Skip to main content
Log in

Plant circadian rhythm in stress signaling

  • Review Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

An endogenous regulatory mechanism is required for plants to face diurnal environmental changes as a compensation for their sessile nature. The circadian clock helps plants to anticipate diurnal changes. Many physiological processes in plants like stress acclimatization, hormone signaling, photo morphogenesis, carbon metabolism and defense signaling are currently being explored for their cross linking with the circadian clock. The hypothesis of involvement of the circadian clock in the maintenance of plant homeostasis against these changes was proposed a few decades ago. Several lines of evidence including, phenotypic, interactomic, genomic and metabolomic studies of clock defective mutants strengthened this hypothesis and favored the critical role of the circadian clock in stress acclimatization. Conserved regulatory elements like circadian clock factors, light responsive motifs in the regulatory regions of stress responsive genes and cis-regulatory elements like ABRE and DRE in the clock gene promoters, indicate the involvement of circadian clock and light regulators in the transcriptional regulation of stress response genes and vice versa. Presented here, are the highlights of recent advancements in understanding of the clock–stress physiology in plants. This review examines the experimental evidences, collected over the past few years, to relate circadian clock with abiotic stress tolerance in plants. Insights of this dynamic relation between the clock and stress will improve our current understanding of the multifaceted circadian clock and endogenous mechanism of stress adaptation in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bell-Pedersen, D., Cassone, V. M., Earnest, D. J., Golden, S. S., Hardin, P. E., Thomas, T. L., et al. (2005). Circadian rhythms from multiple oscillators: Lessons from diverse organisms. Nature Reviews Genetics, 6, 544–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhardwaj, V., Meier, S., Petersen, L. N., Ingle, R. A., & Roden, L. C. (2011). Defense responses of Arabidopsis thaliana to infection by Pseudomonas syringae are regulated by the circadian clock. PLoS ONE, 6, e26968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blasing, O. E., Gibon, Y., Gunther, M., Hohne, M., Morcuende, R., & Osuna, D. (2005). Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. Plant Cell, 17, 3257–3281.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao, S., Jiang, L., Song, S., Jing, R., & Xu, G. (2006). AtGRP7 is involved in the regulation of abscisic acid and stress responses in Arabidopsis. Cellular & Molecular Biology Letters, 11, 526–535.

    Article  CAS  Google Scholar 

  • Castells, E., Portolés, S., Huang, W., & Mas, P. (2010). A functional connection between the clock component TOC1 and abscisic acid signaling pathways. Plant Signal Behavior, 5, 409–411.

    Article  CAS  Google Scholar 

  • Covington, M. F., Maloof, J. N., Straume, M., Kay, S. A., & Harmer, S. L. (2008). Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biology, 9, 2–18.

    Article  Google Scholar 

  • Cui, X., Lu, F., Li, Y., Xue, Y., Kang, Y., Zhang, S., et al. (2013). Ubiquitin-specific proteases UBP12 and UBP13 act in circadian clock and photoperiodic flowering regulation in Arabidopsis. Plant Physiolgy, 162, 897–906.

    Article  CAS  Google Scholar 

  • Dodd, A. N., Gardner, M. J., Hotta, C. T., Hubbard, K. E., Dalchau, N., Love, J., et al. (2007). The Arabidopsis circadian clock incorporates a cADPR-based feedback loop. Science, 318, 1789–1792.

    Article  CAS  PubMed  Google Scholar 

  • Dong, M. A., Farré, E. M., & Thomashow, M. F. (2011). Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. Proceedings of National Academy of Sciences USA, 108, 7241–7246.

    Article  CAS  Google Scholar 

  • Duc, C., Cellier, F., Lobreaux, S., Briat, J. F., & Gaymard, F. (2009). Regulation of iron homeostasis in Arabidopsis thaliana by the Clock Regulator Time for Coffee. The Journal of Biological Chemistry, 284, 36271–36281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filichkin, S. A., Cumbie, J. S., Dharmawadhana, P., Jaiswa, L. P., Chang, J. H., Palusa, S. G., et al. (2015). Environmental stresses modulate abundance and timing of alternatively spliced circadian transcripts in Arabidopsis. Molecular Plant, 8, 207–227.

    Article  CAS  PubMed  Google Scholar 

  • Filichkin, S. A., Priest, H. D., Giva, S. A., Shen, R., Bryant, D. W., & Fox, S. E. (2010). Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Research, 20, 45–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler, S. G., Cook, D., & Thomashow, M. F. (2005). Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiology, 137, 961–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Morris, B., et al. (1999). GIGANTEA: A circadian clock controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. The EMBO Journal, 18, 4679–4688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita, Y., Fujita, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2011). ABA-mediated transcriptional regulation in response to osmotic stress in plants. Journal of Plant Research, 124, 509–525.

    Article  CAS  PubMed  Google Scholar 

  • Gehan, M. A., Greenham, K., Mockler, T. C., & McClung, C. R. (2015). Transcriptional networks—Crops, clocks, and abiotic stress. Current Opinion of Plant Biology, 24, 39–46.

    Article  CAS  Google Scholar 

  • Gendron, J. M., Pruneda-Paz, J. L., Doherty, C. J., Gross, A. M., Kang, S. E., & Kay, S. A. (2012). Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proceedings of National Academy of Sciences USA, 109, 3167–3172.

    Article  CAS  Google Scholar 

  • Goodspeed, D., Chehab, E. W., Covington, M. F., & Braam, J. (2013). Circadian control of jasmonates and salicylates: The clock role in plant defense. Plant Signal Behaviour, 8, 8–10.

    Article  Google Scholar 

  • Goodspeed, D., Chehab, E. W., Min-Venditti, A., Braam, J., & Covington, M. F. (2012). Arabidopsis synchronizes jasmonate-mediated defense with insect circadian behavior. Proceedings of National Academy of Sciences USA, 109, 4674–4677.

    Article  CAS  Google Scholar 

  • Graf, A., Schlereth, A., Stitt, M., & Smith, A. M. (2010). Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proceedings of National Academy of Sciences USA, 107(20), 9458–9463.

    Article  CAS  Google Scholar 

  • Habte, E., Müller, L. M., Shtaya, M., Davis, S. J., & Von Korff, M. (2014). Osmotic stress at the barley root affects expression of circadian clock genes in the shoot. Plant, Cell and Environment, 37, 1321–1337.

    Article  CAS  PubMed  Google Scholar 

  • Hanano, S., Domagalska, M. A., Nagy, F., & Davis, S. J. (2006). Multiple phytohormones influence distinct parameters of the plant circadian clock. Genes to Cells, 11, 1381–1392.

    Article  CAS  PubMed  Google Scholar 

  • Hannah, M. A., Heyer, A. G., & Hincha, D. K. (2005). a global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genetics, 1, e26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harmer, S. L., Hogenesch, J. B., Straume, M., Chang, H. S., Han, B., Zhu, T., et al. (2000). Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science, 290, 2110–2113.

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman, M., Nehar, K., Alam, M. M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14, 9643–9684.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haydon, M. J., Bell, L. J., & Webb, A. A. (2011). Interactions between plant circadian clocks and solute transport. Journal of Experimental Botany, 62, 2333–2348.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann, N. R. (2012). Alternative splicing links the circadian clock to cold tolerance. The Plant Cell, 24, 2238.

    Article  CAS  PubMed Central  Google Scholar 

  • James, A. B., Syed, N. H., Bordage, S., Marshal, J., Nimmo, G. A., Jenkins, G. I., et al. (2012). Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. The Plant Cell, 24, 961–981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamioka, M., Takao, S., Suzuki, T., Taki, K., Hiqashiyama, T., Kinoshita, T., et al. (2016). Direct repression of evening genes by CIRCADIAN CLOCK ASSOCIATED1 in the Arabidopsis circadian clock. The Plant Cell, 28, 696–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keily, J., MacGregor, D. R., Smith, R. W., Millar, A. J., Halliday, K. J., & Penfield, S. (2013). Model selection reveal control of cold signaling by evening-phased components of the plant circadian clock. Plant Journal, 76, 247–257.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, W. Y., Ali, Z., Park, H. J., Park, S. J., Cha, J. Y., Perez-Hormaeche, J., et al. (2013). Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nature Communications, 4, 1352.

    Article  PubMed  Google Scholar 

  • Kim, T. S., Kim, W. Y., Fujiwara, S., Kim, J., Cha, J. Y., Park, J. H., et al. (2011). HSP90 functions in the circadian clock through stabilization of the client F-box protein ZEITLUPE. Proceedings of National Academy of Sciences USA, 108, 16843–16848.

    Article  CAS  Google Scholar 

  • Koo, B. H., Yoo, S. C., Park, J. W., Kwon, C. T., Lee, B. D., An, G., et al. (2013). Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Molecular Plant, 6, 1877–1888.

    Article  CAS  PubMed  Google Scholar 

  • Kurepa, J., Smalle, J., Van Montagu, M., & Inze, D. (1998). Oxidative stress tolerance and longevity in Arabidopsis the late flowering mutant gigantea is tolerant to paraquat. Plant Journal, 14, 759–764.

    Article  CAS  PubMed  Google Scholar 

  • Lai, A. G., Doherty, C. J., Mueller-Roeber, B., Kay, S. A., Schippers, J. H., & Dijkwel, P. P. (2012). CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses. Proceedings of National Academy of Sciences USA, 109, 17129–17134.

    Article  CAS  Google Scholar 

  • Lebaudy, A., Vavasseur, A., Hosy, E., Dreyer, I., Leonhardt, N., Thibaud, J. B., et al. (2008). Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels. Proceedings of National Academy of Sciences USA, 105, 5271–5276.

    Article  CAS  Google Scholar 

  • Lee, C. M., & Thomashow, M. F. (2012). Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proceedings of National Academy of Sciences USA, 109, 15054–15059.

    Article  CAS  Google Scholar 

  • Legnaioli, T., Cuevas, J., & Mas, P. (2009). TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought. The EMBO Journal, 28, 3745–3757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, T., Carlsson, J., Takeuchi, T., Newton, L., & Farré, E. M. (2013). Direct regulation of abiotic responses by the Arabidopsis circadian clock component PRR7. Plant Journal, 76, 101–114.

    CAS  PubMed  Google Scholar 

  • Luu, D. T., & Maurel, C. (2004). Aquaporins in a challenging environment: Molecular gears for adjusting plant water status. Plant Cell Environment, 28, 85–96.

    Article  Google Scholar 

  • Malapeira, J., & Mas, P. (2013). A chromatin-dependent mechanism regulates gene expression at the core of the Arabidopsis circadian clock. Plant Signal Behaviour, 8, e24079.1–e24079.4.

    Article  Google Scholar 

  • Marcolino-Gomes, J., Rodrigues, F. A., Fuganti-Pagliarini, R., Bendix, C., Nakayama, T. J., Celaya, B., et al. (2014). Diurnal oscillations of soybean circadian clock and drought responsive genes. PLoS ONE, 9, e86402.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki, J., Kawahara, Y., & Izawa, T. (2015). Punctual transcriptional regulation by the rice circadian clock under fluctuating field conditions. Plant Cell, 27, 633–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClung, C. R. (2006). Plant circadian rhythms. Plant Cell, 18, 792–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagel, D. H., & Kay, S. A. (2012). Complexity in the wiring and regulation of plant circadian networks. Current Biology, 22, R648–R657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamichi, N., Kusano, M., Fukushima, A., Kita, M., Ito, S., Yamashino, T., et al. (2009). Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. Plant Cell Physiology, 50, 447–462.

    Article  CAS  PubMed  Google Scholar 

  • Nolte, C., & Staiger, D. (2015). RNA around the clock-regulation at the RNA level in biological timing. Frontiers in Plant Science, 6, 11–12.

    Article  Google Scholar 

  • Nomoto, Y., Kubozono, S., Yamashino, T., Nakamichi, N., & Mizuno, T. (2012). Circadian clock-and PIF4-controlled plant growth: A coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana. Plant Cell Physiology, 53, 1950–1964.

    Article  CAS  PubMed  Google Scholar 

  • Qiu, Q. S., Guo, Y., Dietrich, M. A., Schumaker, K. S., & Zhu, J. K. (2002). Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of National Academy of Sciences USA, 99(12), 8436–8441.

    Article  CAS  Google Scholar 

  • Rikin, A., Dillwith, J. W., & Bergman, D. K. (1993). Correlation between the circadian rhythm of resistance to extreme temperatures and changes in fatty acid composition in cotton seedlings. Plant Physiology, 101, 31–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson, F. C., Skeffington, A. W., Gardner, M. J., & Webb, A. A. (2009). Interactions between circadian and hormonal signaling in plants. Plant Molecular Biology, 69, 419–427.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez, J. P., Duque, P., & Chua, N. H. (2004). ABA activates ADPR cyclase and cADPR induces a subset of ABA responsive gene in Arabidopsis. Plant Journal, 38, 381–395.

    Article  PubMed  Google Scholar 

  • Sanchez, A., Shin, J., & Davis, S. J. (2011). Abiotic stress and the plant circadian clock. Plant Signaling & Behavior, 6(2), 223–231.

    Article  CAS  Google Scholar 

  • Sanchez-Villarreal, A., Shin, J., Bujdoso, N., Obata, T., Neumann, U., Du, S. X., et al. (2013). TIME FOR COFFEE is an essential component in the maintenance of metabolic homeostasis in Arabidopsis thaliana. The Plant Journal, 76, 188–200.

    CAS  PubMed  Google Scholar 

  • Seo, P. J., & Mas, P. (2015). Stressing the role of the plant circadian clock. Trends in Plant Science, 20(4), 230–237.

    Article  CAS  PubMed  Google Scholar 

  • Seo, P. J., Park, M. J., Lim, M. H., Kim, S. G., Lee, M., Baldwin, I. T., et al. (2012). A self-regulatory circuit of CIRCADIAN CLOCK-ASSOCIATED1 underlies the circadian clock regulation of temperature responses in Arabidopsis. Plant Cell, 24, 2427–2442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, Y.-Y., Wang, X.-F., Wu, F.-Q., Du, S.-Y., Cao, Z., Shang, Y., et al. (2006). The Mg-chelatase H subunit is an abscisic acid receptor. Nature, 443, 823–826.

    Article  CAS  PubMed  Google Scholar 

  • Shin, J., Heidrich, K., Sanchez-Villarreal, A., Parker, J. E., & Davis, S. J. (2012). TIME FOR COFFEE represses accumulation of the MYC2 transcription factor to provide time-of-day regulation of jasmonate signaling in Arabidopsis. Plant Cell, 24, 2470–2482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staiger, D., Shin, J., Johansson, M., & Davis, S. J. (2013). The circadian clock goes genomic. Genome Biology, 14, 208.

    Article  PubMed  PubMed Central  Google Scholar 

  • Strayer, C., Oyama, T., Schultz, T. F., Raman, R., Somers, D. E., Más, P., et al. (2000). Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science, 289, 768–771.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, N., Bassil, E., Hamilton, J. S., Inupakutika, M. A., Zandalinas, S. I., Tripathy, D., et al. (2016). ABA is required for plant acclimation to a combination of salt and heat stress. PLoS ONE, 11(1), e0147625.

    Article  PubMed  PubMed Central  Google Scholar 

  • Takase, T., Ishikawa, H., Murakami, H., Kikuchi, J., Sato-Nara, K., & Suzuki, H. (2011). The circadian clock modulates water dynamics and aquaporin expression in Arabidopsis roots. Plant Cell Physiology, 52, 373–383.

    Article  CAS  PubMed  Google Scholar 

  • Thain, S. C., Vandenbussche, F., Laarhoven, L. J., Dowson-Day, M. J., Wang, Z. Y., Tobin, E. M., et al. (2004). Circadian rhythms of ethylene emission in Arabidopsis. Plant Physiology, 136, 3751–3761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thines, B., & Harmon, G. (2010). Ambient temperature response establishes ELF3 as a required component of the core Arabidopsis circadian clock. Proceedings of National Academy of Sciences USA, 107, 3257–3262.

    Article  CAS  Google Scholar 

  • Verma, V., Ravindran, P., & Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16, 86.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogt, J. H. M., & Skippers, J. H. M. (2015). Setting the PAS, the role of circadian PAS domain proteins during environmental adaptation in plants. Frontiers in Plant Science, 6, 3.

    Article  Google Scholar 

  • Wang, W., Barnaby, J. Y., Tada, Y., Li, H., Tör, M., Caldelari, D., et al. (2011). Timing of plant immune responses by a central circadian regulator. Nature, 470, 110–114.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y., Kuzma, J., Maréchal, E., Graeff, R., Lee, H. C., Foster, R., et al. (1997). Abscisic acid signaling through cyclic ADP-ribose in plants. Science, 278, 2126–2130.

    Article  CAS  PubMed  Google Scholar 

  • Zhong, H. H., & McClung, C. R. (1996). The circadian clock gates expression of two Arabidopsis catalase genes to distinct and opposite circadian phases. Molecular General Genetics, 251, 196–203.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaishali Khanale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, A., Khanale, V. & Char, B. Plant circadian rhythm in stress signaling. Ind J Plant Physiol. 22, 147–155 (2017). https://doi.org/10.1007/s40502-017-0299-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-017-0299-7

Keywords