Skip to main content

Advertisement

Log in

Small interfering RNA-mediated regulation of gene expression and its role as a plant reverse genetic tool

  • Review Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

In the era of genome sequencing, various techniques have been conceptualized for identifying the functions of annotated genes in model as well as crop systems. One of them is the use of small RNAs in the characterization of gene function. Small RNAs regulate gene expression in eukaryotic organisms in a post-transcriptional manner. Small interfering RNAs (siRNAs) are a group of short, double-stranded RNA (dsRNA) molecules that bind to and inhibit the translation of specific and complimentary mRNAs, thereby knocking-down target gene expression. The siRNA-mediated gene regulation that has initially evolved as a part of innate immunity in plants against invading pathogens also has assumed significance in plant development and has become one of the important tools in regulating mRNA abundance in cells in a post-transcriptional manner. The process of silencing of genes begins with the folding of complimentary RNAs and the production of small dsRNAs by the activity of type III ribonucleases. These small RNAs carry sequence-specific effectors of RNA silencing pathways that negatively regulate expression of genes, viruses, repetitive DNA sequences and transposons. In the current review, we briefly describe the siRNA-mediated regulation of gene expression and its merits and limitations as a reverse genetic tool for functional genomic studies in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez, J. P., Pekker, I., Goldshmidt, A., Blum, E., Amsellem, Z., & Eshed, Y. (2006). Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. The Plant Cell, 18, 1134–1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arguel, M. J., Jaouannet, M., Magliano, M., Abad, P., & Rosso, M. N. (2012). siRNAs trigger efficient silencing of a parasitism gene in plant parasitic root-knot nematodes. Genes, 3(3), 391–408.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baum, J. A., Bogaert, T., Clinton, W., Heck, G. R., Feldmann, P., Ilagan, O., et al. (2007). Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 25(11), 1322–1326.

    Article  CAS  PubMed  Google Scholar 

  • Bernstein, E., Caudy, A. A., Hammond, S. M., & Hannon, G. J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409, 363–366.

    Article  CAS  PubMed  Google Scholar 

  • Bonfim, K., Faria, J. C., Nogueira, E. O., Mendes, É. A., & Aragão, F. J. (2007). RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Molecular Plant-Microbe Interactions, 20(6), 717–726.

    Article  CAS  PubMed  Google Scholar 

  • Borsani, O., Zhu, J., Verslues, P. E., Sunkar, R., & Zhu, J. K. (2005). Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 123(7), 1279–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrington, J. C., & Ambros, V. (2003). Role of microRNAs in plant and animal development. Science, 301(5631), 336–338.

    Article  CAS  PubMed  Google Scholar 

  • Cogoni, C., & Macino, G. (2000). Post-transcriptional gene silencing across kingdoms. Genes & Development, 10, 638–643.

    CAS  Google Scholar 

  • Dalakouras, A., Wassenegger, M., McMillan, J. N., Cardoza, V., Maegele, I., Dadami, E., Runne, M., Krczal, G., & Wassenegger, M. (2016). Induction of silencing in plants by high-pressure spraying of in vitro-synthesized small RNAs. Frontiers in Plant Science, 7. https://dx.doi.org/10.3389/fpls.2016.01327

    Article  PubMed  PubMed Central  Google Scholar 

  • Davuluri, G. R., Van Tuinen, A., Fraser, P. D., Manfredonia, A., Newman, R., Burgess, D., et al. (2005). Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nature Biotechnology, 23(7), 890–895.

    Article  CAS  PubMed  Google Scholar 

  • Dunoyer, P., Himber, C., & Voinnet, O. (2006). Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections. Nature Genetics, 38(2), 258–263.

    Article  CAS  PubMed  Google Scholar 

  • Dzitoyeva, S., Dimitrijevic, N., & Manev, H. (2001). Intra-abdominal injection of double-stranded RNA into anesthetized adult Drosophila triggers RNA interference in the central nervous system. Molecular Psychiatry, 6(6), 665–670.

    Article  CAS  PubMed  Google Scholar 

  • Elomaa, P., Helariutta, Y., Kotilainen, M., & Teeri, T.H. (1996). Transformation of antisense constructs of the chalcone synthase gene superfamily into Gerbera hybrida: differential effect on the expression of family members. Molecular Breeding, 2, 41–50.

    Article  CAS  Google Scholar 

  • Enrique, R., Siciliano, F., Favaro, M. A., Gerhardt, N., Roeschlin, R., Rigano, L., et al. (2011). Novel demonstration of RNAi in citrus reveals importance of citrus callose synthase in defence against Xanthomonas citri subsp. citri. Plant Biotechnology Journal, 9(3), 394–407.

    Article  CAS  PubMed  Google Scholar 

  • Eschen-Lippold, L., Landgraf, R., Smolka, U., Schulze, S., Heilmann, M., Heilmann, I., et al. (2012). Activation of defense against Phytophthora infestans in potato by down regulation of syntaxin gene expression. New Phytologist, 193(4), 985–996.

    Article  CAS  PubMed  Google Scholar 

  • Escobar, M. A., Civerolo, E. L., Summerfelt, K. R., & Dandekar, A. M. (2001). RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proceedings of the National Academy of Sciences, 98(23), 13437–13442.

    Article  CAS  Google Scholar 

  • Feldmann, K. A. (2006). Steroid regulation improves crop yield. Nature Biotechnology, 24(1), 46–47.

    Article  CAS  PubMed  Google Scholar 

  • Filichkin, S. A., DiFazio, S. P., Brunner, A. M., Davis, J. M., Yang, Z. K., et al. (2007). Efficiency of gene silencing in Arabidopsis: direct inverted repeats vs. transitive RNAi vectors. Plant Biotechnology Journal, 5(5), 615–626.

    Article  CAS  PubMed  Google Scholar 

  • Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., & Driver, S. E. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811.

    Article  CAS  PubMed  Google Scholar 

  • Guo, S., & Kempheus, K. J. (1995). Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 81, 611–620.

    Article  CAS  PubMed  Google Scholar 

  • Guo, C., Li, L., Wang, X., & Liang, C. (2015). Alterations in siRNA and miRNA expression profiles detected by deep sequencing of transgenic rice with siRNA-mediated viral resistance. PLoS ONE, 10(1), e0116175.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammond, S. M., Caudy, A. A., & Hannon, G. J. (2001). Post-transcriptional gene silencing by double-stranded RNA. Nature Reviews Genetics, 2, 110–119.

    Article  CAS  PubMed  Google Scholar 

  • Hannon, G.J. (2002). RNA interference. Nature, 418, 244–251

    Article  CAS  PubMed  Google Scholar 

  • Harmoko, R., Fanata, W. I. D., Yoo, J. Y., Ko, K. S., Rim, Y. G., Uddin, M. N. et al. (2013). RNA-dependent RNA polymerase 6 is required for efficient hpRNA-Induced gene silencing in plants. Molecules and Cells, 35(3), 202–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilbricht, T., Varotto, S., Sgaramella, V., Bartels, D., Salamini, F., & Furini, A. (2008). Retrotransposons and siRNA have a role in the evolution of desiccation tolerance leading to resurrection of the plant Craterostigma plantagineum. New Phytologist, 179(3), 877–887.

    Article  CAS  PubMed  Google Scholar 

  • Huang, G., Allen, R., Davis, E. L., Baum, T. J., & Hussey, R. S. (2006). Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proceedings of the National Academy of Sciences, 103(39), 14302–14306.

    Article  CAS  Google Scholar 

  • Incarbone, M., Zimmermann, A., Hammann, P., Erhardt, M., Michel, F., & Dunoyer, P. (2017). Neutralization of mobile antiviral small RNA through peroxisomal import. Nature Plants, 3, 17094.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, C. J., Shimono, M., Maeda, S., Inoue, H., Mori, M., Hasegawa, M., et al. (2009). Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Molecular Plant-Microbe Interactions, 22(7), 820–829.

    Article  CAS  PubMed  Google Scholar 

  • Kamthan, A., Chaudhuri, A., Kamthan, M., & Datta, A. (2015). Small RNAs in plants: Recent development and application for crop improvement. Frontiers in Plant Science, 6.

  • Kennerdell, J. R., & Carthew, R. W. (1998). Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell, 95, 1017–1026.

    Article  CAS  PubMed  Google Scholar 

  • Kennerdell, J. R., & Carthew, R. W. (2000). Heritable gene silencing in Drosophila using double-stranded RNA. Nature Biotechnology, 18, 896–898.

    Article  CAS  PubMed  Google Scholar 

  • Kusaba, M., Miyahara, K., Iida, S., Fukuoka, H., Takano, T., Sassa, H., et al. (2003). Low glutelin content 1: A dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. The Plant Cell, 15(6), 1455–1467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, R., Martin-Hernandez, A. M., Peart, J. R., Malcuit, I. & Baulcombe, D. C. (2003). Virus-induced gene silencing in plants. Methods, 30, 296–303.

    Article  CAS  PubMed  Google Scholar 

  • Lam, J. K., Chow, M. Y., Zhang, Y., & Leung, S. W. (2015). siRNA versus miRNA as therapeutics for gene silencing. Molecular Therapy-Nucleic Acids, 4, e252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, D. H., Hui, L. I. U., Yang, Y. L., Zhen, P. P., & Liang, J. S. (2009). Down-regulated expression of RACK1 gene by RNA interference enhances drought tolerance in rice. Rice Science, 16(1), 14–20.

    Article  Google Scholar 

  • Li, M. L., Weng, K. F., Shih, S. R., & Brewer, G. (2016). The evolving world of small RNAs from RNA viruses. Wiley Interdisciplinary Reviews: RNA, 7(5), 575–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, C., & Zhang, B. (2016). MicroRNAs in control of plant development. Journal of Cellular Physiology, 231(2), 303–313.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Q., Singh, S. P., & Green, A. G. (2002). High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiology, 129(4), 1732–1743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, S., Yin, X., Spollen, W., Zhang, N., Xu, D., Schoelz, J., et al. (2015). Analysis of the siRNA-mediated gene silencing process targeting three homologous genes controlling soybean seed oil quality. PLoS ONE, 10(6), e0129010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mack, G. S. (2007). MicroRNA gets down to business. Nature Biotechnology, 25(6), 631–638.

    Article  CAS  PubMed  Google Scholar 

  • Mao, Y. B., Cai, W. J., Wang, J. W., Hong, G. J., Tao, X. Y., Wang, L. J., et al. (2007). Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology, 25(11), 1307–1313.

    Article  CAS  PubMed  Google Scholar 

  • Meli, V. S., Ghosh, S., Prabha, T. N., Chakraborty, N., Chakraborty, S., & Datta, A. (2010). Enhancement of fruit shelf life by suppressing N-glycan processing enzymes. Proceedings of the National Academy of Sciences, 107(6), 2413–2418.

    Article  CAS  Google Scholar 

  • Miki, D., Itoh, R., & Shimamoto, K. (2005). RNA silencing of single and multiple members in a gene family of rice. Plant physiology, 138, 1903–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miozzi, L., Gambino, G., Burgyan, J., & Pantaleo, V. (2013). Genome wide identification of viral and host transcripts targeted by viral siRNAs in Vitis vinifera. Molecular Plant Pathology, 14(1), 30–43.

    Article  CAS  PubMed  Google Scholar 

  • Moissiard, G., & Voinnet, O. (2006). RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis Dicer-like proteins. Proceedings of the National Academy of Sciences, 103(51), 19593–19598.

    Article  CAS  Google Scholar 

  • Moldovan, D., Spriggs, A., Yang, J., Pogson, B. J., Dennis, E. S., & Wilson, I. W. (2009). Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. Journal of Experimental Botany, 61(1), 165–177.

    Article  PubMed Central  Google Scholar 

  • Napoli, C., Lemieux, C., Jorgensen, R. A. (1990). Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell, 2, 279–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu, Q. W., Lin, S. S., Reyes, J. L., Chen, K. C., Wu, H. W., Yeh, S. D., et al. (2006). Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nature Biotechnology, 24(11), 1420–1428.

    Article  CAS  PubMed  Google Scholar 

  • Numata, K., Ohtani, M., Yoshizumi, T., Demura, T., & Kodama, Y. (2014). Local gene silencing in plants via synthetic dsRNA and carrier peptide. Plant Biotechnology Journal, 12(8), 1027–1034.

    Article  CAS  PubMed  Google Scholar 

  • Padmanabhan, C., Zhang, X., & Jin, H. (2009). Host small RNAs are big contributors to plant innate immunity. Current Opinion in Plant Biology, 12, 465–472.

    Article  CAS  PubMed  Google Scholar 

  • Park, G. G., Park, J. J., Yoon, J., Yu, S. N., & An, G. (2010). A RING finger E3 ligase gene, Oryza sativa Delayed Seed Germination 1 (OsDSG1), controls seed germination and stress responses in rice. Plant Molecular Biology, 74(4–5), 467–478.

    Article  CAS  PubMed  Google Scholar 

  • Qi, X., Bao, F. S., & Xie, Z. (2009). Small RNA deep sequencing reveals role for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis. PLoS ONE, 4(3), e4971.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiao, F., Yang, Q., Wang, C. L., Fan, Y. L., Wu, X. F., & Zhao, K. J. (2007). Modification of plant height via RNAi suppression of OsGA20ox2 gene in rice. Euphytica, 158(1–2), 35–45.

    Article  CAS  Google Scholar 

  • Ratcliff, F., Harrison, B. D., & Baulcombe, D. C. (1997). A similarity between viral defense and gene silencing in plants. Science, 276, 1558–1560.

    Article  CAS  PubMed  Google Scholar 

  • Regina, A., Bird, A., Topping, D., Bowden, S., Freeman, J., Barsby, T., et al. (2006). High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proceedings of the National Academy of Sciences of the United States of America, 103(10), 3546–3551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riechen, J. (2007). Establishment of broad-spectrum resistance against Blumeria graminis f. sp. tritici in Triticum aestivum by RNAi-mediated knock-down of MLO. Journal für Verbraucherschutz und Lebensmittelsicherheit, 2, 120.

    Article  Google Scholar 

  • Schiebel, W., Haas, B., Marinković, S., Klanner, A., & Sänger, H. L. (1993). RNA-directed RNA polymerase from tomato leaves. II. Catalytic in vitro properties. Journal of Biological Chemistry, 268(16), 11858–11867.

    CAS  PubMed  Google Scholar 

  • Schmid, A., Schindelholz, B., & Zinn, K. (2002). Combinatorial RNAi: A method for evaluating the functions of gene families in Drosophila. Trends in Neurosciences, 25(2), 71–74.

    Article  CAS  PubMed  Google Scholar 

  • Sharp, P. A., & Zamore, P. D. (2000). RNA interference. Science, 287, 2431–2433.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu, T., Yoshii, M., Wei, T., Hirochika, H., & Omura, T. (2009). Silencing by RNAi of the gene for Pns12, a viroplasm matrix protein of Rice dwarf virus, results in strong resistance of transgenic rice plants to the virus. Plant Biotechnology Journal, 7(1), 24–32.

    Article  CAS  PubMed  Google Scholar 

  • Shimura, H., Pantaleo, V., Ishihara, T., Myojo, N., Inaba, J. I., Sueda, K., et al. (2011). A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLoS Pathogens, 7(5), e1002021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Small, I. (2007). RNAi for revealing and engineering plant gene functions. Current Opinion in Biotechnology, 18, 148–153.

    Article  CAS  PubMed  Google Scholar 

  • Smith, N. A., Eamens, A. L., & Wang, M. B. (2011). Viral small interfering RNAs target host genes to mediate disease symptoms in plants. PLoS Pathogens, 7(5), e1002022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, L., Yuan, B., Zhang, M., Wang, L., Cui, M., Wang, Q., et al. (2012). Fruit-specific RNAi-mediated suppression of SlNCED1 increases both lycopene and β-carotene contents in tomato fruit. Journal of Experimental Botany, 63(8), 3097–3108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunilkumar, G., Campbell, L. M., Puckhaber, L., Stipanovic, R. D., & Rathore, K. S. (2006). Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proceedings of the National Academy of Sciences, 103(48), 18054–18059.

    Article  CAS  Google Scholar 

  • Sutula, M. Y., Akbassova, A. Z., Yergaliev, T. M., Nurbekova, Z. A., Mukiyanova, G. S., & Omarov, R. T. (2017). Endowing plants with tolerance to virus infection by their preliminary treatment with short interfering RNAs. Russian Journal of Plant Physiology, 64(6), 939–945.

    Article  CAS  Google Scholar 

  • Tijsterman, M., & Plasterk, R. H. (2004). Dicers at RISC: the mechanism of RNAi. Cell, 117(1), 1–3.

    Article  CAS  PubMed  Google Scholar 

  • Van der Krol, A. R., Mur, L. A., Beld, M., Mol, J. N., & Stuitje, A. R. (1990). Flavonoid genes in Petunia: Addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell, 2, 291–299.

    Article  PubMed  PubMed Central  Google Scholar 

  • Volpe, T.A., Kidner, C., Hall, I.M., Teng, G., Grewal, S.I., & Martienssen, R.A. (2002). Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science, 297(5588), 1833–1837

    Article  CAS  PubMed  Google Scholar 

  • Voinnet, O. (2009). Origin, biogenesis, and activity of plant microRNAs. Cell, 136(4), 669–687.

    Article  CAS  PubMed  Google Scholar 

  • Wang, M. B., Abbott, D. C., & Waterhouse, P. M. (2000). A single copy of a virus derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Molecular Plant Pathology, 1(6), 347–356.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Luo, Y. Z., Zhang, L., Jiao, X. M., Wang, M. B., & Fan, Y. L. (2008). Rolling circle amplification-mediated hairpin RNA (RMHR) library construction in plants. Nucleic acids research, 36(22), e149–e149.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Q., Liu, Y., He, J., Zheng, X., Hu, J., Liu, Y., Dai, H. et al. (2014). STV11 encodes a sulphotransferase and confers durable resistance to rice stripe virus. Nature Communications, 5, 4768–4775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Beaith, M., Chalifoux, M., Ying, J., Uchacz, T., Sarvas, C., et al. (2009). Shoot-specific down-regulation of protein farnesyltransferase (α-subunit) for yield protection against drought in canola. Molecular Plant, 2(1), 191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warthmann, N., Chen, H., Ossowski, S., Weigel, D., & Hervé, P. (2008). Highly Specific Gene Silencing by Artificial miRNAs in Rice. PLoS ONE, 3(3), e1829.

    Article  PubMed  PubMed Central  Google Scholar 

  • Warthmann, N., Ossowski, S., Schwab, R., & Weigel, D. (2013). Artificial microRNAs for specific gene silencing in rice. Methods in Molecular Biology, 956, 131–149.

    Article  CAS  PubMed  Google Scholar 

  • Wesley, S. V., Helliwell, C. A., Smith, N. A., Wang, M. B., Rouse, D. T., et al. (2001). Construct design for efficient, effective and high-throughput gene silencing in plants. The Plant Journal, 27, 581–590.

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse, P. M., Graham, M. W., & Wang, M. B. (1998). Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proceedings of the National Academy of Sciences, 95(23), 13959–13964.

    Article  CAS  Google Scholar 

  • Weiberg, A., Wang, M., Lin, F. M., Zhao, H., Zhang, Z., Kaloshian, I., et al. (2013). Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science, 342(6154), 118–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worby, C.A., Simonson-Leff, N., & Dixon, J. E. (2001). RNA interference of gene expression (RNAi) in cultured Drosophila cells. Science STKE Aug 14, 2001 (95).

  • Xiong, A. S., Yao, Q. H., Peng, R. H., Li, X., Han, P. L., & Fan, H. Q. (2005). Different effects on ACC oxidase gene silencing triggered by RNA interference in transgenic tomato. Plant Cell Reports, 23(9), 639–646.

    Article  CAS  PubMed  Google Scholar 

  • Yadav, B. C., Veluthambi, K., & Subramaniam, K. (2006). Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Molecular and Biochemical Parasitology, 148(2), 219–222.

    Article  CAS  PubMed  Google Scholar 

  • Yao, Y., Ni, Z., Peng, H., Sun, F., Xin, M., Sunkar, R., et al. (2010). Non-coding small RNAs responsive to abiotic stress in wheat (Triticum aestivum L.). Functional & Integrative Genomics, 10(2), 187–190.

    Article  CAS  Google Scholar 

  • Yara, A., Yaeno, T., Montillet, J. L., Hasegawa, M., Seo, S., Kusumi, K., et al. (2008). Enhancement of disease resistance to Magnaporthe grisea in rice by accumulation of hydroxy linoleic acid. Biochemical and Biophysical Research Communications, 370(2), 344–347.

    Article  CAS  PubMed  Google Scholar 

  • Yu, B., Lydiate, D. J., Young, L. W., Schäfer, U. A., & Hannoufa, A. (2008). Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase. Transgenic Research, 17(4), 573–585.

    Article  CAS  PubMed  Google Scholar 

  • Zhai, Z., Sooksa-nguan, T., & Vatamaniuk, O. K. (2009). Establishing RNA interference as a reverse-genetic approach for gene functional analysis in protoplasts. Plant Physiology, 149, 642–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, B., Pan, X., Cobb, G. P., & Anderson, T. A. (2006). Plant microRNA: A small regulatory molecule with big impact. Developmental Biology, 289(1), 3–16.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, B. B., Li, W., & Chen, X. Y. (2008). RNA interference and its application in plants. Forestry Studies in China, 10(4), 280–284.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MM acknowledges DST-INSPRE Faculty Award. Authors acknowledge departmental facilities at Indian Institute of Rice Research and University of Hyderabad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazahar Moin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moin, M., Bakshi, A., Maheswari, M. et al. Small interfering RNA-mediated regulation of gene expression and its role as a plant reverse genetic tool. Ind J Plant Physiol. 22, 549–557 (2017). https://doi.org/10.1007/s40502-017-0331-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-017-0331-y

Keywords