Skip to main content
Log in

Salicylic acid induced antioxidant system enhances the tolerence to aluminium in mung bean (Vigna radiata L. Wilczek) plants

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Aluminium (Al) is one of the major constraints reducing the growth and productivity of many crops in acidic soils throughout the world. In order to explore a possible measure to counter Al toxicity in plants salicylic acid (SA) was used as a treatment in this investigation. The seedlings of mung bean were grown in a plant growth chamber under controlled conditions in a sand culture. The seedlings were subjected to Al (0.0, 1.0 or 10.0 mM) stress, at 1 week old stage and were sprayed with 0 or 10−5 M of SA, at 14 day stage. The analysis of the plants at the completion of 3 weeks of growth revealed that the presence of Al in the nutrient medium caused a sharp reduction in growth (length, fresh and dry mass of root and shoot), the activity of carbonic anhydrase (E.C. 4.2.1.1), relative water content, water use efficiency, chlorophyll content and the rate of photosynthesis. However, the activity of antioxidative enzymes [catalase (E.C. 1.11.1.6), peroxidase (E.C. 1.11.1.7) and superoxide dismutase (E.C. 1.15.1.1)] in leaves and the content of proline, both in leaves and roots increased in the Al stressed plants. The spray of SA, in absence of Al strongly favoured the above parameters and also improved them in the plants grown under Al stress. Moreover, SA caused a further stimulation of antioxidative enzymes and proline content, which were already enhanced by Al stress. This implies that the elevated level of proline in association with antioxidant system, at least in part, was responsible for the amelioration of Al stress in mung bean seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agarwal, S., Sairam, F. K., Srivastava, G. C., Tyagi, A., & Meena, R. C. (2005). Role of ABA, salicylic acid, calcium and hydrogen peroxide an antioxidant enzymes induction in wheat seedlings. Plant Sciience, 169, 559–570.

    Article  CAS  Google Scholar 

  • Akeson, M. A., & Munns, D. N. (1989). Lipid bilayer permeation by neutral aluminum citrate and by three alpha-hydroxy carboxylic acids. Biochemica et Biophysica Acta, 984, 200–206.

    Article  CAS  Google Scholar 

  • Akeson, M. A., Munns, D. N., & Burau, R. G. (1989). Adsorption of Al3+ to phosphatidylcholine vesicles. Biochemica et Biophysica Acta, 986, 33–40.

    Article  CAS  Google Scholar 

  • Ali, B., Hasan, S. A., Hayat, S., Hayat, Q., Yadav, S., Fariduddin, Q., et al. (2008). A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environmental and Experimental Bottany, 62, 153–159.

    Article  CAS  Google Scholar 

  • Arroyo-Serralta, G. A., Kú-González, A., Hernández-Sotomayor, S. M. T., & Aguilar, J. J. Z. (2005). Exposure to toxic concentrations of aluminum activates a MAPK-like protein in cell suspension cultures of Coffea arabica. Plant Physiology and Biochemistry, 43, 27–35.

    Article  CAS  PubMed  Google Scholar 

  • Barcelo, J., & Poschenrieder, C. (2002). Fast root growth responses, root exudates and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: A review. Environmental and Experimental Botany, 48, 75–92.

    Article  CAS  Google Scholar 

  • Basu, A., Basu, U., & Taylor, G. J. (1994). Induction of microsomal membrane proteins in roots of aluminum resistant cultivars of Triticum aestivum L. under condition of aluminum stress. Plant Physiology, 104, 1007–1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates, L. S., Waldeen, R. P., & Tease, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  • Beauchamp, L. D., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and assay applicable to acrylamide gels. Annals of Biochemistry, 44, 216–287.

    Article  Google Scholar 

  • Cakmak, I., & Horst, W. J. (1991). Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiolgae Plantarum, 83, 463–468.

    Article  CAS  Google Scholar 

  • Chance, B., & Maehly, A. C. (1955). Assay of catalase and peroxidase. Methods in Enzymology, 2, 764–775.

    Article  Google Scholar 

  • Cruz-Ortega, R., & Ownby, J. D. (1993). A protein similar to PR (pathogenesis-related) proteins is elicied by metal toxicity in wheat roots. Physiologae Plantarum, 89, 211–219.

    Article  CAS  Google Scholar 

  • De Gara, L., Tullio, M. D. E., Paciolla, C., Liso, R., & Arrigoni, O. (1993). Cytosolic ascorbate peroxidase in angiosperms and the different expression of its isoforms in maize embryo during germination. In K. G. Welinder, S. K. Rasmussen, C. Penel, & H. Greppin (Eds.), Plant peroxidases: biochemistry and physiology (pp. 251–255). Geneva: University of Geneva.

    Google Scholar 

  • De la Fuente, J. M., Ramirez-Rodriguez, V., Cabrera-Ponce, J. L., & Herrera-Estrella, L. (1998). Aluminum tolerance in transgenic plants by alternation of citrate synthesis. Science, 276, 1566–1572.

    Article  Google Scholar 

  • Delhaize, E., & Ryan, P. R. (1995). Aluminum toxicity and tolerance in plants. Plant Physioiogy, 107, 315–321.

    Article  CAS  Google Scholar 

  • Detters, M., Servais, J. P., & Wulfert, E. (1986). Neurotoxic cations induce membrane rigidifications and membrane fusion at micromolar concentrations. Biochemica et Biophysica Acta, 855, 271–276.

    Article  Google Scholar 

  • Dwivedi, R. S., & Randhawa, N. S. (1974). Evolution of a rapid test for the hidden hunger of zinc in plants. Plant and Soil, 40, 445–451.

    Article  CAS  Google Scholar 

  • Ezaki, B., Gardner, R. C., Ezaki, Y., & Matsumoto, H. (2000). Expression of aluminium-induced genes in transgenic Arabidopsis plants can ameliorate aluminium stress and and/or oxidative stress. Plant Physiology, 122, 657–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer, C. H., & Noctor, G. (2005). Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell, 17, 1866–1875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frantzios, G., Galatis, B., & Apostolakos, P. (2001). Aluminum effects on microtubule organization in dividing root tip cells of Triticum turgidum. II. Cytokinetic cells. Journal of Plant Research, 114, 157–170.

    Article  CAS  Google Scholar 

  • Gordon, L. K., Minibayeva, F. V., Ogorodnikova, T. I., Rachmatullina, D. F., Tzentzevitzky, A. N., Koselnikov, O. P., et al. (2002). Salicylic acid induces dissipation of the proton gradient on the plant cell plasma membrane. Dokl Biological Science, 387, 581–583.

    Article  CAS  Google Scholar 

  • Haug, K., & Vitorello, V. (1996). Aluminium coordination to calmodulin: Thermodynamic and kinetic aspects. Coordination Chemistry Reviews, 149, 113–124.

    Article  CAS  Google Scholar 

  • Hayat, S., Ali, B., & Ahmad, A. (2007). Salicylic acid: Biosynthesis, metabolism and physiological role in Plants. In S. Hayat & A. Ahmad (Eds.), Salicylic acid: A plant hormone (pp. 1–17). Netherlands: Springer.

    Chapter  Google Scholar 

  • Hayat, S., Fariduddin, Q., Ali, B., & Ahmad, A. (2005). Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agronomica Hungarica, 53, 433–437.

    Article  CAS  Google Scholar 

  • Hodges, M. D., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, 604–611.

    Article  CAS  Google Scholar 

  • Holuigue, L., Salinas, P., Blanco, F., & Garretón, Y. (2007). Salicylic acid and reactive oxygen species in the activation of stress defense genes. In S. Hayat & A. Ahmad (Eds.), Salicylic acid: A plant hormone (pp. 197–246). Netherlands: Springer.

    Chapter  Google Scholar 

  • Ishida, A., Ookubo, K., & Ono, K. (1987). Formation of hydrogen peroxide by NAD(P)H oxidation with isolated cell wall associated peroxidase from cultured liverwort cells Marchantia polymorpha L. Plant Cell Physiology, 28, 723–726.

    CAS  Google Scholar 

  • Jain, M., Mathur, G., Koul, S., & Sarin, N. B. (2001). Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogea L.). Plant Cell Report, 20, 463–468.

    Article  CAS  Google Scholar 

  • Kim, H. J., Bracey, M. H., & Barlett, S. G. (1994). Nucleotide sequence of a gene encoding carbonic anhydrase in Arabidopsis thaliana. Plant Physiology, 105, 449–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinraide, T. B., Ryan, P. R., & Kochian, L. V. (1992). Interactive effects of A13+, H+, and other cations on root elongation considered in terms of cell-surface electrical potential. Plant Physiology, 99, 1461–1468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kochian, L. V., Pineros, M. A., & Hoekenga, O. A. (2005). The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant and Soil, 274, 175–195.

    Article  CAS  Google Scholar 

  • Kollmeier, M., Felle, H. H., & Horst, W. J. (2000). Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone: Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum? Plant Physiology, 122, 945–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Method in Enzymology, 148, 350–382.

    Article  CAS  Google Scholar 

  • Lidon, F. C., Ramaloh, J. C., & Barreiro, M. G. (1998). Aluminium toxicity modulates nitrate to ammonia reduction. Photosynthetica, 35, 213–322.

    Article  CAS  Google Scholar 

  • Liu, N., You, J., Shi, W., Liu, W., & Yang, Z. (2012). Salicylic acid involved in the process of aluminum induced citrate exudation in Glycine max L. Plant and Soil, 352, 85–97.

    Article  CAS  Google Scholar 

  • Matsumoto, H., Senoo, Y., Kasai, M., & Maeshima, M. (1996). Response of plant root to aluminium stress: Anaysis of the inhibition of the root elongation and changes in membrane function. Journal of Plant Research, 109, 99–105.

    Article  CAS  Google Scholar 

  • Milivojevic, B. D., Stojanovic, D. D., & Drinik, S. D. (2000). Effect of aluminium on pigments and pigment-protein complexes of soybean. Biologia Plantarum, 43, 595–597.

    Article  CAS  Google Scholar 

  • Mishra, A., & Choudhuri, M. A. (1997). Ameliorating effects of salicylic acid on lead and mercury-induced inhibition of germination and early seedling growth of two rice cultivars. Seed Science and Technology, 25, 263–270.

    Google Scholar 

  • Norman, C., Howell, K. A., Millar, A. H., Whelan, J. M., & Day, D. A. (2004). Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport. Plant Physiology, 134, 492–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pancheva, T. V., & Popova, L. P. (1998). Effect of salicylic acid on the synthesis of ribulose-1,5-biphosphate carboxylase/oxygenase in barley leaves. Journal of Plant Physiology, 152, 381–386.

    Article  CAS  Google Scholar 

  • Pancheva, T. V., Popova, L. P., & Uzunova, A. M. (1996). Effect of salicylic acid on growth and photosynthesis in barley plants. Journal of Plant Physiology, 149, 57–63.

    Article  CAS  Google Scholar 

  • Panda, S. K., & Patra, H. K. (2007). Effect of salicylic acid potentiates cadmium-induced oxidative damage in Oryza sativa L. leaves. Acta Physiolgae Plantarum, 29, 567–575.

    Article  CAS  Google Scholar 

  • Pereira, L. M., Tabaldi, L. A., Goncalves, J. F., Jucoski, G. O., Pauletto, M. M., Weis, S. N., et al. (2006). Effect of aluminum on δ-aminolevulinic acid dehydratase (ALA-D) and the development of cucumber (Cucumis sativus). Environmental and Experimental Botany, 57, 106–115.

    Article  CAS  Google Scholar 

  • Rhoads, D. M., & McIntosh, L. (1992). Cytochrome and alternative pathway respiration in tobacco. Effects of salicylic acid. Plant Physiology, 103, 877–883.

    Article  Google Scholar 

  • Sahu, G. K. (2013). Salicylic acid: Role in plant physiology and stress tolerance. In G. R. Rout & A. B. Das (Eds.), Molecular stress physiology of plants (pp. 217–239). India: Springer.

    Chapter  Google Scholar 

  • Shakirova, F. M. (2007). Role of hormonal system in the manifestation of growth promoting and antistress action of salicylic acid. In S. Hayat & A. Ahmad (Eds.), Salicylic acid: A plant hormone (pp. 69–89). Netherlands: Springer.

    Chapter  Google Scholar 

  • Shi, Q., & Zhu, Z. (2008). Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environmental and Experimental Botany, 63, 317–326.

    Article  CAS  Google Scholar 

  • Simonovicova, M., Tamas, L., Huttova, J., & Mistrík, I. (2004). Effect of aluminium on oxidative stress related enzymes activities in barley roots. Biologia Plantarum, 48, 261–266.

    Article  CAS  Google Scholar 

  • Singh, B., & Usha, K. (2003). Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regulation, 39, 137–141.

    Article  CAS  Google Scholar 

  • Sumithra, K., & Reddy, A. R. (2004). Changes in proline metabolism of cowpea seedlings under water deficit. Journal of Plant Biology, 31, 201–204.

    CAS  Google Scholar 

  • Taulavuori, E., & Taulavuori, K. (2007). Oxidative stress during over wintering of northern plants. In E. Taulavuori & K. Taulavuori (Eds.), Physiology of northern plants under changing environment (pp. 39–56). India, Kerala: Research Signpost.

    Google Scholar 

  • Tice, K. R., Parker, D. R., & DeMason, D. A. (1992). Operationally defined apoplastic and symplastic aluminium fractions in root tips of aluminium-intoxicated wheat. Plant Physiology, 100, 309–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari, A., Kumar, P., Singh, S., & Ansari, S. A. (2005). Carbonic anhydrase in relation to higher plants. Photosynthetica, 43, 1–9.

    Article  CAS  Google Scholar 

  • Vitorello, V. A., Capald, F. R., & Stefanuto, V. A. (2005). Recent advances in aluminium toxicity and resistance in higher plants. Brazilian Journal of Plant Physiology, 17, 129–143.

    Article  CAS  Google Scholar 

  • Wang, J. W., & Kao, C. H. (2006). Aluminum-inhibited root growth of rice seedlings is mediated through putrescine accumulation. Plant and Soil, 288, 373–381.

    Article  CAS  Google Scholar 

  • Yang, Z. M., Wang, J., Wang, S.-H., & Xu, L. L. (2003). Salicylic acid-induced aluminum tolerance by modulation of citrate efflux from roots of Cassia tora L. Planta, 217, 168–174.

    CAS  PubMed  Google Scholar 

  • Zhu, H., Wang, H., Zhu, Y., Zou, Y., Zhao, F., & Huang, C. (2015). Genome-wide transcriptomic and phylogenetic analyses reveal distinct aluminum-tolerance mechanisms in the aluminum-accumulating species buckwheat (Fagopyrum tataricum). BMC Plant Biology, 15, 16–29.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barket Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, B. Salicylic acid induced antioxidant system enhances the tolerence to aluminium in mung bean (Vigna radiata L. Wilczek) plants. Ind J Plant Physiol. 22, 178–189 (2017). https://doi.org/10.1007/s40502-017-0292-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-017-0292-1

Keywords

Navigation