Skip to main content
Log in

How and why of flower senescence: understanding from models to ornamentals

  • Review Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Flower senescence involves an ordered set of coordinated and tightly regulated developmental events which bear the hallmark of programmed cell death. Flowers are ideal for senescence studies as the tissue is relatively homogenous and chemical manipulation can be applied without substantial wounding. The onset of flower senescence is triggered by a number of factors which initiate a series of physiological events, orchestrated by plant growth regulators. Ethylene is a clear regulator of petal senescence in some species (ethylene sensitive) while as in others (ethylene insensitive) it has little or no role to play. In ethylene insensitive flowers, abscisic acid has been shown as being the key factor regulating flower senescence. The turnover of various hormones in different flower parts may activate degeneration processes that lead the flower to wilting or death. In some species petals wilt prior to abscission and as such efficient remobilization of nutrients takes place while as in others the petals abscise when they are still turgid without complete nutrient recycling. Based on this diversity of mechanisms employed in initiation and execution of flower senescence in various flower systems, a strong need is felt to identify suitable model systems to study petal senescence in various groups of flowers. A shift from identifying good models to ornamentals is in vogue for understanding flower senescence in ornamentals which will provide biochemical and molecular insights for extending their vase life using modern biotechnological approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ahmad, S. S., & Tahir, I. (2015). Storage protocol for improving the postharvest performance in cut scapes of Iris versicolor. Acta Horticulturae, 1060, 71–79.

    Article  Google Scholar 

  • Ahmad, S. S. & Tahir, I. (2016). Putrescine and jasmonates outplay conventional growth regulators in improving postharvest performance of Iris germanica L. cut scapes. PNAS India Section B: Biological Sciences. doi:10.1007/s40011-016-0767-2.

  • Ahmad, S. S., Tahir, I., & Shahri, W. (2013). Effect of different storage treatments on physiology and postharvest performance in cut scapes of three Iris species. Journal of Agricultural Science and Technology, 15, 323–331.

    CAS  Google Scholar 

  • Azeez, A., Sane, A. P., Bhatnagar, D., & Nath, P. (2007). Enhanced expression of serine proteases during floral senescence in gladiolus. Phytochemistry, 68, 1352–1357.

    Article  CAS  PubMed  Google Scholar 

  • Beers, E. P., Jones, A. M., & Dickerman, A. W. (2004). The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis. Phytochemistry, 65, 43–58.

    Article  CAS  PubMed  Google Scholar 

  • Bieleski, R. L., & Reid, M. S. (1992). Physiological changes accompanying senescence in the ephemeral daylily flower. Plant Physiology, 98, 1042–1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarty, D., Verma, A. K., & Datta, S. K. (2009). Oxidative stress and antioxidant activity as the basis of senescence in Hemerocallis (day lily) flowers. Journal of Horticulture and Forestry, 1, 113–119.

    Google Scholar 

  • Chang, H., Jones, M., Banowetz, G. M., & Clark, D. G. (2003). Overproduction of cytokinins in Petunia flowers transformed with PSAG12-IPT delays corolla senescence and decreases sensitivity to ethylene. Plant Physiology, 132, 2174–2183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapin, L. J., & Jones, M. L. (2007). Nutrient remobilization during pollination induced corolla senescence in Petunia. Acta Horticulturae, 755, 181–190.

    Article  CAS  Google Scholar 

  • Dar, R. A., Tahir, I., & Ahmad, S. S. (2014a). Sugars and sugar alcohols have their say in the regulation of flower senescence in Dianthus chinensis L. Scientia Horticulturae, 174, 24–28.

    Article  CAS  Google Scholar 

  • Dar, R. A., Tahir, I., & Ahmad, S. S. (2014b). Physiological and biochemical changes associated with flower development and senescence in Dianthus chinensis L. Indian Journal of Plant Physiology, 19, 215–221.

    Article  Google Scholar 

  • Dar, R. A., Tahir, I., & Ahmad, S. S. (2015a). Is the biochemical mechanism of petal senescence similar within a genus? A case study of Dianthus. Horticulture, Environment, and Biotechnology, 56, 654–661.

    Article  CAS  Google Scholar 

  • Dar, R. A., Tahir, I., & Ahmad, S. S. (2015b). Cycloheximide efficacy varies temporally in improving postharvest performance of cool wet stored Dianthus chinensis L. cut sprays. PNAS India Section B: Biological Sciences. doi:10.1007/s40011-015-0584-z.

  • Eason, J. R. (2006). Molecular and genetic aspect of flower senescence. Steward Postharvest Review, 2, 1–7.

    Google Scholar 

  • Eason, J. R., Johnston, J. W., de Vre, L., Sinclair, B. K., & King, G. (2000). Amino acid metabolism in senescing Sandersonia aurantiaca flowers: cloning and characterization of asparagines synthetase and glutamate synthetase cDNAs. Australian Journal of Plant Physiology, 27, 389–396.

    CAS  Google Scholar 

  • Fischer, A. M. (2012). The complex regulation of senescence. Critical Reviews in Plant Sciences, 31, 124–147.

    Article  CAS  Google Scholar 

  • Guerrero, C., Calle, M., Reid, M. S., & Valpuesta, V. (1998). Analysis of the expression of two thiol protease genes from daylily (Hemerocallis spp.) during flower senescence. Plant Molecular Biology, 36, 565–571.

    Article  CAS  PubMed  Google Scholar 

  • Halevy, A. H., & Mayak, S. (1981). Senescence and postharvest physiology of cut flowers—part II. Horticultural Review, 3, 59–143.

    CAS  Google Scholar 

  • Halliwell, B. (2006). Reactive species and antioxidants. Redox biology is fundamental theme of aerobic life. Plant Physiology, 141, 312–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Have, A. T., & Woltering, E. J. (1997). Ethylene biosynthetic genes are differentially expressed during carnation (Dianthus caryophyllus L.) flower senescence. Plant Molecular Biology, 34, 89–97.

    Article  PubMed  Google Scholar 

  • Hoeberichts, F. A., van Doorn, W. G., Vorst, O., Hall, R. D., & van Wordragen, M. F. (2007). Sucrose prevents upregulation of senescence-associated genes in carnation petals. Journal of Experimental Botany, 58, 2873–2885.

    Article  CAS  PubMed  Google Scholar 

  • Hunter, D. A., Steele, B. C., & Reid, M. S. (2002). Identification of genes associated with perianth senescence in daffodil (Narcissus Pseudonarcissus L. “Dutch master”). Plant Science, 163, 13–21.

    Article  CAS  Google Scholar 

  • Hunter, D. A., Ferranti, A., Vernieri, P., & Reid, M. S. (2004). Role of abscisic acid in perianth senescence of daffodil (Narcissus Pseudonarcissus “Dutch master”). Physiologia Plantarum, 121, 313–321.

    Article  CAS  PubMed  Google Scholar 

  • Ichimura, K., Shimizu-Yumoto, H., & Goto, R. (2009). Ethylene production by the gynoecium and receptacle is associated with sepal abscission in cut Delphinium flowers. Postharvest Biology and Technology, 52, 262–267.

    Article  Google Scholar 

  • Jones, M. (2008). Ethylene signalling is required for pollination-accelerated senescence in Petunia. Plant Science, 175, 190–196.

    Article  CAS  Google Scholar 

  • Jones, M. L., & Woosdson, W. R. (1999). Differential expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in carnation. Plant Physiology, 119, 755–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, M. L., Chaffin, G. S., Eason, J. R., & Clark, D. G. (2005). Ethylene sensitivity regulates proteolytic activity and cysteine protease gene expression in Petunia corollas. Journal of Experimental Botany, 56, 2733–2744.

    Article  CAS  PubMed  Google Scholar 

  • Langston, B. J., Bai, S., & Jones, M. L. (2005). Increase in DNA fragmentation and induction of a senescence-specific nuclease are delayed during corolla senescence in ethylene insensitive etrl1-1) transgenic petunias. Journal of Experimental Botany, 56, 15–23.

    Article  CAS  PubMed  Google Scholar 

  • Lara, M. E. B., Garcia, M. C. G., Fatima, T., Ehness, R., Lee, T. K., & Proels, R. (2004). Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell, 16, 1276–1287.

    Article  Google Scholar 

  • Lay-Yee, M., Stead, A. D., & Reid, M. S. (1992). Flower senescence in daylily (Hemerocallis). Physiologia Plantarum, 86, 308–314.

    Article  CAS  Google Scholar 

  • Lerslerwong, L., Ketsa, S., & van Doorn, W. G. (2009). Protein degradation and peptidase activity during petal senescence in Dendrobium cv. Khao sanan. Postharvest Biology and Technology, 52, 84–90.

    Article  CAS  Google Scholar 

  • Lukaszewski, T. A., & Reid, M. S. (1989). Bulb type flower senescence. Acta Horticulturae, 261, 59–62.

    Article  Google Scholar 

  • Narumi, T., Kanno, Y., Suzuki, M., Kishimoto, S., Ohmiya, A., & Satoh, S. (2005). Cloning of cDNA encoding an ethylene receptor (DG-ERSI) from chrysanthemum and comparison of its mRNA level in ethylene-sensitive and insensitive cultivars. Postharvest Biology and Biotechnology, 36, 21–30.

    Article  CAS  Google Scholar 

  • Narumi, T., Sudo, R., & Satoh, S. (2006). Cloning and characterization of a cDNA encoding a putative nuclease related to petal senescence in carnation (Dianthus caryophyllus L.) flowers. Journal of Japanese Society for Horticultural Sciences, 75, 323–327.

    Article  CAS  Google Scholar 

  • Nisar, S., Tahir, I., & Ahmad, S. S. (2015). Modulation of flower senescence in Nicotiana plumbaginifolia by polyamines. Indian Journal of Plant Physiology, 20, 186–190.

    Article  Google Scholar 

  • Pak, C., & van Doorn, W. G. (2005). Delay of Iris flower senescence by protease inhibitors. New Phytologist, 165, 473–480.

    Article  CAS  PubMed  Google Scholar 

  • Panavas, T., & Rubinstein, B. (1998). Oxidative events during programmed cell death of daylily (Hemerocallis hybrid) petals. Plant Science, 133, 125–138.

    Article  CAS  Google Scholar 

  • Panavas, T., Pikula, A., Reid, P. D., Rubinstein, B., & Walker, E. L. (1999). Identification of senescence associated genes from daylily petals. Plant Molecular Biology, 40, 237–248.

    Article  CAS  PubMed  Google Scholar 

  • Porat, R., Reiss, N., Atzorn, R., Halevy, A. H., & Borochov, A. (1995). Examination of the possible involvement of lipoxygenase and jasmonates in pollination-induced senescence of Phalaenopsis and Dendrobium flowers. Physiologia Plantarum, 94, 205–210.

    Article  CAS  Google Scholar 

  • Price, A. M., Arosorellana, D. F., Salleh, F. M., Stevens, R., Acock, R., Buchannan- Wollaston, V., et al. (2008). A comparison of leaf and petal senescence in wall flower reveals common and distinct patterns of gene expression and physiology. Plant Physiology, 147, 1898–1912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid, M. S., & Wu, M. J. (1992). Ethylene and flower senescence. Plant Growth Regulators, 11, 37–43.

    Article  CAS  Google Scholar 

  • Rogers, H. J. (2006). Programmed cell death in floral organs: How and why do flowers die? Annals of Botany, 97, 309–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers, H. J. (2013). From models to ornamentals: How is flower senescence regulated? Plant Molecular Biology, 82, 563–574.

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein, B. (2000). Regulation of cell death in flower petals. Plant Molecular Biology, 44, 303–318.

    Article  CAS  PubMed  Google Scholar 

  • Saks, Y., & van Staden, J. (1993). Evidence for the involvement of gibberellins in the developmental phenomena associated with carnation flower senescence. Plant Growth Regulation, 12, 105–110.

    Article  CAS  Google Scholar 

  • Saks, Y., van Staden, J., & Smith, M. T. (1992). Effect of gibberellic acid on carnation flower senescence evidence that the delay of carnation flower senescence by gibberellic acid depends on the stage of flower development. Plant Growth Regulation, 12, 105–110.

    Article  Google Scholar 

  • Seo, S. G., Kang, S. W., Shim, L. S., Kim, W., & Fujihara, S. (2009). Effects of various chemical agents and early ethylene production on floral senescence of Hibiscus syriacus L. Plant Growth Regulation, 57, 251–258.

    Article  CAS  Google Scholar 

  • Shahri, W., & Tahir, I. (2011a). An effective storage protocol for improving the postharvest performance in cutspikes of Consolida ajacis Nieuwl cv. Violet blue. Scientia Horticulturae, 129, 154–158.

    Article  CAS  Google Scholar 

  • Shahri, W., & Tahir, I. (2011b). Flower senescence—Strategies and some associated events. Botanical Review, 77, 152–184.

    Article  Google Scholar 

  • Shahri, W., & Tahir, I. (2014). Flower senescence: some molecular aspects. Planta, 239, 277–297.

    Article  CAS  PubMed  Google Scholar 

  • Shibuya, K., & Ichimura, K. (2016). Physiology and molecular biology of flower senescence. In S. Pareek (Ed.), Postharvest ripening physiology of crops (pp. 109–129). Boca Raton: CRC Press.

    Google Scholar 

  • Shibuya, K., Yamada, T., & Ichimura, K. (2009). Autophagy regulates progression of programmed cell death during petal senescence in Japanese morning glory. Autophagy, 5, 546–557.

    Article  CAS  PubMed  Google Scholar 

  • Shibuya, K., Shimizu, K., Niki, T., & Ichimura, K. (2014). Identification of a NAC transcription factor, EPHEMERAL1, that controls petal senescence in Japanese morning glory. The Plant Journal, 79, 1044–1051.

    Article  CAS  PubMed  Google Scholar 

  • Stead, A. D. (1992). Pollination induced flower senescence—A review. Plant Growth Regulation, 11, 13–20.

    Article  CAS  Google Scholar 

  • Stephenson, P., & Rubinstein, B. (1998). Characterization of proteolytic activity during senescence in daylilies. Physiologia Plantarum, 104, 463–473.

    Article  CAS  Google Scholar 

  • Tassoni, A., Accettulli, P., & Bagni, N. (2006). Exogenous spermidine delays senescence of Dianthus caryophyllus flowers. Plant Biosystem, 140, 107–114.

    Article  Google Scholar 

  • Taverner, E., Letham, D. S., Wang, J., & Cornish, E. (2000). Inhibition of carnation petal inrolling by growth retardants and cytokinins. Australian Journal of Plant Physiology, 27, 357–362.

    Article  CAS  Google Scholar 

  • Tripathi, S. K., & Tuteja, N. (2007). Integrated signalling in flower senescence. Plant Signaling Behavior, 2, 437–445.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathi, S. K., Singh, A. P., Sane, A. P., & Nath, P. (2009). Transcriptional activation of a 37 kDa ethylene responsive cysteine protease gene, RbCP1, is associated with protein degradation during petal abscission in rose. Journal of Experimental Botany, 60, 2035–2044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trivellini, A., Ferrante, A., Vernieri, P., Mensuali-Sodi, A., & Serra, G. (2011). Effects of promoters and inhibitors of ethylene and ABA on flower senescence of Hibiscus rosa-sinensis L. Journal of Plant Growth Regulation, 30, 175–184.

    Article  CAS  Google Scholar 

  • Trivellini, A., Cocetta, G., Vernieri, P., Sodi, A. M., & Ferrante, A. (2015). Effect of cytokinins on delaying petunia flower senescence: a transcriptome study approach. Plant Molecular Biology, 87, 169–180.

    Article  CAS  PubMed  Google Scholar 

  • Trivellini, A., Cocetta, G., Hunter, D. A., Vernieri, P., & Ferrante, A. (2016). Spatial and temporal transcriptome changes occurring during flower opening and senescence of the ephemeral hibiscus flower, Hibiscus rosa-sinensis. Journal of Experimental Botany. doi:10.1093/jxb/erw295.

  • van Doorn, W. G. (2004). Is petal senescence due to sugar starvation? Plant Physiology, 134, 35–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Doorn, W. G., & Stead, A. D. (1994). The physiology of petal senescence which is not initiated by ethylene. In R. J. Scottland & A. D. Stead (Eds.), Molecular and cellular aspects of plant reproduction (pp. 239–254). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • van Doorn, W. G., & Woltering, E. J. (2008). Physiology and molecular biology of petal senescence. Journal of Experimental Botany, 59, 453–480.

    Article  PubMed  Google Scholar 

  • van Doorn, W. G., Balk, P. A., van Houwelingen, A. M., Hoeberichts, F. A., Hall, R. D., Vorst, O., et al. (2003). Gene expression during anthesis and senescence in Iris flowers. Plant Molecular Biology, 53, 845–863.

    Article  PubMed  Google Scholar 

  • van Doorn, W. G., Celikel, F. G., & Harkema, H. (2013). Delay of iris flower senescence by cytokinins and jasmonates. Plant Physiology, 148, 105–120.

    Article  Google Scholar 

  • Wagstaff, C., Leverentz, M. K., Griffiths, G., Thomas, B., Chanasut, U., Stead, A. D., & Rogers, H. J. (2002). Cysteine protease gene expression and proteolytic activity during senescence of Alstroemeria petals. Journal of Experimental Botany, 367, 233–240.

    Article  Google Scholar 

  • Wang, K. L., Li, H., & Ecker, J. R. (2002). Ethylene biosynthesis and signalling networks. Plant Cell, 14, 131–151.

    Google Scholar 

  • Wulster, G., Sacalis, J., & Hanes, H. (1982). The effect of inhibitors of protein synthesis on ethylene-induced senescence in isolated carnation petals. Journal of the American Society for Horticultural Sciences, 107, 112–115.

    CAS  Google Scholar 

  • Xu, Y., Ishida, H., Reisen, D., & Hanson, M. R. (2006). Upregulation of tonoplast localized cytochrome P450 during petal senescence in Petunia inflata. BMC Plant Biology, 6, 1471–1483.

    Article  Google Scholar 

  • Xu, X., Gookin, T., Jiang, C., & Reid, M. S. (2007). Genes associated with opening and senescence of Mirabilis jalapa flowers. Journal of Experimental Botany, 58, 2193–2201.

    Article  CAS  PubMed  Google Scholar 

  • Yamada, T., Takatsu, Y., Kasumi, M., Marubashi, W., & Ichimura, K. (2004). A homolog of the defender against apoptotic death gene (DAD1) in senescing gladiolus petals is down-regulated prior to the onset of programmed cell death. Journal of Plant Physiology, 161, 1281–1283.

    Article  CAS  PubMed  Google Scholar 

  • Yamada, T., Ichimura, K., Kanekatsu, M., & van Doorn, W. G. (2009). Homologs of genes associated with programmed cell death in animal cells are differentially expressed during senescence of Ipomoea nil petals. Plant Cell Physiology, 50, 610–625.

    Article  CAS  PubMed  Google Scholar 

  • Yang, W., Liu, J., Tan, Y., Zhong, S., Tang, N., Chen, G., et al. (2015). Functional characterization of PhGR and PhGRL1 during flower senescence in the petunia. Plant Cell Reproduction, 34, 1561–1568.

    Article  CAS  Google Scholar 

  • Yin, J., Chang, X., Kasuga, T., Bui, M., Reid, M. S., & Jiang, C. Z. (2015). A basic helix-loop-helix transcription factor, PhFBH4, regulates flower senescence by modulating ethylene biosynthesis pathway in petunia. Horticulture Research, 2, 15059.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Prof. S. Farooq for his influence through the opportunities he provided and insights he conveyed. Syed Sabhi Ahmad thanks University Grants Commission (UGC), Govt. of India for providing SRF under (UGC-BSR) scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inayatullah Tahir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S.S., Tahir, I. How and why of flower senescence: understanding from models to ornamentals. Ind J Plant Physiol. 21, 446–456 (2016). https://doi.org/10.1007/s40502-016-0267-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-016-0267-7

Keywords