Indian Journal of Plant Physiology

, Volume 23, Issue 1, pp 128–139 | Cite as

Morphological, biochemical and antioxidant enzyme adaptation of Suaeda maritima growing in textile dye effluent irrigated soil

  • Sathiyaraj Ganesan
  • Ravindran Konganapuram Chellappan
Original Article


The present work deals with the morphological, biochemical and antioxidant enzyme adaptations of Suaeda maritima treated with textile dye effluent using in pot experiments. Plant samples are harvested for experimental purpose at intervals of 30, 60, 90 and 120 days. The results showed that plant shoot length, number of leaves, fresh weight and dry weight and some anatomical characters were significantly increased treated with textile dye effluent when compared to control. Furthermore, osmolyte component (chlorophyll, protein, proline, phenol and glycine betaine) and enzymatic activities (Catalyse, Peroxides, Polyphenolixidase, Superoxide dismutase and Glutathione) were increased treated with textile dye effluent when compared to control.


Suaeda maritima Textile effluent Heavy metals Morphology Biochemical and enzyme 


  1. Ahmad, I. T., Khaliq, A., Ahmad, S. M. A., Basra, Z., Hussain, A., & Ali, A. (2012). Effect of seed priming with ascorbic acid, salicylic acid and hydrogen peroxide on emergence, vigor and antioxidant activities of maize. African Journal of Biotechnology, 11, 1127–1132.Google Scholar
  2. American Public Health Association (APHA) (2005). Standard Methods for the Examination of Water and Wastewater. 21st Centennial ed. Washington (DC): APHA, AWWA, WPCF.Google Scholar
  3. Amna Ali, N., Masood, S., Mukhtar, T., Kamran, M. A., Rafique, M., et al. (2015). Differential effects of cadmium and chromium on growth, photosynthetic activity, and metal uptake of Linum usitatissimum in association with Glomus intraradices. Environmental Monitoring and Assessment, 1(87), 311. doi: 10.1007/s10661-015-4557-8.CrossRefGoogle Scholar
  4. Anjana, S., & Thanga, V. (2011). Phytoremediation of synthetic textile dyes. Asian Journal of Microbiology Biotechnology Environmental Sciences, 13, 30–39.Google Scholar
  5. Ayyappan, D., Balakrishnan, V., & Ravindran, K. C. (2013). Potentiality of Suaeda monoica Forsk A salt marsh halophyte on restoration of saline agricultural soil. World App Sci J, 28, 2026–2032.Google Scholar
  6. Ayyappan, D., Sathiyaraj, G., & Ravindran, K. C. (2016). Phytoextraction of heavy metals by Sesuvium portulacastrum L. a salt marsh halophyte from tannery effluent. International Journal of Phytoremediation, 18, 453–459.CrossRefPubMedGoogle Scholar
  7. Bankaji, I., Isabel Cacador, B., & Sleimi, Noomene. (2016). Assessing of tolerance to metallic and saline stresses in the halophyte Suaeda fruticosa: The indicator role of antioxidative enzymes. Ecological Indicators, 64, 297–308.CrossRefGoogle Scholar
  8. Bates, L. S., Waideren, R. P., & Troye, I. D. (1973). Rapid determination of the free proline in water stress studies. Plant and Soil, 38, 205–208.CrossRefGoogle Scholar
  9. Bose, J., Shabala, L., Pottosin, I., Zeng, F., Velarde-buendía, A. M., Massart, A., et al. (2014). Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K+-permeable channels to reactive oxygen species: Physiological traits that differentiate salinity tolerance between pea and barley. Plant, Cell and Environment, 37, 589–600.CrossRefPubMedGoogle Scholar
  10. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72, 248–253.CrossRefPubMedGoogle Scholar
  11. Bray, H. G., & Thorpe, W. R. (1954). Analysis of phenolic compounds of interest in metabolism. In D. Glick (Ed.), Methods in biochemical analysis (Vol. 1, pp. 27–52). New York: Inter Science Publishers, Inc.Google Scholar
  12. Cacador, I., Costa, J. L., Duarte, B., Silva, G., Medeiros, J. P., Azeda, C., et al. (2012). Macroinvertebrates and fishes as biomonitors of heavy metal concentration in the Seixal Bay (Tagus Estuary): Which species perfrm better?. Ecological Indicators, 19, 184–190.CrossRefGoogle Scholar
  13. Cacador, I., Vale, C., & Catarino, F. (2000). Seasonal variation of Zn, Pb, Cu and Cd ¸ concentrations in the root-sediment system of Spartina maritima and Halimione portulacoides from Tagus Estuary salt marshes. Marine Environmental Research, 49, 279–290.CrossRefPubMedGoogle Scholar
  14. Cheraghi, M., Lorestani, B., & Yousefi, N. (2011). Introduction of hyperaccumulator plants with phytoremediation potential of lead–zinc mine in Iran. World Academy of Science, Engineering and Technology, 77, 163–168.Google Scholar
  15. DalCorso, G., Farinati, S., & Furini, A. (2010). Regulatory networks of cadmium stress in plants. Plant Signaling & Behavior, 5, 663–667.CrossRefGoogle Scholar
  16. Dognalar, Z., Atmaca, M. (2011). Influence of airborne pollution an Cd, Zn, Pb, Cu and Al accumulation and physiological parameters of plant leaves in Atalaya (Turkey). Water Air Soil Poll 214(1/4):509–523.Google Scholar
  17. Dong, J., Wu, F. B., & Zhang, G. P. (2006). Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere, 64, 1659–1666.CrossRefPubMedGoogle Scholar
  18. Duarte, B., Caçador, I., Marques, J. C., & Croudace, I. (2013). Tagus Estuary salt marshes feedback to sea level rise over a 40-year period: Insights from the application of geochemical indices. Ecological Indicators, 34, 268–276.CrossRefGoogle Scholar
  19. Gerdemann, C., Eicken, C., Magrini, A., Meyer, H. E., Rompel, A., Spener, F., et al. (2001). Isozymes of Ipomoea batatas catchol oxidase differ in catalase-like activity. Biochimica et Biophysica Acta, 1548, 94–105.CrossRefPubMedGoogle Scholar
  20. Ghnaya, T., Slama, I., Messedi, D., Grignon Ghorbel, D. M. H., & Abdelly, C. (2007). Effects of Cd2+ on K+, Ca2+ and N uptake in two halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum: Consequences on growth. Chemosphere, 62, 72–79.CrossRefGoogle Scholar
  21. Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.CrossRefPubMedGoogle Scholar
  22. Grieve, C. M., & Grattan, S. R. (1983). Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and Soil, 70, 303–307.CrossRefGoogle Scholar
  23. Griffith, O. W. (1980). Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry, 106, 207–212.CrossRefPubMedGoogle Scholar
  24. Han, R. M., Lefèvre, I., Albacete, A., et al. (2013). Antioxidant enzyme activities and hormonal status in response to Cd stress in wetland halophyte Kosteletzkya virginica under saline conditions. Physiologia Plantarum, 147, 352–368.CrossRefPubMedGoogle Scholar
  25. Han, R. M., Lefèvre, I., Ruan, C. J., Beukelaers, N., Qin, P., & Lutts, S. (2012). Effects of salinity on the response of the wetland halophyte Kosteletzkya virginica (L.) Presl. to copper toxicity. Water, Air, and Soil pollution, 223, 1137–1150.CrossRefGoogle Scholar
  26. Hwang, C. S., Rhie, G. E., Kim, S. T., Kim, Y. R., Huh, W. K., Baek, Y. U., et al. (1999). Copper- and zinc-containing superoxide dismutase and its gene from Candida albicans. Biochimica et Biophysica Acta, 1427, 245–255.CrossRefPubMedGoogle Scholar
  27. Inskeep, W. P., & Bloom, P. R. (1985). Extinction co-efficient of chlorophyll ‘a’ and ‘b’ in N’N-dimethylformamide and 80% acetone. Plant Physiology, 77, 483–485.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jun, M., Fu, H. Y., Hong, J., Wan, X., Yang, C. S., & Ho, C. T. (2003). Comparison of antioxidant activities of isoflavones from kudzu root (PuerarialobataOhwi). Journal of Food Science, 68, 2117–2122.CrossRefGoogle Scholar
  29. Kabra, A. N., Khandare, R. V., & Govindwar, S. P. (2013). Development of a bioreactor for remediation of textile effluent and dye mixture: A plant–bacterial synergistic strategy. Water Research, 47, 1035–1048.CrossRefPubMedGoogle Scholar
  30. Kabra, A. N., Khandare, R. V., Waghmode, T. R., & Govindwar, S. P. (2012). Phytoremediation of textile effluent and mixture of structurally different dyes by Glandularia Pulchella (Sweet) Tronc. Chemosphere, 87, 265–272.CrossRefPubMedGoogle Scholar
  31. Kováčik, J., Klejdus, B., Hedbavny, J., Štork, F., & Bačkor, M. (2009). Comparison of cadmium and copper effect on phenolic metabolism, mineral nutrients and stress-related parameters in Matricaria chamomilla plants. Plant and Soil, 320(1), 231–242.CrossRefGoogle Scholar
  32. Kumar, K. B., & Khan, P. A. (1982). Peroxidase in excised ragi (Eleusine coracana Cv. PR 202) Leaves during sensecence. Indian Journal of Experimental Botany, 20, 412–416.Google Scholar
  33. Lefèvre, I., Marchal, G., Meerts, P., Correal, E., & Lutts, S. (2009). Chloridesalinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environmental and Experimental Botany, 65, 142–152.CrossRefGoogle Scholar
  34. Liu, X., Yang, C., Zhang, L., et al. (2011). Metabolic profiling of cadmium-induced effects in one pioneer intertidal halophyte Suaeda salsa by NMR-based metabolomics. Ecotoxicology, 20, 1422–1431.CrossRefPubMedGoogle Scholar
  35. Lokhande, V. H., Nikam, T. D., & Suprasanna, P. (2010a). Biochemical, physiological and growth changes in response to salinity in callus cultures of Sesuvium portulacastrum L. Plant Cell, Tissue and Organ Cultre. doi: 10.1007/s11240-010-9699-3.Google Scholar
  36. Lokhande, V. H., Patade, V. Y., Ahire, M. L., Nikam, T. D., & Suprasanna, P. (2010b). Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell, Tissue and Organ Cultre. doi: 10.1007/s11240-010-9802-9.Google Scholar
  37. Maehly, A. C., & Chance, B. (1959). The assay of catalase and peroxidase. In D. Glick (Ed.), Methods of biochemical analysis (Vol. 1, pp. 357–425). New York: Inter Science Publishers Inc.Google Scholar
  38. Mahar, A., Wang, P., Li, R., & Zhang, Z. (2015). Immobilization of lead and cadmium in contaminated soil using amendments: A review. Pedosphere, 25, 555–568.CrossRefGoogle Scholar
  39. Malar, S., Vikram, S. S., Favas, P. J. C., & Perumal, V. (2014). Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Botanical Studies. doi: 10.1186/s40529-014-0054-6.PubMedPubMedCentralGoogle Scholar
  40. Manousaki, E., Kadukova, J., Papadantonakis, N., & Kalogerakis, N. (2008). Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saine and saine soils. Environmental Research, 106(3), 326–332.CrossRefPubMedGoogle Scholar
  41. Manousaki, E., & Kalogerakis, N. (2009). Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): Metal uptake in relation to salinity. Environmental Science and Pollution Research, 16, 844–854.CrossRefPubMedGoogle Scholar
  42. Martin, J. A. R., Martin, C. D., Arana, J. J., Ramos-Miras, C., Gil, R., & Boluda, R. (2015). Impact of 70 years urban growth associated with heavy metal pollution. Environmental Pollution, 196, 156–163.CrossRefGoogle Scholar
  43. Martinez, J. P., Kinet, J. M., Bajji, M., & Lutts, S. (2005). NaCl alleviates polyethylene glycolinduced water stress in the halophyte species Atriplex halimus L. Journal of Experimental Botany, 56, 2421–2431.CrossRefPubMedGoogle Scholar
  44. Mazhoudi, S., Chaoui, A., Ghorbal, M. H., & Ferjani, E. E. (1997). Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum, Mill.). Plant Science, 127, 129–137.CrossRefGoogle Scholar
  45. Moran, R., & Porath, D. (1980). Chlorophyll determination in intact tissue using N, N-dimethylformamide. Plant Physiology, 65, 478–479.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Mulholland, M. M., & Otte, M. L. (2002). The effects of nitrogen supply and salinity on DMSP, glycine betaine and proline concentrations in leaves of Spartina anglica. Aquatic Botany, 72, 193–200.CrossRefGoogle Scholar
  47. Nedjimi, B., & Daoud, Y. (2009). Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its infl uence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora, 204, 316–324.CrossRefGoogle Scholar
  48. Rastgoo, L., & Alemzadeh, A. (2011). Biochemical responses of Gouan (Aeluropus littoralis) to heavy metal stress. Australian Journal of Crop Science, 5, 375–383.Google Scholar
  49. Rastgoo, L., Alemzadeh, A., Tale, A. M., Tazangi, S. E., & Eslamzadeh, T. (2014). Effects of copper, nickel and zinc on biochemical parameters and metal accumulation in gouan, Aeluropus littoralis. Plant Knowledge Journal, 3(1), 31–38.Google Scholar
  50. Ravindran, K. C., Venkatesan, K., Balakrishnan, V., Chellappan, K. P., & Balasubramanian, T. (2007). Restoration of saline land by halophytes for Indian soils. Soil Biology & Biochemistry, 39, 2661–2664.CrossRefGoogle Scholar
  51. Reboreda, R., & Cacador, I. (2008). Enzymatic activity in the rhizosphere of Spartina maritima: Potential contribution for phytoremediation of metals. Marine Environmental Research, 65, 77–84.CrossRefPubMedGoogle Scholar
  52. Reboreda, R., & Caçador, I. (2007). Halophyte vegetation influences in salt marsh retention capacity for heavy metals. Environmental Pollution, 146, 147–154.CrossRefPubMedGoogle Scholar
  53. Reda, E. A. M., Saneoka, H., & Fujita, K. (2004). Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophyte plants, Salicornia europaea and Suaeda maritima. Plant Science, 166, 1345–1349.CrossRefGoogle Scholar
  54. Saiyood, S., Vangnai, A. S., Inthorn, D., & Thiravetyan, P. (2012). Treatment of total dissolved solids from plastic industrial effluent by halophyte plants. Water, Air, and Soil pollution, 223, 4865–4873.CrossRefGoogle Scholar
  55. Semane, B., Cuypers, A., Smeets, K., Belleghem, F., Horemans, N., Schat, H., et al. (2007). Cadmium responses in Arabidopsis thaliana: Glutathione metabolism and antioxidative defence system. Physiolgia Plantarum, 129, 519–528.CrossRefGoogle Scholar
  56. Shabala, S. N., & Mackay, A. S. (2011). Ion transport in halophytes. Advances in Botanical Research, 57, 151–187.CrossRefGoogle Scholar
  57. Sharma, S. S., & Dietz, K. J. (2006). The significance of amino acids and amino-acid derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany, 57, 711–726.CrossRefPubMedGoogle Scholar
  58. Sharma, A., Gontia, I., Agarwal, P. K., & Jha, B. (2010). Accumulation of heavy metals and its biochemical responses in Salicornia brachiata, an extreme halophyte. Marine Biology Research, 6(5), 511–518.CrossRefGoogle Scholar
  59. Shevyakova, N. I., Netronina, I. A., Aronova, E. E., & Kuznetsov, V. V. (2003). Compartmentation of cadmium and iron in Mesembryanthemum crystallinum plants during the adaptationto cadmium stress. Russian Journal of Plant Physiology, 50, 678–685.CrossRefGoogle Scholar
  60. Silveira, J. A. G., Araujo, S. A. M., Lima, J. P. M. S., & Viegas, R. A. (2009). Roots and leaves display contrasting osmotic adjustment mechanisms in response to NaCl-salinity in Atriplex nummularia. Environmental and Experimental Botany, 66, 1–8.CrossRefGoogle Scholar
  61. Subbarao, G. V., Wheeler, R. M., Levine, L. H., & Stutte, G. W. (2001). Glycine betaine accumulation, ionic and water relations of red-beet at contrasting levels of sodium supply. Journal of Plant Physiology, 158, 767–776.CrossRefPubMedGoogle Scholar
  62. Sucre, B., & Suárez, N. (2011). Effect of salinity and PEG-induced water stress on water status, gas exchange, solute accumulation, and leaf growth in Ipomoea pes-caprae. Environmental and Experimental Botany, 70, 192–203.CrossRefGoogle Scholar
  63. Tanyolac, D., Ekmekci, Y., & Unalan, S. (2007). Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. Chemosphere, 67, 89–98.CrossRefPubMedGoogle Scholar
  64. Tauqeer, H. M., Ali, S., Rizwan, M., Ali, Q., Saeed, R., Iftikhar, U., Ahmad, R., Farid, M., & Abbasi, G. H. (2016). Phytoremediation of heavy metals by Alternanthera bettzickiana: Growth and physiological response. Ecotoxicology and Environmental Safety, 126, 138–146.CrossRefPubMedGoogle Scholar
  65. Van Assche, F. V., & Clijsters, H. (1987). Enzyme analysis in plants as a tool for assessing phytotoxicity of heavy metal polluted soils. Mededelingen van de Faculteit Landbouwwtenschappen Rijksunjversiteit Gent, 52, 1819–1824.Google Scholar
  66. Wang, H. L., Tian, C. Y., Jiang, L., & Wang, L. (2014). Remediation of heavy metals contaminated saline soils: A halophyte choice. Environmental Science and Technology, 48, 21–22.CrossRefPubMedGoogle Scholar
  67. Weckx, J. E. J., & Clijsters, H. M. M. (1997). Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Physiology and Biochemistry, 35, 405–410.Google Scholar
  68. Wozny, A., & Krzeslowska, M. (1993). Plant cell response to Pb. Acta Societatis Botanicorum Poloniae, 62, 101–105.CrossRefGoogle Scholar
  69. Zaharia, C., & Suteu D. (2012). Textile organic dyes characteristics, polluting effects, and separation/elimination procedures from industrial effluents. In: Puzyn, T., Mostrag-Szlichtyng, A (eds). A critical overview. Environmental and analytical update. (pp. 55–86). Rijeka: Intech Publisher Inc.Google Scholar

Copyright information

© Indian Society for Plant Physiology 2017

Authors and Affiliations

  • Sathiyaraj Ganesan
    • 1
  • Ravindran Konganapuram Chellappan
    • 1
  1. 1.Department of BotanyAnnamalai UniversityChidambaramIndia

Personalised recommendations