant Physiology 2019

Authors and Affiliations

  1. 1.International Rice Research InstituteMetro ManilaPhilippines
  2. 2.Department of AgronomyKansas State UniversityManhattanUSA

Personalised recommendations