Skip to main content
Log in

Photosynthetic efficiency of bottle gourd [Lagenaria siceraria (Molina) Standl.] under drought stress

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Neglected and underutilized crops such as bottle gourd [Lagenaria siceraria (Molina) Standl.] are associated with considerable drought tolerance. The objective of this study was to determine variation in the level of drought tolerance among bottle gourd landraces based on photosynthetic efficiency and to identify unique genotypes for breeding. Photosynthetic efficiency of 12 selected bottle gourd landraces were evaluated under controlled environment under drought-stressed (DS) and non-stressed (NS) conditions. A significant genotype × water regime interaction (P < 0.05) was observed for minimum fluorescence (Fm′), maximum quantum efficiency of PS II photochemistry (Fv′/Fm′), the effective quantum efficiency of PS II photochemistry (ΦPSII), photochemical quenching (qP), non-photochemical quenching (qN), linear electron transport rate (LETR), non-cyclic electron transport rate (NCETR), proportion of open PS II reaction centers (1 − qP), photo-inhibition of PS II reaction centers Y (NO), the fraction of photon energy trapped by “open” PS II reaction centers and utilized in PS II photochemistry (P), the portion of the absorbed photon energy that was thermally dissipated (D), rate of photochemistry (RPC) and rate of heat dissipation (RHD) suggesting variation in genotypic response under NS and DS conditions. Principal component analysis under NS and DS conditions identified two principal components (PC’s) which accounted for a total variance of 90 and 96%, respectively. Under DS condition, minimum fluorescence (F0′), Fm′, Fv′/Fm′, qN, NCETR, D, and RHD correlated with PC1 which accounted for 56% of total variation. ΦPSII, qP, LETR, P, RPC and 1 − qP correlated with PC2 which accounted for 40% of total variation. The PC biplot identified landraces BG-27, BG-58 and BG-78 as the most drought tolerant characterized by high values for LETR, qP, P, ΦPSII and RPC under drought stress condition. These landraces could be a useful genetic resource in the development of bottle gourd genotypes with enhanced drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achigan-Dako, E. G., Fuchs, J., Ahanchede, A., & Blattner, F. R. (2008). Flow cytometric analysis in Lagenaria siceraria (Cucurbitaceae) indicates correlation of genome size with usage types and growing elevation. Plant Systematics and Evolution, 276, 9–19.

    Article  CAS  Google Scholar 

  • Adams, W. W., & Demmig-Adams, B. (1995). The xanthophyll cycle and sustained thermal energy dissipation in Vinca minor and Euonymus kiautschovicus in winter. Plant Cell Environment, 18, 117–127.

    Article  Google Scholar 

  • Araus, J. L., Amaro, T., Voltas, J., Nakkoul, H., & Nachit, M. M. (1998). Chlorophyll fluorescence as a selection criterion for grain yield in durum wheat under Mediterranean conditions. Field Crops Research, 55, 209–223.

    Article  Google Scholar 

  • Baker, N. R., & Rosenqvist, E. (2004). Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. Journal of Experimental Botany, 55, 1607–1621.

    Article  PubMed  CAS  Google Scholar 

  • Beevy, S. S., & Kuriachan, P. (1996). Chromosome numbers of South Indian Cucurbitaceae and a note on the cytological evolution in the family. Journal of Cytology and Genetics, 31, 65–71.

    Google Scholar 

  • Bray, E. A., Bailey-Serres, J., & Weretilnyk, E. (2000). Responses to abiotic stresses. In B. B. Buchanan, W. Gruissem, & R. Jones (Eds.), Biochemistry and molecular biology of plants (pp. 1158–1203). Rockville, MD: American Society of Plant Physiologists.

    Google Scholar 

  • Calatayud, A., Roca, D., & Martínez, P. F. (2006). Spatial–temporal variations in rose leaves under water stress conditions studied by chlorophyll fluorescence imaging. Plant Physiology and Biochemistry, 44, 564–573.

    Article  PubMed  CAS  Google Scholar 

  • Cattivelli, L., Rizza, F., Badeck, F. W., Mazzucotelli, E., Mastrangelo, A. M., Francia, E., et al. (2008). Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research, 105, 1–14.

    Article  Google Scholar 

  • Demmig-Adams, B., & Adams, W. W. (1992). Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 599–626.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., Adams Iii, W. W., Barker, D. H., Logan, B. A., Bowling, D. R., & Verhoeven, A. S. (1996). Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum, 98, 253–264.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., Winter, K., Kruger, A., & Czygan, F. C. (1988). Zeaxanthin and the heat dissipation of excess light energy in Nerium oleander exposed to a combination of high light and water Stress. Plant Physiology, 87, 17–24.

    Article  Google Scholar 

  • Genty, B., Briantais, J. M., & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochemical Biophysica Acta, 990, 87–92.

    Article  CAS  Google Scholar 

  • Genty, B., Harbinson, J., Briantais, J. M., & Baker, N. R. (1990). The relationship between non-photochemical quenching of chlorophyll fluorescence and the rate of photosystem 2 photochemistry in leaves. Photosynthetic Research, 25, 249–257.

    Article  CAS  Google Scholar 

  • Ghule, B. V., Ghanti, M. H., Yeole, P. G., & Saoji, A. N. (2007). Diuretic activity of Lagenaria siceraria fruit extracts in rats. Indian Journal of Pharmaceutical Sciences, 69, 817–819.

    Article  Google Scholar 

  • Gorbe, E., & Calatayud, A. (2012). Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. Scientia Horticulturae, 138, 24–35.

    Article  CAS  Google Scholar 

  • Guan, S. K., Long, S., Wang, T. C., Turner, T. C., & Li, F. M. (2014). Effect of drought on the gas exchange, chlorophyll fluorescence and yield of six different-era spring wheat cultivars. Journal of Agronomy and Crop Science, 201, 253–266.

    Article  CAS  Google Scholar 

  • Haque, M. M., Hasanuzzaman, M., & Rahman, M. L. (2009). Effect of light intensity on the morphophysiology and yield of bottle gourd (Lagenaria vulgaris). Academic Journal of Plant Sciences, 2, 158–161.

    Google Scholar 

  • Hazrati, S., Tahmasebi-Sarvestani, Z., Modarres-Sanavy, S. A. M., Mokhtassi-Bidgoli, A., & Nicola, S. (2016). Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. Plant Physiology and Biochemistry, 106, 141–148.

    Article  PubMed  CAS  Google Scholar 

  • Horton, P., Ruban, A. V., & Walters, R. G. (1996). Regulation of light harvesting in green plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 655–684.

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey, C. (1976). Cucurbitaceae. In E. Milne-Redhead & R. M. Polhill (Eds.), Flora of tropical East Africa (pp. 1–157). Southwark: Crown Agents for Oversea Governments and Administrations.

    Google Scholar 

  • Lee, J. M. (1994). Cultivation of grafted vegetables I. Current status, grafting methods and benefits. HortScience, 29, 235–239.

    Google Scholar 

  • Leichenko, R. M., & O’Brien, K. L. (2002). The dynamics of rural vulnerability to global change: The case of Southern Africa. Mitigation and Adaptation Strategies for Global Change, 7, 1–18.

    Article  Google Scholar 

  • Li, R. H., Guo, P. G., Michael, B., Stefania, G., & Salvatore, C. (2006). Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in Barley. Agricultural Sciences in China, 5, 751–757.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H. K., & Babani, F. (2000). Detection of photosynthetic activity and water stress by imaging the red chlorophyll fluorescence. Plant Physiology and Biochemistry, 38, 889–895.

    Article  CAS  Google Scholar 

  • Lu, C., & Zhang, J. (1999). Effect of water stress on photosystem II photochemistry and its thermostability in wheat plants. Journal of Experimental Botany, 50, 1199–1206.

    Article  CAS  Google Scholar 

  • Mashilo, J., Shimelis, H., & Odindo, A. (2017). Yield-based selection indices for drought tolerance evaluation in selected bottle gourd [Lagenaria siceraria (Molina) Standl.] landraces. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 67, 43–50.

    Article  CAS  Google Scholar 

  • Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany, 51, 659–668.

    Article  PubMed  CAS  Google Scholar 

  • Miller, G., Suzuki, A. D., Ciftci-Yikmaz Sultan, N., & Mittler, R. O. N. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell and Environment, 33, 453–467.

    Article  PubMed  CAS  Google Scholar 

  • Mo, Y., Yang, R., Liu, L., Gu, X., Yang, X., Wang, Y., et al. (2016). Growth, photosynthesis and adaptive responses of wild and domesticated watermelon genotypes to drought stress and subsequent re-watering. Plant Growth Regulation, 79, 229–241.

    Article  CAS  Google Scholar 

  • Pastenes, C., Pimentel, P., & Lillo, J. (2005). Leaf movements and photoinhibition in relation to water stress in field grown beans. Journal of Experimental Botany, 56, 425–433.

    Article  PubMed  CAS  Google Scholar 

  • Peeva, V., & Cornic, G. (2009). Leaf photosynthesis of Haberlea rhodopensis before and during drought. Environmental and Experimental Botany, 65, 310–318.

    Article  CAS  Google Scholar 

  • Pinnola, A., Dall’Osto, L., Gerotto, C., Morosinotto, T., Bassi, R., & Alboresi, A. (2013). Zeaxanthin binds to light-harvesting complex stress-related protein to enhance non-photochemical quenching in Physcomitrella patens. Plant Cell, 25, 3519–3534.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Samadia, D. K. (2002). Performance of bottle gourd genotypes under hot arid environment. Indian Journal of Horticulture, 59, 167–170.

    Google Scholar 

  • Santos, M. G., Ribeiro, R. V., Machado, E. C., & Pimentel, C. (2009). Photosynthetic parameters and leaf water potential of five common bean genotypes under mild water deficit. Photosynthetica, 53, 229–236.

    CAS  Google Scholar 

  • Singh, S. K., & Reddy, K. R. (2011). Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata [L.] Walp.) under drought. Journal of Photochemistry and Photobiology B: Biology, 105, 40–50.

    Article  CAS  Google Scholar 

  • Souza, R. P., Machado, E. C., Silva, J. A. B., Lagoa, A. M. M. A., & Silveira, J. A. G. (2004). Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Journal of Environmental and Experimental Botany, 51, 45–56.

    Article  CAS  Google Scholar 

  • SPSS. (2007). IBM SPSS Statistics 20. New York: IBM Corp.

    Google Scholar 

  • Takahashi, S., & Badger, M. R. (2011). Photoprotection in plants: A new light on photosystem II damage. Trends in Plant Sciences, 16, 53–60.

    Article  CAS  Google Scholar 

  • Yetisir, H., & Sari, N. (2003). Effect of different rootstock on plant growth, yield and quality of watermelon. Australian Journal of Experimental Agriculture, 43, 1269–1274.

    Article  Google Scholar 

Download references

Acknowledgements

The College of Agriculture, Engineering and Science of the University of KwaZulu-Natal (UKZN) and the National Research Foundation (NRF) of South Africa are acknowledged for financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Mashilo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashilo, J., Odindo, A., Shimelis, H. et al. Photosynthetic efficiency of bottle gourd [Lagenaria siceraria (Molina) Standl.] under drought stress. Ind J Plant Physiol. 23, 293–304 (2018). https://doi.org/10.1007/s40502-018-0377-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-018-0377-5

Keywords

Navigation