Indian Journal of Plant Physiology

, Volume 23, Issue 1, pp 169–178 | Cite as

An improvised shoot amplification and ex vitro rooting method for offsite propagation of Tinospora cordifolia (Willd.) Miers: a multi-valued medicinal climber

  • Deepak Panwar
  • Ashok Kumar Patel
  • Narpat S. Shekhawat
Original Article
  • 59 Downloads

Abstract

Tinospora cordifolia (Willd.) Miers, is an important medicinal climber of family Menispermaceae. This plant is principally known for its medicinal properties in Ayurvedic system of medicines. Poor seed setting coupled with low seed germination limit its natural propagation through seeds. This paper reports an improvised micropropagation system of T. cordifolia using nodal explants. The maximum numbers of axillary shoots (3.8 ± 0.63) were differentiated on MS medium containing 6-benzylaminopurine (BAP; 2.0 mg l−1). The numbers of shoots were further amplified using repetitive transfer of original explants and through subculturing techniques. The greatest numbers of shoots (15.3 ± 1.05) of an average length (5.5 ± 0.84 cm) were achieved on 0.8% agar-gelled Modified MS medium supplemented with 0.5 mg l−1 each of BAP and kinetin, and IAA (0.1 mg l−1) in screw-cap culture bottles, within 5–6 weeks. In rooting experiments, we developed a concurrent ex vitro rooting and acclimatization (CEVRA) method for the first time in T. cordifolia. About 87.6% of the micropropagated shoots rooted ex vitro on pulse-treatment with indole-3-butyric acid (200 mg l−1) for 3 min. More than 80% of the concurrently ex vitro rooted and acclimatized plantlets were successfully hardened in a greenhouse and transplanted to the soil. The discussed micropropagation system can be used for the large-scale offsite propagation of this medicinally important perennial climber, T. cordifolia.

Keywords

Tinospora cordifolia Concurrent ex vitro rooting and acclimatization (CEVRA) Micropropagation Menispermaceae Modified MS medium 

Abbreviations

BAP

6-benzylaminopurine

CEVRA

Concurrent ex vitro rooting and acclimatization

IAA

Indole-3-acetic acid

IBA

Indole-3-butyric acid

Kin

Kinetin

MS

Murashige and Skoog (1962)

NAA

α-naphthaleneacetic acid

PFD

Photon flux density

PGRs

Plant growth regulators

RH

Relative humidity

Notes

Acknowledgements

DP and NSS are thankful to the Department of Biotechnology (DBT), Government of India for providing funds for establishing laboratory and greenhouse infrastructure used for the present research. AKP is grateful to the University Grant Commission (UGC), Government of India for providing the Special Assistance Program (SAP) in the form of Centre of Advanced Study (CAS) to the Department of Botany, Jai Narain Vyas University, Jodhpur.

References

  1. Abiramasundari, G., Sumalatha, K. R., & Sreepriya, M. (2012). Effects of Tinospora cordifolia (Menispermaceae) on the proliferation, osteogenic differentiation and mineralization of osteoblast model systems in vitro. Journal of Ethnopharmacology, 141, 474–480.CrossRefPubMedGoogle Scholar
  2. Aranha, I., Clement, F., & Venkatesh, Y. P. (2012). Immunostimulatory properties of the major protein from the stem of the Ayurvedic medicinal herb, guduchi (Tinospora cordifolia). Journal of Ethnopharmacology, 139, 366–372.CrossRefPubMedGoogle Scholar
  3. Bhalerao, B. M., Vishwakarma, K. S., & Maheshwari, V. L. (2013). Tinospora cordifolia (Willd.) Miers ex Hook. f. & Thoms.—Plant tissue culture and comparative chemo-profiling study as a function of different supporting trees. Indian Journal of Natural Products and Resources, 4, 380–386.Google Scholar
  4. Bhat, T. M., Singh, M., & Tafazul, M. (2013). Micropropagation of Tinospora cordifolia (willd.) miers ex hook. F. Thoms—A threatened medicinal plant. Indo American Journal of Pharmaceutical Sciences, 3, 3636–3641.Google Scholar
  5. Bhojwani, S. S., & Dantu, P. K. (2013). Plant tissue culture: An introductory text (pp. 245–274). New York: Springer.CrossRefGoogle Scholar
  6. Bohra, P., Waman, A. A., Sathyanarayana, B. N., & Umesha, K. (2016). Concurrent ex vitro rooting and hardening in Ney Poovan Banana (Musa AB): Effect of carbon sources and their concentrations. Erwerbs-Obstbau, 58, 193–198.CrossRefGoogle Scholar
  7. Choudhary, S. S., & Handique, P. J. (2013). TDZ enhances multiple shoot production from nodal explants of Tinospora cordifolia—A commercially important medicinal plant species of NE India. Research Journal of Biotechnology, 8, 31–36.Google Scholar
  8. Compton, M. E., & Mize, C. W. (1999). Statistical considerations for in vitro research: I-Birth of an idea to collecting data. In Vitro Cellular & Developmental Biology—Plant, 35, 115–121.CrossRefGoogle Scholar
  9. Cördük, N., & Aki, C. (2011). Inhibition of browning problem during micropropagation of Sideritis trojana, an endemic medicinal herb of Turkey. Romanian Biotechnological Letters, 16, 6760–6765.Google Scholar
  10. Duncan, D. B. (1955). Multiple range and multiple F test. Biometrics, 11, 1–42.CrossRefGoogle Scholar
  11. Duraipandiyan, V., Ignacimuthu, S., & Balakrishna, K. (2012). Antimicrobial activity of Tinospora cordifolia: an ethnomedicinal plant. Asian Journal of Traditional Medicines, 7, 59–65.Google Scholar
  12. Gabryszewska, E. (2011). Effect of various levels of sucrose, nitrogen salts and temperature on the growth and development of Syringa vulgaris L. shoots in vitro. Journal of Fruit and Ornamental Plant Research, 19, 133–148.Google Scholar
  13. Gonçalves, S., Martins, N., & Romano, A. (2017). Physiological traits and oxidative stress markers during acclimatization of micropropagated plants from two endangered Plantago species: P. Algarbiensis Samp. and P. almogravensis Franco. In Vitro Cellular & Developmental Biology—Plant, 53, 249–255.CrossRefGoogle Scholar
  14. Gupta, S. S., Verma, S. C. L., Garg, V. P., & Mahesh, R. (1967). Antidiabetic effects of Tinospora cordifolia. 1. Effect on fasting blood sugar level, glucose tolerance and adrenaline induced hyperglycaemia. Indian Journal of Medical Research, 55, 733–745.PubMedGoogle Scholar
  15. Gururaj, H. B., Giridhar, P., & Ravishankar, G. A. (2007). Micropropagation of Tinospora cordifolia (Willd.) Miers ex Hook. f & Thoms—A multipurpose medicinal plant. Current Science, 92, 23–26.Google Scholar
  16. Jagetia, G. C., Nayak, V., & Vidyasagar, M. S. (1998). Evaluation of the antineoplastic activity of guduchi (Tinospora cordifolia) in cultured HeLa cells. Cancer Letters, 127, 71–82.CrossRefPubMedGoogle Scholar
  17. Kopriva, S., Mugford, S. G., Matthewman, C., & Koprivova, A. (2009). Plant sulfate assimilation genes: Redundancy versus specialization. Plant Cell Reports, 28, 1769–1780.CrossRefPubMedGoogle Scholar
  18. Kumar, S., Narula, A., Sharma, M. P., & Srivastava, P. S. (2003). Effect of copper and zinc on growth, secondary metabolite content and micropropagation of Tinospora cordifolia: a medicinal plant. Phytomorphology, 53, 79–91.Google Scholar
  19. Lloyd, G., & McCown, B. (1981). Commercially feasible micropropagation of mountain laurel Kalmia latifolia by use of shoot tip culture. Proceedings—International Plant Propagators’ Society, 30, 421–426.Google Scholar
  20. Lodha, D., Patel, A. K., & Shekhawat, N. S. (2015). A high-frequency in vitro multiplication, micromorphological studies and ex vitro rooting of Cadaba fruticosa (L.) Druce (Bahuguni): a multipurpose endangered medicinal shrub. Physiology and Molecular Biology of Plants, 21, 407–415.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lodha, D., Rathore, N., Kataria, V., & Shekhawat, N. S. (2014). In vitro propagation of female Ephedra foliata Boiss. & Kotschy ex Boiss.: An endemic and threatened Gymnosperm of the Thar Desert. Physiology and Molecular Biology of Plants, 20, 375–383.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Maliyakkal, N., Udupa, N., Pai, K. S. R., & Rangarajan, A. (2013). Cytotoxic and apoptotic activities of extracts of Withania somnifera and Tinospora cordifolia in human breast cancer cells. International Journal of Applied Research in Natural Products, 6, 1–10.Google Scholar
  23. Minocha, R., & Jain, S. M. (2000). Tissue culture of woody plants and its relevance to molecular biology. In S. M. Jain & S. C. Minocha (Eds.), Molecular biology of woody plants (Vol. 1, pp. 315–339). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  24. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.CrossRefGoogle Scholar
  25. Nadkarni, A. K. (1954). Tinospora cordifolia. Indian Materia Medica (3rd ed., p. 1221). Bombay: Popular Prakashan.Google Scholar
  26. Nayampalli, S., Ainapure, S. S., & Nadkarni, P. M. (1982). Study of antiallergic acid bronchodilator effects of Tinospora cordifolia. Indian Journal of Pharmacology, 14, 64–66.Google Scholar
  27. Nezami-Alanagh, E., Garoosi, G. A., Maleki, S., Landín, M., & Gallego, P. P. (2017). Predicting optimal in vitro culture medium for Pistacia vera micropropagation using neural networks models. Plant Cell, Tissue and Organ Culture, 129, 19–33.CrossRefGoogle Scholar
  28. Ogura-Tsujita, Y., & Okubo, H. (2006). Effects of low nitrogen medium on endogenous changes in ethylene, auxins and cytokinins in in vitro shoot formation from rhizomes of Cymbidium kanran. In Vitro Cellular & Developmental Biology - Plant, 42, 614–616.CrossRefGoogle Scholar
  29. Patel, A. K., Agarwal, T., Phulwaria, M., Kataria, V., & Shekhawat, N. S. (2014a). An efficient in vitro plant regeneration system from leaf of mature plant of Leptadenia reticulata (Jeewanti): A life giving endangered woody climber. Industrial Crops and Products, 52, 499–505.CrossRefGoogle Scholar
  30. Patel, A. K., Lodha, D., Ram, K., Shekhawat, S., & Shekhawat, N. S. (2016). Evaluation of physiochemical factors affecting high frequency plant regeneration of Blyttia spiralis (Forssk.) D.V. Field & J.R.I. Wood [Synonym: Pentatropis spiralis (Forssk.) Decne.], a threatened climber of medicinal values. In Vitro Cellular & Developmental Biology—Plant, 52, 10–19.CrossRefGoogle Scholar
  31. Patel, A. K., Phulwaria, M., Rai, M. K., Gupta, A. K., Shekhawat, S., & Shekhawat, N. S. (2014b). In vitro propagation and ex vitro rooting of Caralluma edulis (Edgew.) Benth. & Hook. f.: An endemic and endangered edible plant species of the Thar Desert. Scientia Horticulturae, 165, 175–180.CrossRefGoogle Scholar
  32. Pathak, A. K., Agarwal, P. K., Jain, D. C., Sharma, R. P., & Howarth, O. W. (1995). NMR studies of 20β–hydroxyecdysone, a steroid; isolated from Tinospora cordifolia. Indian Journal of Chemistry Section B: Organic Chemistry including Medicinal Chemistry, 34, 674–676.Google Scholar
  33. Peternel, Š., Gabrovšek, K., Gogala, N., & Regvar, M. (2009). In vitro propagation of European aspen (Populus tremula L.) from axillary buds via organogenesis. Horticultural Science, 121, 109–112.CrossRefGoogle Scholar
  34. Raghu, A. V., Geetha, S. P., Martin, G., Balachandran, I., & Ravindran, P. N. (2006). In vitro clonal propagation through mature nodes of Tinospora cordifolia (willd.) Hook. F. & Thoms.: An important Ayurvedic medicinal plant. In Vitro Cellular & Developmental Biology—Plant, 42, 584–588.CrossRefGoogle Scholar
  35. Ram, K., & Shekhawat, N. S. (2011). Micropropagation of commercially cultivated Henna (Lawsonia inermis) using nodal explants. Physiology and Molecular Biology of Plants, 17, 281–289.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Rathore, M. S., Rathore, M. S., & Shekhawat, N. S. (2013a). Ex vivo implications of phytohormones on various in vitro responses in Leptadenia reticulata (Retz.) Wight. & Arn.—An endangered plant. Environmental and Experimental Botany, 86, 86–93.CrossRefGoogle Scholar
  37. Rathore, N. S., Rathore, N., & Shekhawat, N. S. (2013b). In vitro propagation and micromorphological studies of Cleome gynandra: A C4 model plant closely related to Arabidopsis thaliana. Acta Physiologiae Plantarum, 35, 2691–2698.CrossRefGoogle Scholar
  38. Rathore, M. S., Yadav, S., Yadav, P., Kheni, J., & Jha, B. (2015). Micropropagation of elite genotype of Jatropha curcas L. through enhanced axillary bud proliferation and ex vitro rooting. Biomass and Bioenergy, 83, 501–510.CrossRefGoogle Scholar
  39. Rege, N. N., Dahanukar, S. A., & Karandikar, S. M. (1984). Hepatoprotective effects of Tinospora cordifolia against carbon tetrachloride induced liver damage. Indian Drug, 21, 544–555.Google Scholar
  40. Sánchez, M. C., San-José, M. C., Ferro, E., Ballester, A., & Vieitez, A. M. (1997). Improving micropropagation conditions for adult-phase shoots of chestnut. Journal of Horticultural Science, 72, 433–443.CrossRefGoogle Scholar
  41. Sarma, D. N., Khosa, R. L., & Sahai, M. (1995). Isolation of jatrorrhizine from Tinospora cordifolia roots. Planta Medica, 61, 98–99.CrossRefPubMedGoogle Scholar
  42. Sharma, P. K., Purnima, T., Sharma, K. C., & Kothari, S. L. (2003). Clonal micropropagation of Crataeva adansonii (Dc) Prodr.: A multipurpose tree. In Vitro Cellular & Developmental Biology—Plant, 39, 156–160.CrossRefGoogle Scholar
  43. Sharma, H., Vashistha, B. D., Singh, N., & Kumar, R. (2015). Tinospora cordifolia (willd.) Miers ex Hook. F & Thoms. (Menispermaceae): Rapid in vitro propagation through shoot tip explants. International Journal of Recent Scientific Research, 6, 2714–2718.Google Scholar
  44. Shekhawat, M. S., & Manokari, M. (2016). In vitro propagation, micromorphological studies and ex vitro rooting of cannon ball tree (Couroupita guianensis aubl.): A multipurpose threatened species. Physiology and Molecular Biology of Plants, 22, 131–142.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Shekhawat, N. S., Rai, M. K., Phulwaria, M., Rathore, J. S., Gupta, A. K., Purohit, M., et al. (2014). Tree biotechnology with special reference to species of fragile ecosystems and arid environments. In K. G. Ramawat, J.-M. Mérillon, & M. R. Ahuja (Eds.), Tree biotechnology (pp. 187–222). Boca Raton: CRC Press.Google Scholar
  46. Shekhawat, N. S., Rathore, T. S., Singh, R. P., Deora, N. S., & Rao, S. R. (1993). Factors affecting in vitro clonal propagation of Prosopis cineraria. Plant Growth Regulation, 12, 273–280.CrossRefGoogle Scholar
  47. Shekhawat, N. S., Singh, R. P., Deora, N. S., Kaur, G., Kotwal, R. C., & Choudhary, N. (1998). Micropropagation of plants of stressed ecosystems. In P. S. Srivastava (Ed.), Plant tissue culture and molecular biology: Application and prospects (pp. 579–586). New Delhi: Narosa Publishing House.Google Scholar
  48. Shimizu-Sato, S., Tanaka, M., & Mori, H. (2009). Auxin-cytokinin interactions in the control of shoot branching. Plant Molecular Biology, 69, 429–435.CrossRefPubMedGoogle Scholar
  49. Singh, S. S., Pandey, S. C., Srivastava, S., Gupta, V. S., Patro, B., & Ghosh, A. C. (2003). Chemistry and medicinal properties of Tinospora cordifolia (guduchi). Indian Journal of Pharmacology, 35, 83–91.Google Scholar
  50. Singh, A., Sah, S. K., Pradhan, A., Rajbahak, S., & Maharajan, N. (2009). In vitro study of Tinospora cordifolia (Willd.) Miers (Menispermaceae). Botanica Orientalis: Journal of Plant Science, 6, 103–105.Google Scholar
  51. Sinha, K., Mishra, N. P., Singh, J., & Khanuja, S. P. S. (2004). Tinospora cordifolia (Guduchi), a reservoir plant for therapeutic applications: A Review. Indian Journal of Traditional Knowledge, 3, 257–270.Google Scholar
  52. Sivakumar, V., Dhana Rajan, M. S., Sadiq, A. M., & Jayanthi, M. (2014). In vitro micropropagation of Tinospora cordifolia (Willd.) Miers ex Hook. F. & Thoms—An important medicinal plant. Journal of Pharmacognosy and Phytochemistry, 3, 5–10.Google Scholar
  53. Su, Y. H., Liu, Y. B., & Zhang, X. S. (2011). Auxin-cytokinin interaction regulates meristem development. Molecular Plant, 4, 616–625.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Teixeira da Silva, J. A., Cardoso, J. C., Dobránszki, J., & Zeng, S. (2015). Dendrobium micropropagation: A review. Plant Cell Reports, 34, 671–704.CrossRefGoogle Scholar
  55. Timofeeva, S. N., Elkonin, L. A., & Tyrnov, V. S. (2014). Micropropagation of Laburnum anagyroides Medic. through axillary shoot regeneration. In Vitro Cellular & Developmental Biology—Plant, 50, 561–567.CrossRefGoogle Scholar
  56. Van der Krieken, W. M., Breteler, H., Visser, M. H. M., & Mavridou, D. (1993). The role of the conversion of IBA into IAA on root regeneration in apple: Introduction of a test system. Plant Cell Reports, 12, 203–206.CrossRefPubMedGoogle Scholar
  57. Warrier, P. K., Nambiar, V. P. K., & Ramankutty, C. (1996). Indian medicinal plants (Vol. 5, pp. 283–290). Chennai: Orient Longman.Google Scholar
  58. Yan, H., Liang, C., Yang, L., & Li, Y. (2010). In vitro and ex vitro rooting of Siratia grosvenorii, a traditional medicinal plant. Acta Physiologiae Plantarum, 32, 115–120.CrossRefGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2018

Authors and Affiliations

  • Deepak Panwar
    • 1
  • Ashok Kumar Patel
    • 1
  • Narpat S. Shekhawat
    • 1
  1. 1.Biotechnology Unit, Department of Botany, UGC – Centre of Advanced Study (CAS)Jai Narain Vyas UniversityJodhpurIndia

Personalised recommendations