Indian Journal of Plant Physiology

, Volume 23, Issue 1, pp 1–6 | Cite as

Light-harvesting complexes communicate growth and physiology of plants

  • Md Sarwar Jahan
  • Md Mainul Hasan
Review Article


Light-harvesting complexes (LHCs) regulate light-controlled energy production during photosynthesis process in plants. The proteins related to LHCs co-ordinate molecules into the light antenna structures. Although, structural information and genes related to the LHCs were studied. There is a gap remaining to certify the function of LHCs on the growth and physiology of plants. In the recent year, LHCs progressively increase the functional activities in the plants, which gain interest and importance to the researchers due to the ability of plants to respond and acclimate to the environmental conditions due to climate changes. To date, information is still being presented regarding the function of LHCs on growth and physiology of plants. This mini-review highlights the improvements made among LHCs on growth and physiological processes of plants through which glutathione (GSH), chlorophyll content, photosynthesis and nonphotochemical quenching act in plants.


Photosystem Photosynthesis Glutathione Light intensity Nonphotochemical quenching Arabidopsis 



This work was supported by the FRGS funding (FRGS/2/2014/STWN03/UNISZA/02/1) and the Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Terengganu, Malaysia.


  1. Alberts, B., Johnson, A., Lewis, J., et al. (2002). Molecular biology of the cell (4th ed.). New York. Accessed 02 Dec 2015. 
  2. Anderson, J. M., Chow, W. S., & Goodchild, D. J. (1988). Thylakoid membrane organization in sun/shade acclimation. Australian Journal of Plant Physiology, 15, 11–26.CrossRefGoogle Scholar
  3. Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141, 391–396.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ballottari, M., Dall’Osto, L., Morosinotto, T., & Bassi, R. (2007). Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. The Journal of biological chemistry, 282, 8947–8958.CrossRefPubMedGoogle Scholar
  5. Barber, J. (1995). Molecular Basis of the Vulnerability of Photosystem II to Damage by Light. Australian Journal of Plant Physiology, 22, 201–208.CrossRefGoogle Scholar
  6. Barber, J. (2006). Photosystem II: An enzyme of global significance. Biochemical Society Transactions, 34, 619–631.CrossRefPubMedGoogle Scholar
  7. Barros, T., & Kühlbrandt, W. (2009). Crystallisation, structure and function of plant light-harvesting complex II. Biochimica et Biophysica Acta, 1787, 753–772.CrossRefPubMedGoogle Scholar
  8. Bartoli, C. G., Tambussi, E. A., Diego, F., & Foyer, C. H. (2009). Control of ascorbic acid synthesis and accumulation and glutathione by the incident light red/far red ratio in Phaseolus vulgaris leaves. FEBS Letter, 583, 118–122.CrossRefGoogle Scholar
  9. Björkman, O., & Demmig-Adams, B. (1995). Regulation of photosynthetic light energy capture, conversion and dissipation in leaves of higher plants. In E. D. Schulze & M. M. Caldwell (Eds.), Ecophysiology of photosynthesis: Ecological studies. Berlin: Springer.Google Scholar
  10. Bonente, G., Howes, B. D., Caffarri, S., Smulevich, G., & Bassi, R. (2008). Interactions between the photosystem II subunit PsbS and xanthophylls studied in vivo and in vitro. Journal of Biological Chemistry, 283, 8434–8445.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Caffarri, S., Kouril, R., Kereïche, S., Boekema, E. J., & Croce, R. (2009). Functional architecture of higher plant photosystem II supercomplexes. The EMBO Journal, 28, 3052–3063.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cooper, G. M. (2000). The cell: A molecular approach (2nd ed.). Sunderland, MA: Sinauer Associates. Photosynthesis. Accessed 17 Nov 2015.
  13. Croce, R., & van Amerongen, H. (2011). Light-harvesting and structural organization of photosystem II: From individual complexes to thylakoid membrane. Journal of Photochemistry and Photobiology B: Biology, 104, 142–153.CrossRefGoogle Scholar
  14. Demmig-Adams, B., Garab, G., Adams, W., III, & Govindgee, (2014). Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria (Vol. 40)., Advances in photosynthesis and respiration Dordrecht: Springer.Google Scholar
  15. Eberhard, S., Finazzi, G., & Wollman, F. A. (2008). The dynamics of photosynthesis. Annual Review of Genetics, 42, 463–515.CrossRefPubMedGoogle Scholar
  16. Fleming, G. R., Schlau-Cohen, G. S., Amarnath, K., & Zaks, J. (2012). Design principles of photosynthetic light-harvesting. Farad Discussion, 155, 27–41.CrossRefGoogle Scholar
  17. Foyer, C. H., & Harbinson, J. (1999). Relationships between antioxidant metabolism and carotenoids in the regulation of photosynthesis (pp. 305–325). Dordrecht: Kluwer Academic Publishers.Google Scholar
  18. Ganeteg, U., Külheim, C., Andersson, J., & Jansson, S. (2004). Is each light-harvesting complex protein important for plant fitness? Plant Physiology, 134, 502–509.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gerotto, C., Alboresi, A., Giacometti, G. M., Bassi, R., & Morosinotto, T. (2012). Coexistence of plant and algal energy dissipation mechanisms in the moss Physcomitrella patens. New Phytology, 196, 763–773.CrossRefGoogle Scholar
  20. Ghirardi, M. L., McCauley, S. W., & Melis, A. (1986). Photochemical apparatus organization in the thylakoid membrane of Hordeum vulgare wild type and chlorophyll b-less chlorina f2 mutant. Biochimica et Biophysica Acta, 851, 331–339.CrossRefGoogle Scholar
  21. Hirth, M., Dietzel, L., Steiner, S., Ludwig, R., Weidenbach, H., Pfalz, J., et al. (2013). Photosynthetic acclimation responses of maize seedlings grown under artificial laboratory light gradients mimicking natural canopy conditions. Frontiers in Plant Science, 4, 1–12.CrossRefGoogle Scholar
  22. Inani, N., Nozulaidi, M., Khairi, M., Abdulkadir, A. R., & Jahan, M. S. (2015). Glutathione functions on physiological characters of corn plants to enhance Mn-induced corn production. Pertanika Journal of Tropical Agricultural Science, 38, 509–518.Google Scholar
  23. Jahan, M. S., Nakamura, Y., & Murata, Y. (2011). Histochemical quantification of GSH contents in guard cells of Arabidopsis thaliana. Science Asia, 37, 291–295.CrossRefGoogle Scholar
  24. Jahan, M. S., Nozulaidi, M., Khairi, M., & Mat, N. (2016). Light-harvesting complexes in photosystem II regulate glutathione-induced sensitivity of Arabidopsis guard cells to abscisic acid. Journal of Plant Physiology, 195, 1–8.CrossRefPubMedGoogle Scholar
  25. Jahan, M. S., Nozulaidi, M., Khandaker, M. M., Afifah, A., & Husna, N. (2014). Control of plant growth and water loss by a lack of light-harvesting complexes in photosystem-II in Arabidopsis thaliana ch1-1 mutant. Acta Physiologia Plantarum, 36, 1627–1635.CrossRefGoogle Scholar
  26. Jahan, M. S., Ogawa, K., Nakamura, Y., Shimoishi, Y., Mori, I. C., & Murata, Y. (2008). Deficient glutathione in guard cells facilitates abscisic acid-induced stomatal closure but does not affect light-induced stomatal opening. Bioscience Biotechnology Biochemistry, 72, 2795–2798.CrossRefGoogle Scholar
  27. Jansson, S., Stefansson, H., Nystrom, U., Gustafsson, P., & Albertsson, P. A. (1997). Antenna protein composition of PS I and PS II in thylakoid sub-domains. Biochimica et Biophysica Acta, 1320, 297–309.CrossRefGoogle Scholar
  28. Johnson, M. P., Goral, T. K., Duffy, C. D. P., Brain, A. P. R., Mullineaux, C. W., & Ruban, A. V. (2011). Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell, 23, 1468–1479.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Khairi, M., Nozulaidi, M., Afifah, A., & Jahan, M. S. (2015). Effect of various water regimes on rice production in lowland irrigation. Australian Journal of Crop Science, 9, 153–159.Google Scholar
  30. Kouril, R., Zygadlo, A., Arteni, A. A., de Wit, C. D., Dekker, J. P., Jensen, P. E., et al. (2005). Structural characterization of a complex of photosystem I and light-harvesting complex II of Arabidopsis thaliana. Biochemistry, 44, 10935–10940.CrossRefPubMedGoogle Scholar
  31. Kramer, D., Bassi, R., Li, X. P., Gilmore, A. M., Caffarri, S., Golan, T., et al. (2004). Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. Journal of Biological Chemistry, 279, 22866–22874.CrossRefPubMedGoogle Scholar
  32. Krol, M., Spangfort, M. D., Huner, N. P. A., Oquist, G., Gustafsson, P., & Jansson, S. (1995). Chlorophyll a/b-binding proteins, pigment con- version, and early light-induced proteins in chlorophyll b-less barley mutant. Plant Physiology, 107, 873–883.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Li, X. P., Björkman, O., Shih, C., Grossman, A. R., Rosenquist, M., Jansson, S., et al. (2000). A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature, 403, 391–395.CrossRefPubMedGoogle Scholar
  34. Liu, X. D., & Shen, Y. G. (2004). NaCl-induced phosphorylation of light harvesting chlorophyll a/b proteins in thylakoid membranes from the halotolerant green alga, Dunaliella salina. FEBS Letter, 569, 337–340.CrossRefGoogle Scholar
  35. Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—A practical guide. Journal of Experimental Botany, 51, 659–668.CrossRefPubMedGoogle Scholar
  36. Minagawa, J. (2011). State transitions—The molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast. Biochimica et Biophysica Acta, 1807, 897–905.CrossRefPubMedGoogle Scholar
  37. Müller, P., Li, X. P., & Niyogi, K. K. (2004). Update on photosynthesis: Non-photochemical quenching. A response to excess light energy. Plant Physiology, 125, 1558–1566.CrossRefGoogle Scholar
  38. Munemasa, S., Muroyama, D., Nagahashi, H., Nakamura, Y., Mori, I. C., & Murata, Y. (2013). Regulation of reactive oxygen species-mediated abscisic acid signaling in guard cells and drought tolerance by glutathione. Frontiers in Plant Science, 4, 472.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Munirah, N., Jahan, M. S., & Nashriyah, M. (2015). N-acetylcysteine and Zn regulate corn yield. Science Asia, 41, 246–250.CrossRefGoogle Scholar
  40. Murray, D. L., & Kohorn, B. D. (1991). Chloroplasts of Arabidopsis thaliana homozygous for the ch-1 locus lack chlorophyll b, lack stable LHCPII and have stacked thylakoids. Plant Molecular Biology, 16, 71–79.CrossRefPubMedGoogle Scholar
  41. Neff, M. M., Fankhauser, C., & Chory, J. (2000). Light: An indicator of time and place. Genes and Development, 4, 257–271.Google Scholar
  42. Nelson, N., & Ben-Shem, A. (2004). The complex architecture of oxygenic photosynthesis. Nature Reviews Molecular Cell Biology, 5, 971–982.CrossRefPubMedGoogle Scholar
  43. Niyogi, K. K. (1999). Photoprotection revisited: Genetic and molecular approaches. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 333–359.CrossRefPubMedGoogle Scholar
  44. Noctor, G., Mhamdi, A., Chaouch, S., Han, Y. I., Neukermans, J., Marquez-Garcia, B. E. L. E. N., et al. (2012). Glutathione in plants: An integrated overview. Plant, Cell and Environment, 35, 454–484.CrossRefPubMedGoogle Scholar
  45. Nozulaidi, M., Jahan, M. S., Khairi, M., Khandaker, M. M., Nashriyah, M., & Khanif, Y. M. (2015). N-acetylcysteine increased rice yield. Turkish Journal of Agriculture and Forestrry, 39, 204–211.CrossRefGoogle Scholar
  46. Ogawa, K. (2005). Glutathione-associated regulation of plant growth and stress responses. Antioxident Redox Signaling, 7, 973–981.CrossRefGoogle Scholar
  47. Ogawa, K., Hatano-Iwasaki, A., Yanagida, M., & Iwabuchi, M. (2004). Level of glutathione is regulated by ATP-dependent ligation of glutamate and cysteine through in Arabidopsis thaliana: Mechanism of strong interaction of light intensity with flowering. Plant Cell and Physiology, 45, 1–8.CrossRefGoogle Scholar
  48. Okuma, E., Jahan, M. S., Munemasa, S., Ogawa, K., Watanabe-Sugimoto, M., Nakamura, Y., et al. (2011). Negative regulation of abscisic acid-induced stomatal closure by glutathione in Arabidopsis. Journal of Plant Physiology, 168, 2048–2055.CrossRefPubMedGoogle Scholar
  49. Ort, D. R., & Yocum, C. F. (1996). Oxygenic photosysthesis: The light reaction. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  50. Oster, U., Tanaka. R., Tanaka. A., & Rüdiger, W. (2000). Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant Journal, 21, 305–310.CrossRefPubMedGoogle Scholar
  51. Ozawa, S., Onishi, T., & Takahashi, Y. (2010). Identification and characterization of an assembly intermediate subcomplex of photosystem I in the green alga Chlamydomonas reinhardtii. The Journal of biological chemistry, 285, 20072–20079.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Peng, L., Fukao, Y., Fujiwara, M., Takami, T., & Shikanai, T. (2009). Efficient operation of NAD(P)H dehydrogenase requires supercomplex formation with photosystem I via minor LHCI in Arabidopsis. Plant Cell, 21, 3623–3640.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Pinnola, A., Dall’Osto, L., Gerotto, C., Morosinotto, T., Bassi, R., & Alboresi, A. (2013). Zeaxanthin binds to light-harvesting complex stress related protein to enhance nonphotochemical quenching in Physcomitrella patens. Plant Cell, 25, 3519–3534.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Preiss, S., & Thornber, J. P. (1995). Stability of the apoproteins of light-harvesting complex I and II during biogenesis of thylakoids in the chlorophyll b-less barley mutant chlorina f2. Plant Physiology, 107, 709–717.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Queval, G., Issakidis-Bourguet, E., Hoeberichts, F. A., Vandorpe, M., Gakière, B., Vanacker, H., et al. (2007). Conditional oxidative stress responses in theArabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength-dependent gene expression and define photoperiod as a crucial factor in the regulation of H2O2-induced cell death. Plant Journal, 52, 640–657.CrossRefPubMedGoogle Scholar
  56. Schmid, V. H. R. (2008). Light-harvesting complexes of vascular plants. Cellular and Molecular Life Sciences, 65, 3619–3639.CrossRefPubMedGoogle Scholar
  57. Schubert, N., García-Mendoza, E., & Pacheco-Ruiz, I. (2006). Carotenoid composition of marine red algae. The Journal of Phycology, 42, 1208–1216.CrossRefGoogle Scholar
  58. Stadler, R., Wright, K. M., Lauterbach, C., Amon, G., Gahrtz, M., Feuerstein, A., et al. (2005). Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots. Plant Journal, 41, 319–331.CrossRefPubMedGoogle Scholar
  59. Syuhada, N., & Jahan, M. J. (2016). Glutathione functions onphysiological characters to increase copper-induced corn production. Russian Agriculture Science, 42, 111–116.Google Scholar
  60. Takabayashi, A., Kurihara, K., Kuwano, M., Kasahara, Y., Tanaka, R., & Tanaka, A. (2011). The oligomeric states of the photosystems and the light-harvesting complexes in the Chl b-less mutant. Plant Cell and Physiology, 52, 2103–2114.CrossRefGoogle Scholar
  61. Takahashi, S., & Badger, M. R. (2011). Photoprotection in plants: A new light on photosystem II damage. Trends Plant Science, 16, 53–60.CrossRefGoogle Scholar
  62. Takahashi, H., Iwai, M., Takahashi, Y., & Minagawa, J. (2006). Identification of the mobile light-harvesting complex II polypeptides for state transitions in Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America, 103, 477–482.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Tanaka, A., Ito, H., Tanaka, R., Yoshida, K., & Okada, K. (1998). Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proceedings of the National Academy of Sciences of the United States of America, 95, 12719–12723.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Tanaka, R., & Tanaka, A. (2005). Effects of chlorophyllide a oxygenase overexpression on light acclimation in Arabidopsis thaliana. Photosynthesis Research, 85, 327–340.CrossRefPubMedGoogle Scholar
  65. Tepperman, J. M., Zhu, T., Chang, H.-S., Wang, X., & Quail, P. H. (2001). Multiple transcription-factor genes are early targets of phytochrome A signalling. Proceedings of the National Academy of Sciences of the United States of America, 98, 9437–9442.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Voet, D., & Voet, J. G. (2011). Biochemistry (4th ed., p. 906). New York: Wiley.Google Scholar
  67. Wilk, L., Grunwald, M., Liao, P. N., Walla, P. J., & Kühlbrandt, W. (2013). Direct interaction of the major light-harvesting complex II and PsbS in nonphotochemical quenching. Proceedings of the National Academy of Sciences of the United States of America, 110, 5452–5456.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Yamasato, A., Nagata, N., Tanaka, R., & Tanaka, A. (2005). The N-terminal domain of chlorophyllide a oxygenase confers protein instability in response to chlorophyll B accumulation in Arabidopsis. Plant Cell, 17, 1585–1597.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2017

Authors and Affiliations

  1. 1.School of Agricultural Science and Biotechnology, Faculty of Bioresources and Food IndustryUniversiti Sultan Zainal AbidinBesutMalaysia
  2. 2.Department of Agricultural Botany, Faculty of AgriculturePatuakhali Science and Technology UniversityDumki, PatuakhaliBangladesh

Personalised recommendations