Skip to main content
Log in

Study of genetic diversity of sugarcane (Saccharum) species and commercial varieties through TRAP molecular markers

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Genetic variations were evaluated among the twenty-five sugarcane genotypes employing functional molecular (TRAP) markers. Genetic diversity exists among sugarcane germplasm was exploited to identify promising genotypes bearing enviable agronomic traits (sucrose content and multiple disease resistance). Genetically diversified genotype could be exploited as proven parents in sugarcane hybridization programs to establish a promising cross. TRAP markers amplify functional regions of the genome, a valuable information in relation to the variations within coding/functional regions of the plant genome. Genetic similarity (GS) among all the twenty-five genotypes was calculated in a wide range as 41–99% with an average of 70%. Thirteen unique DNA bands of Saccharum spontaneum and thirteen specific DNA bands for cultivar were produced by the used markers. Poly component analysis showed that 52.48% of the cumulative variation was explained by the all the genotypes with respect to the sucrose metabolism related genes. Sugarcane genotypes viz; CoS 96269 and CoS 8436 (GS 97.0%) and BO 91 and CoSe 95422 (GS 96%) showed highest genetic similarity. These genotypes may be recommended as proven parents for making enviable crosses in sugarcane breeding programs. Moreover, functional TRAP markers would be efficiently useful in genetic studies for sugarcane genetic improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Aitken, K., Li, L., Wang, C., Qing, Y. H., & Jackson, P. (2007). Characterization of intergeneric cultivars of Erianthus rockii and Saccharum using molecular markers. Genetic Resources and Crop Evolution, 54(7), 1395–1405.

    Article  CAS  Google Scholar 

  • Alwala, S., Kimbeng, C. A., Veremis, J. C., & Gravois, K. A. (2008). Linkage mapping and genome analysis in Saccharum interspecies cross using AFLP, SRAP and TRAP markers. Euphytica, 164(1), 37–51.

    Article  CAS  Google Scholar 

  • Alwala, S., Suman, A., Arro, J. A., Vermis, J. C., & Kimbeng, C. A. (2006). Target region amplification polymorphism (TRAP) for accessing Genetic diversity in sugarcane germplasm collections. Crop Science, 46(1), 448–455.

    Article  CAS  Google Scholar 

  • Arceneaux, G. (1967). Cultivated sugarcanes of the world and their botanical derivation. Proceedings International Society of Sugarcane Technologists, 12, 844–854.

    Google Scholar 

  • Besse, P., McIntyre, C. L., & Berding, N. (1997). Characterisation of Erianthus sect. Ripidium and Saccharum germplasm (AndropogoneaeSaccharinae) using RFLP markers. Euphytica, 93(3), 283–292.

    Article  CAS  Google Scholar 

  • Brown, S., Schnell, R. J., Power, E. J., Douglas, S. L., & Kuhn, D. N. (2007). Analysis of clonal germplasm from five Saccharum species: S. barberi, S. robustum, S. officinarum, S. sinense and S. spontaneum. A study of inter- and intra species relationships using microsatellite markers. Genetic Resource and Crop Evolution, 54(3), 627–648.

    Article  CAS  Google Scholar 

  • Creste, S., Accoroni, K. A., Pinto, G., Vencosvskv, L. R., Gimenes, R., Xavier, M. A., et al. (2010). Genetic variability among sugarcane genotypes based on polymorphism in sucrose metabolism and drought tolerance genes. Eupytica, 172(3), 435–446.

    Article  CAS  Google Scholar 

  • Daniels, J., & Roach, B. (1987). Taxonomy and evolution. In D. J. Heinz (Ed.), Sugarcane improvement through breeding (pp. 7–84). Amsterdam: Elsevier Press.

    Chapter  Google Scholar 

  • Daniels, J., Smith, P., Paton, N., & Williams, C. A. (1975). The origin of the genus Saccharum. Sugarcane Breeding Newsletters, 36, 24–39.

    Google Scholar 

  • D’Hont, A., Grivet, L., Feldmann, P., Rao, P. S., Berding, N., & Glazmann, J. C. (1996). Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Molecular and General Genetics, 250(4), 405–413.

    PubMed  Google Scholar 

  • Dunckelman, P. H., & Breaux, R. D. (1969). Agronomic characteristics of Saccharum spontaneum in culture in Houma, Louisiana. International Sugar Journal, 71, 333–334.

    Google Scholar 

  • Hampl, V., Pavlicek, A., & Flegr, J. (2001). Construction and bootstrap analysis of DNA fingerprinting-based phylogenetic trees with a freeware program FreeTree: Application to trichomonad parasites. International Journal of Systematic and Evolutionary Microbiology, 51, 731–735.

    Article  CAS  PubMed  Google Scholar 

  • Hemaprabha, G., Krishna, A., Vincy, J., Priji, P., Simon, S., & Govindaraj, P. (2010). DNA fingerprinting for identification and protection of elite sugarcane (Saccharum spp.) varieties. Electronic Journal of Plant Breeding, 1(4), 420–425.

    Google Scholar 

  • Hoisington, D. (1992). Laboratory protocol. Mexico, DF: CIMMYT applied molecular genetics laboratory.

    Google Scholar 

  • Hu, J. G., & Vick, B. A. (2003). Target region amplification, polymorphism. A novel marker technique for plant genotypes. Plant Molecular Biolology Reporter, 21(3), 289–294.

    Article  CAS  Google Scholar 

  • Khan, I., Bibi, A., Yasmeen, S., Seema, N., Khatri, A., Siddiqui, M. A., et al. (2011). Identification of elite sugarcane clones through TRAP. Pakistan Journal of Botany, 43(1), 261–269.

    CAS  Google Scholar 

  • Li, G., & Quiros, C. F. (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics, 103(1), 455–546.

    Article  CAS  Google Scholar 

  • Lima, M. L. A., Garcia, A. A. F., Oliveira, K. M., Matsuoka, S., Arizono, H., De Souza, C. L., et al. (2002). Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp.). Theoretical and Applied Genetics, 104(1), 30–38.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Y. H., D’Hont, A., Walker, D. I. T., Feldman, P., Rao, P. S., & Glaszmann, J. C. (1994). Relationships among ancestral species of sugarcane revealed by RFLP using single-copy maize nuclear probes. Euphytica, 78(1–2), 7–18.

    Google Scholar 

  • Nair, N. V., Sreenivasan, T. V., & Mohan, M. (1999). Analysis of genetic diversity and phylogeny in Saccharum and related genera using RAPD markers. Genetic Resources and Crop Evolution, 46(1), 73–79.

    Article  Google Scholar 

  • Page, R. D. M. (1996). TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Applications in Biosciences, 12(4), 357–358.

    CAS  Google Scholar 

  • Price, S. (1963). Cytogenetics of modern sugar canes. Economic Botany, 17(2), 97–106.

    Article  Google Scholar 

  • Roach, B. T. (1972). Nobilization of sugarcane. Proceedings of the International Society of Sugar Cane Technologists, 14, 206–216.

    Google Scholar 

  • Roach, B. T., & Daniels, J. (1987). A review of the origin and improvement of sugarcane. In: Proceedings of Copersugar International Sugarcane Workshop, Brazil, pp. 1–32.

  • Selvi, A., Mukunthan, N., Shanthi, R. M., Govindaraj, P., Singaravelu, B., & Prabu, T. K. (2008). Assessment of genetic relationships and marker identification in sugarcane cultivars with different levels of top borer resistance. Sugar Technology, 10(1), 53–59.

    Article  CAS  Google Scholar 

  • Selvi, A., Nair, N. V., Balasundaram, N., & Mohapatra, T. (2003). Evaluation of maize microsatellite markers for genetic diversity analysis and fingerprinting in sugarcane. Genome, 46(1), 394–403.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R. K., Singh, R. B., Singh, S. P., Mishra, N., Rastogi, J., Sharma, M. L., et al. (2013). Genetic diversity among the Saccharum spontaneum clones and commercial hybrids through SSR markers. Sugar Technology, 15(2), 109–115.

    Article  CAS  Google Scholar 

  • Singh, R. K., Singh, R. B., Singh, S. P., & Sharma, M. L. (2011). Identification of sugarcane microsatellites associated to sugar content in sugarcane and transferability to other cereal genomes. Euphytica, 182(1), 335–354.

    Article  CAS  Google Scholar 

  • Singh, R. K., Singh, R. B., Singh, S. P., & Sharma, M. L. (2012). Genes tagging and molecular diversity of red rot susceptible/tolerant sugarcane cultivars using c-DNA and unigene derived markers. World Journal of Microbiology & Biotechnology, 28(4), 1669–1679.

    Article  CAS  Google Scholar 

  • Singh, R. B., Srivastava, S., Verma, A. K., Singh, B., & Singh, R. K. (2014). Importance and progresses of microsatellite markers in Sugarcane (Saccharum spp. hybrids). Indian Journal of Sugarcane Technology, 29(1), 1–12.

    Google Scholar 

  • Sobral, B. W. S., Braga, D. P. V., Lahood, E. S., & Keim, P. (1994). Phylogenetic analysis of chloroplast restriction enzyme site mutations in the Saccharinaea. Griseb. subtribe of the Andropogonaea Dumort tribe. Theoritical and Appllied Genetics, 87(1), 843–853.

    CAS  Google Scholar 

  • Stevenson, G. (1960). Sugarcane varieties in Barbados: An historical review. In: Bulletin. B.W.I. Central Sugar Cane Breeding Station, Barbados, vol. 39: p. 29.

  • Suman, A., Ali, K., Arro, J., Parco, A. S., Kimbeng, C. A., & Baisakh, N. (2011). Molecular diversity among members of the Saccharum complex assessed using TRAP markers based on lignin-related genes. BioEnergy Research, 5(1), 197–205.

    Article  Google Scholar 

  • Suman, A., Kimbeng, C. A., Edme, S. J., & Vermis, J. (2008). Sequence related amplified polymorphism (SRAP) markers for accessing genetic relationship and diversity in sugarcane germplasm collections. Plant Genetic Resources, 6(3), 222–231.

    Article  Google Scholar 

  • Tai, P. Y. P., & Miller, J. D. (1988). Phenotypic characteristics of the hybrids of sugarcane related grasses. Journal of the American Society of Sugar Cane Technologists, 8, 5–11.

    Google Scholar 

  • Ude, G., Pillay, M., Ogundiwin, E., & Tenkouano, A. (2003). Genetic diversiy in an African plantain core collection using AFLP and RAPD markers. Theoritical and Appllied Genetics, 107(2), 248–255.

    Article  CAS  Google Scholar 

  • Vuylsteke, M., Mank, R., Brugmans, B., Stam, P., & Kuiper, M. (2000). Further characterization of AFLP data as a tool in genetic diversity assessments among maize (Zea mays L.) inbred lines. Molecular Breeding, 6(3), 265–276.

    Article  CAS  Google Scholar 

  • Weir, B. S., & Sunderland, M. A. (1990). Genetic data analysis methods for discrete population genetic data. Science, xiv, 377.

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to Ministry of Sugar and Cane Development, Govt. of Uttar Pradesh, India, and Director, Sugarcane Research Institute (U.P. Council of Sugarcane Research) to providing financial aid for conducting the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Supplementary material 2 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.B., Singh, B. & Singh, R.K. Study of genetic diversity of sugarcane (Saccharum) species and commercial varieties through TRAP molecular markers. Ind J Plant Physiol. 22, 332–338 (2017). https://doi.org/10.1007/s40502-017-0314-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-017-0314-z

Keywords