Skip to main content

Advertisement

Log in

Next generation sequencing-based exploration of genomes and transcriptomes of medicinal plants

  • Review Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Medicinal plants are known for their therapeutic potential and have been associated with human history for their use in traditional medicine systems in different countries. Recent advances in next generation sequencing (NGS) technologies have accelerated research on medicinal plants with reduced cost and efforts. NGS technologies not only provide opportunity for high throughput whole genome sequencing, they also facilitate direct RNA sequencing. The sequence data-sets generated can further be explored for application in various areas of research such as comparative genomics, data mining for small and long non-coding RNAs, mining of molecular markers, gene discovery, etc. Continuous efforts are being made by commercial sequencing service providers in improving technology to overcome bioinformatics challenges in NGS data analysis. In recent past, genome sequence projects on various medicinal plants have been successfully accomplished and few others are in pipeline. Similarly, enormous NGS-based transcriptome data have been generated in a number of medicinal plants. In the present review, we have briefly attempted to address advancement in NGS technology, genomic and transcriptomics studies on medicinal plants with special emphasis on seabuckthorn (Hippophae sp.), a medicinally important plant of Indian Himalayas. Moreover, the scope of implementation of NGS based research on medicinal plants have been explored for the selection of candidate genes involved in particular biosynthesis pathways. The identified genes can be exploited for engineering medicinal plants for producing improved quality biologically active phytocompounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ahmed, S., Zhan, C., Yang, Y., Wang, X., Yang, T., Zhao, Z., et al. (2016). The transcript profile of a traditional Chinese medicine, Atractylodes lancea, revealing its sesquiterpenoid biosynthesis of the major active components. PLoS One, 11(3), e0151975.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Annadurai, R. S., Neethiraj, R., Jayakumar, V., Damodaran, A. C., Rao, S. N., Katta, M. A., et al. (2013). De novo transcriptome assembly (NGS) of Curcuma longa L. rhizome reveals novel transcripts related to anticancer and antimalarial terpenoids. PLoS One, 8(2), e56217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augustin, M. M., Ruzicka, D. R., Shukla, A. K., Augustin, J. M., Starks, C. M., O’Neil-Johnson, M., et al. (2015). Elucidating steroid alkaloid biosynthesis in Veratrum californicum: Production of verazine in Sf9 cells. The Plant Journal, 82(6), 991–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berka, J., Chen, Y. J., Leamon, J. H., Lefkowitz, S., Lohman, K. L., Makhijani, V. B., et al. (2010). Bead emulsion nucleic acid amplification. U.S. Patent No. 7,842,457. Washington, DC: U.S. Patent and Trademark Office.

  • Cakır, Ö., Turgut-Kara, N., Arı, Ş., & Zhang, B. (2015). De novo transcriptome assembly and comparative analysis elucidate complicated mechanism regulating Astragalus chrysochlorus response to selenium stimuli. PLoS One, 10(10), e0135677.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chagné, D., Crowhurst, R. N., Pindo, M., Thrimawithana, A., Deng, C., Ireland, H., et al. (2014). The draft genome sequence of European pear (Pyrus communis L. ‘Bartlett’). PLoS One, 9(4), e92644.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaudhary, S., & Sharma, P. C. (2015). DeepSAGE based differential gene expression analysis under cold and freeze stress in seabuckthorn (Hippophae rhamnoides L.). PLoS One, 10(3), e0121982.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, R. B., Liu, J. H., Xiao, Y., Zhang, F., Chen, J. F., Ji, Q., et al. (2015). Deep sequencing reveals the effect of MeJA on scutellarin biosynthesis in Erigeron breviscapus. PLoS One, 10(12), e0143881.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, S., Xiang, L., Guo, X., & Li, Q. (2011). An introduction to the medicinal plant genome project. Frontiers of Medicine, 5(2), 178–184.

    Article  PubMed  Google Scholar 

  • Dasgupta, M. G., George, B. S., Bhatia, A., & Sidhu, O. P. (2014). Characterization of Withania somnifera leaf transcriptome and expression analysis of pathogenesis-related genes during salicylic acid signaling. PLoS One, 9(4), e94803.

    Article  CAS  Google Scholar 

  • de Magalhaes, J. P., Finch, C. E., & Janssens, G. (2010). Next-generation sequencing in aging research: emerging applications, problems, pitfalls and possible solutions. Ageing Research Reviews, 9(3), 315–323.

    Article  PubMed  CAS  Google Scholar 

  • de Souza Caˆndido, E., da Rocha Fernandes, G., de Alencar, S. A., de Freitas Lima, S. M., de Jesus Miranda, V., Porto, W. F., et al. (2014). Shedding some light over the floral metabolism by arum lily (Zantedeschia aethiopica) spathe de novo transcriptome assembly. PLoS One, 9(3), e90487.

    Article  CAS  Google Scholar 

  • Fatima, T., Snyder, C. L., Schroeder, W. R., Cram, D., Datla, R., Wishart, D., et al. (2012). Fatty acid composition of developing sea buckthorn (Hippophae rhamnoides L.) berry and the transcriptome of the mature seed. PLoS One, 7(4), e34099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gahlan, P., Singh, H. R., Shankar, R., Sharma, N., Kumari, A., Chawla, V., et al. (2012). De novo sequencing and characterization of Picrorhiza kurrooa transcriptome at two temperatures showed major transcriptome adjustments. BMC Genomics, 13(1), 1–21.

    Article  CAS  Google Scholar 

  • Galla, G., Vogel, H., Sharbel, T. F., & Barcaccia, G. (2015). De novo sequencing of the Hypericum perforatum L. flower transcriptome to identify potential genes that are related to plant reproduction sensu lato. BMC Genomics, 16(1), 1–22.

    Article  CAS  Google Scholar 

  • Gao, J. P., Wang, D., Cao, L. Y., & Sun, H. F. (2015). Transcriptome sequencing of Codonopsis pilosula and identification of candidate genes involved in polysaccharide biosynthesis. PLoS One, 10(2), e0117342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garg, A., Agrawal, L., Misra, R. C., Sharma, S., & Ghosh, S. (2015). Andrographis paniculata transcriptome provides molecular insights into tissue-specific accumulation of medicinal diterpenes. BMC Genomics, 16(1), 1–16.

    Article  CAS  Google Scholar 

  • Geetha, S., Jayamurthy, P., Pal, K., Pandey, S., Kumar, R., & Sawhney, R. C. (2008). Hepatoprotective effects of sea buckthorn (Hippophae rhamnoides L.) against carbon tetrachloride induced liver injury in rats. Journal of the Science of Food and Agriculture, 88(9), 1592–1597.

    Article  CAS  Google Scholar 

  • Ghangal, R., Chaudhary, S., Jain, M., Purty, R. S., & Sharma, P. C. (2013). Optimization of de novo short read assembly of seabuckthorn (Hippophae rhamnoides L.) transcriptome. PLoS One, 8(8), e72516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Góngora-Castillo, E., & Buell, C. R. (2013). Bioinformatics challenges in de novo transcriptome assembly using short read sequences in the absence of a reference genome sequence. Natural Product Reports, 30(4), 490–500.

    Article  PubMed  CAS  Google Scholar 

  • Groves, R. A., Hagel, J. M., Zhang, Y., Kilpatrick, K., Levy, A., Marsolais, F., et al. (2015). Transcriptome profiling of khat (Catha edulis) and Ephedra sinica reveals gene candidates potentially involved in amphetamine-type alkaloid biosynthesis. PLoS One, 10(3), e0119701.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo, X., Li, Y., Li, C., Luo, H., Wang, L., Qian, J., et al. (2013). Analysis of the Dendrobium officinale transcriptome reveals putative alkaloid biosynthetic genes and genetic markers. Gene, 527(1), 131–138.

    Article  CAS  PubMed  Google Scholar 

  • Guo, S., Zheng, Y., Joung, J. G., Liu, S., Zhang, Z., Crasta, O. R., et al. (2010). Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types. BMC Genomics, 11(1), 1–13.

    Article  CAS  Google Scholar 

  • Gupta, P., Goel, R., Agarwal, A. V., Asif, M. H., Sangwan, N. S., Sangwan, R. S., et al. (2015). Comparative transcriptome analysis of different chemotypes elucidates withanolide biosynthesis pathway from medicinal plant Withania somnifera. Scientific Reports, 5, 1–13.

    Article  Google Scholar 

  • Gupta, P., Goel, R., Pathak, S., Srivastava, A., Singh, S. P., Sangwan, R. S., et al. (2013). De novo assembly, functional annotation and comparative analysis of Withania somnifera leaf and root transcriptomes to identify putative genes involved in the withanolides biosynthesis. PLoS One, 8(5), e62714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao, D. C., Chen, S. L., Xiao, P. G., & Liu, M. (2012). Application of high-throughput sequencing in medicinal plant transcriptome studies. Drug Development Research, 73(8), 487–498.

    Article  CAS  Google Scholar 

  • He, M., Wang, Y., Hua, W., Zhang, Y., & Wang, Z. (2012). De novo sequencing of Hypericum perforatum transcriptome to identify potential genes involved in the biosynthesis of active metabolites. PLoS One, 7(7), e42081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua, W., Zheng, P., He, Y., Cui, L., Kong, W., & Wang, Z. (2014). An insight into the genes involved in secoiridoid biosynthesis in Gentiana macrophylla by RNA-seq. Molecular Biology Reports, 41(7), 4817–4825.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., Jing, Y., Liu, D. J., Yang, B. Y., Chen, H., & Li, M. (2016). Whole-transcriptome sequencing of Pinellia ternata using the Illumina platform. Genetics and Molecular Research, 15(2), 1–14.

    Google Scholar 

  • Jain, A., Chaudhary, S., & Sharma, P. C. (2014). Mining of microsatellites using next generation sequencing of seabuckthorn (Hippophae rhamnoides L.) transcriptome. Physiology and Molecular Biology of Plants, 20(1), 115–123.

    Article  CAS  PubMed  Google Scholar 

  • Jayakodi, M., Lee, S. C., Lee, Y. S., Park, H. S., Kim, N. H., Jang, W., et al. (2015). Comprehensive analysis of Panax ginseng root transcriptomes. BMC Plant Biology, 15(1), 1–12.

    Article  CAS  Google Scholar 

  • Kalra, S., Puniya, B. L., Kulshreshtha, D., Kumar, S., Kaur, J., Ramachandran, S., et al. (2013). De novo transcriptome sequencing reveals important molecular networks and metabolic pathways of the plant, Chlorophytum borivilianum. PLoS One, 8(12), e83336.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim, H. J., Jung, J., Kim, M. S., Lee, J. M., Choi, D., & Yeam, I. (2015). Molecular marker development and genetic diversity exploration by RNA-seq in Platycodon grandiflorum. Genome, 58(10), 441–451.

    Article  CAS  PubMed  Google Scholar 

  • Kotwal, S., Kaul, S., Sharma, P., Gupta, M., Shankar, R., Jain, M., et al. (2016). De novo transcriptome analysis of medicinally important Plantago ovata using RNA-Seq. PLoS One, 11(3), e0150273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krishnan, N. M., Pattnaik, S., Jain, P., Gaur, P., Choudhary, R., Vaidyanathan, S., et al. (2012). A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica. BMC Genomics, 13(1), 1–13.

    Article  CAS  Google Scholar 

  • Lai, P. K., & Roy, J. (2004). Antimicrobial and chemopreventive properties of herbs and spices. Current Medicinal Chemistry, 11(11), 1451–1460.

    Article  CAS  PubMed  Google Scholar 

  • Li, D. M., Zhao, C. Y., Liu, X. R., Liu, X. F., Lin, Y. J., Liu, J. W., et al. (2015). De novo assembly and characterization of the root transcriptome and development of simple sequence repeat markers in Paphiopedilum concolor. Genetics and Molecular Research, 14(2), 6189–6201.

    Article  CAS  PubMed  Google Scholar 

  • Li, C., Zhu, Y., Guo, X., Sun, C., Luo, H., Song, J., et al. (2013). Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng C. A. Meyer. BMC Genomics, 14(1), 1–11.

    Article  CAS  Google Scholar 

  • Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., et al. (2012). Comparison of next-generation sequencing systems. Journal of Biomedicine and Biotechnology, 2012(2012), 1–11.

    PubMed  Google Scholar 

  • Liu, X. B., Ma, L., Zhang, A. H., Zhang, Y. H., Jiang, J., Ma, W., et al. (2014a). High-throughput analysis and characterization of Astragalus membranaceus transcriptome using 454 GS FLX. PLoS One, 9(5), e95831.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, H., Wu, W., Hou, K., Chen, J., & Zhao, Z. (2016). Deep sequencing reveals transcriptome re-programming of Polygonum multiflorum thunb. roots to the elicitation with methyl jasmonate. Molecular Genetics and Genomics, 291(1), 337–348.

    Article  CAS  PubMed  Google Scholar 

  • Liu, M. M., Xing, Y. M., Zhang, D. W., & Guo, S. X. (2015a). Transcriptome analysis of genes involved in defence response in Polyporus umbellatus with Armillaria mellea infection. Scientific Reports, 5, 1–13.

    Article  Google Scholar 

  • Liu, M. H., Yang, B. R., Cheung, W. F., Yang, K. Y., Zhou, H. F., Kwok, J. S. L., et al. (2015b). Transcriptome analysis of leaves, roots and flowers of Panax notoginseng identifies genes involved in ginsenoside and alkaloid biosynthesis. BMC Genomics, 16(1), 1–12.

    Article  CAS  Google Scholar 

  • Liu, M. J., Zhao, J., Cai, Q. L., Liu, G. C., Wang, J. R., Zhao, Z. H., et al. (2014b). The complex jujube genome provides insights into fruit tree biology. Nature Communications, 5, 1–12.

    Google Scholar 

  • Lulin, H., Xiao, Y., Pei, S., Wen, T., & Shangqin, H. (2012). The first Illumina-based de novo transcriptome sequencing and analysis of safflower flowers. PLoS One, 7(6), e38653.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma, C. H., Gao, Z. J., Zhang, J. J., Zhang, W., Shao, J. H., Hai, M. R., et al. (2016). Candidate genes involved in the biosynthesis of triterpenoid saponins in Platycodon grandiflorum identified by transcriptome analysis. Frontiers in plant science, 7, 1–14.

    PubMed  PubMed Central  Google Scholar 

  • MacLean, D., Jones, J. D., & Studholme, D. J. (2009). Application of ‘next-generation’ sequencing technologies to microbial genetics. Nature Reviews Microbiology, 7(4), 287–296.

    PubMed  Google Scholar 

  • Mardis, E. R. (2008). Next-generation DNA sequencing methods. Annual Reviews of Genomics and Human Genetics, 9, 387–402.

    Article  CAS  Google Scholar 

  • Mardis, E. R. (2013). Next-generation sequencing platforms. Annual Review of Analytical Chemistry, 6, 287–303.

    Article  CAS  PubMed  Google Scholar 

  • Martínez-García, P. J., Crepeau, M. W., Puiu, D., Gonzalez-Ibeas, D., Whalen, J., Stevens, K. A., et al. (2016). The walnut (Juglans regia) genome sequence reveals diversity in genes coding for the biosynthesis of nonstructural polyphenols. The Plant Journal, 87(5), 507–532.

    Article  PubMed  CAS  Google Scholar 

  • Maxam, A. M., & Gilbert, W. (1977). A new method for sequencing DNA. Proceedings of the National Academy of Sciences, 74(2), 560–564.

    Article  CAS  Google Scholar 

  • Mazumdar, A. B., & Chattopadhyay, S. (2015). Sequencing, de novo assembly, functional annotation and analysis of Phyllanthus amarus leaf transcriptome using the Illumina platform. Frontiers in plant science, 6, 1–22.

    Google Scholar 

  • Meena, S., Kumar, S. R., Rao, D. V., Dwivedi, V., Shilpashree, H. B., Rastogi, S., et al. (2016). De novo sequencing and analysis of lemongrass transcriptome provide first insights into the essential oil biosynthesis of aromatic grasses. Frontiers in Plant Science, 7, 1–15.

    Google Scholar 

  • Metzker, M. L. (2010). Sequencing technologies—the next generation. Nature Reviews Genetics, 11(1), 31–46.

    Article  CAS  PubMed  Google Scholar 

  • Ming, R., VanBuren, R., Liu, Y., Yang, M., Han, Y., Li, L. T., et al. (2013). Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biology, 14(5), 1–11.

    Article  CAS  Google Scholar 

  • Muranaka, T., & Saito, K. (2013). Phytochemical genomics on the way. Plant and Cell Physiology, 54(5), 645–646.

    Article  CAS  PubMed  Google Scholar 

  • Muriira, N. G., Xu, W., Muchugi, A., Xu, J., & Liu, A. (2015). De novo sequencing and assembly analysis of transcriptome in the Sodom apple (Calotropis gigantea). BMC Genomics, 16(1), 1–15.

    Article  CAS  Google Scholar 

  • Park, N. I., Choi, I. Y., Choi, B. S., Kim, Y. S., Lee, M. Y., & Park, S. U. (2014). EST sequencing and gene expression profiling in Scutellaria baicalensis. EXCLI Journal, 13, 392–401.

    PubMed  PubMed Central  Google Scholar 

  • Qi, J., Sun, P., Liao, D., Sun, T., Zhu, J., & Li, X. (2015). Transcriptomic analysis of American ginseng seeds during the dormancy release process by RNA-Seq. PLoS One, 10(3), e0118558.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin, C., Yu, C., Shen, Y., Fang, X., Chen, L., Min, J., et al. (2014). Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proceedings of the National Academy of Sciences, 111(14), 5135–5140.

    Article  CAS  Google Scholar 

  • Quail, M. A., Smith, M., Coupland, P., Otto, T. D., Harris, S. R., Connor, T. R., et al. (2012). A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics, 13(1), 1–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rai, A., Kamochi, H., Suzuki, H., Nakamura, M., Takahashi, H., Hatada, T., et al. (2016). De novo transcriptome assembly and characterization of nine tissues of Lonicera japonica to identify potential candidate genes involved in chlorogenic acid, luteolosides, and secoiridoid biosynthesis pathways. Journal of Natural Medicines, 1–15.

  • Ramilowski, J. A., Sawai, S., Seki, H., Mochida, K., Yoshida, T., Sakurai, T., et al. (2013). Glycyrrhiza uralensis transcriptome landscape and study of phytochemicals. Plant and Cell Physiology, 54(5), 697–710.

    Article  CAS  PubMed  Google Scholar 

  • Rastogi, S., Meena, S., Bhattacharya, A., Ghosh, S., Shukla, R. K., Sangwan, N. S., et al. (2014). De novo sequencing and comparative analysis of holy and sweet basil transcriptomes. BMC Genomics, 15(1), 1–18.

    Article  CAS  Google Scholar 

  • Reddy, N. R. R., Mehta, R. H., Soni, P. H., Makasana, J., Gajbhiye, N. A., Ponnuchamy, M., et al. (2015). Next generation sequencing and transcriptome analysis predicts biosynthetic pathway of sennosides from Senna (Cassia angustifolia Vahl.), a non-model plant with potent laxative properties. PLoS One, 10(6), e0129422.

    Article  CAS  Google Scholar 

  • Rusk, N. (2011). Torrents of sequence. Nature Methods, 8(1), 44.

    Google Scholar 

  • Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, 74(12), 5463–5467.

    Article  CAS  Google Scholar 

  • Sangwan, R. S., Tripathi, S., Singh, J., Narnoliya, L. K., & Sangwan, N. S. (2013). De novo sequencing and assembly of Centella asiatica leaf transcriptome for mapping of structural, functional and regulatory genes with special reference to secondary metabolism. Gene, 525(1), 58–76.

    Article  CAS  PubMed  Google Scholar 

  • Schadt, E. E., Turner, S., & Kasarskis, A. (2010). A window into third-generation sequencing. Human Molecular Genetics, 19(R2), R227–R240.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, G. F., & Dekker, C. (2012). DNA sequencing with nanopores. Nature Biotechnology, 30(4), 326–328.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, S., & Shrivastava, N. (2016). Renaissance in phytomedicines: promising implications of NGS technologies. Planta, 244(1), 19–38.

    Article  CAS  PubMed  Google Scholar 

  • Shendure, J., & Ji, H. (2008). Next-generation DNA sequencing. Nature Biotechnology, 26(10), 1135–1145.

    Article  CAS  PubMed  Google Scholar 

  • Shi, S. G., Yang, M., Zhang, M., Wang, P., Kang, Y. X., & Liu, J. J. (2014). Genome-wide transcriptome analysis of genes involved in flavonoid biosynthesis between red and white strains of Magnolia sprengeri pamp. BMC Genomics, 15(1), 1–11.

    Article  CAS  Google Scholar 

  • Singh, V., Mörsel, J. T., Singh, V., Yang, B., Kallio, H., Bala, M., et al. (2006). Development and commercialization of seabuckthorn: a German experience. Seabuckthorn (Hippophae L.). A multipurpose wonder plant. Vol II: Biochemistry and Pharmacology, 576–584.

  • Singh, R., Ong-Abdullah, M., Low, E. T. L., Manaf, M. A. A., Rosli, R., Nookiah, R., et al. (2013). Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds. Nature, 500(7462), 335–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramaniyam, S., Mathiyalagan, R., Natarajan, S., Kim, Y. J., Jang, M. G., Park, J. H., et al. (2014). Transcript expression profiling for adventitious roots of Panax ginseng Meyer. Gene, 546(1), 89–96.

    Article  CAS  PubMed  Google Scholar 

  • Sumner, L. W., Lei, Z., Nikolau, B. J., & Saito, K. (2015). Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects. Natural Product Reports, 32(2), 212–229.

    Article  CAS  PubMed  Google Scholar 

  • Sun, C., Li, Y., Wu, Q., Luo, H., Sun, Y., Song, J., et al. (2010). De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genomics, 11(1), 1–12.

    Article  CAS  Google Scholar 

  • Sun, P., Song, S., Zhou, L., Zhang, B., Qi, J., & Li, X. (2012a). Transcriptome analysis reveals putative genes involved in iridoid biosynthesis in Rehmannia glutinosa. International Journal of Molecular Sciences, 13(10), 13748–13763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, C., Yu, G., Bao, M., Zheng, B., & Ning, G. (2014). Biological pattern and transcriptomic exploration and phylogenetic analysis in the odd floral architecture tree: Helwingia willd. BMC Research Notes, 7(1), 1–12.

    Article  Google Scholar 

  • Sun, X., Zhou, S., Meng, F., & Liu, S. (2012b). De novo assembly and characterization of the garlic (Allium sativum) bud transcriptome by Illumina sequencing. Plant Cell Reports, 31(10), 1823–1828.

    Article  CAS  PubMed  Google Scholar 

  • Suryakumar, G., & Gupta, A. (2011). Medicinal and therapeutic potential of Sea buckthorn (Hippophae rhamnoides L.). Journal of Ethnopharmacology, 138(2), 268–278.

    Article  PubMed  Google Scholar 

  • Tao, L., Zhao, Y., Wu, Y., Wang, Q., Yuan, H., Zhao, L., et al. (2016). Transcriptome profiling and digital gene expression by deep sequencing in early somatic embryogenesis of endangered medicinal Eleutherococcus senticosus Maxim. Gene, 578(1), 17–24.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, J. F., & Milos, P. M. (2011). The properties and applications of single-molecule DNA sequencing. Genome Biology, 12(2), 1–10.

    Google Scholar 

  • Tian, H., Xu, X., Zhang, F., Wang, Y., Guo, S., Qin, X., et al. (2015). Analysis of Polygala tenuifolia transcriptome and description of secondary metabolite biosynthetic pathways by Illumina sequencing. International Journal of Genomics, 2015, 1–11.

    Article  CAS  Google Scholar 

  • Unamba, C. I., Nag, A., & Sharma, R. K. (2015). Next generation sequencing technologies: The doorway to the unexplored genomics of non-model plants. Frontiers in Plant Science, 6, 1–16.

    Article  Google Scholar 

  • Upadhyay, A. K., Chacko, A. R., Gandhimathi, A., Ghosh, P., Harini, K., Joseph, A. P., et al. (2015). Genome sequencing of herb Tulsi (Ocimum tenuiflorum) unravels key genes behind its strong medicinal properties. BMC Plant Biology, 15(1), 1–20.

    Article  CAS  Google Scholar 

  • Upadhyay, S., Phukan, U. J., Mishra, S., & Shukla, R. K. (2014). De novo leaf and root transcriptome analysis identified novel genes involved in steroidal sapogenin biosynthesis in Asparagus racemosus. BMC Genomics, 15(1), 1–13.

    Article  CAS  Google Scholar 

  • van Bakel, H., Stout, J. M., Cote, A. G., Tallon, C. M., Sharpe, A. G., Hughes, T. R., et al. (2011). The draft genome and transcriptome of Cannabis sativa. Genome Biology, 12(10), 1–13.

    Google Scholar 

  • Van Moerkercke, A., Fabris, M., Pollier, J., Baart, G. J., Rombauts, S., Hasnain, G., et al. (2013). CathaCyc, a metabolic pathway database built from Catharanthus roseus RNA-Seq data. Plant and Cell Physiology, 54(5), 673–685.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G., Du, X., Ji, J., Guan, C., Li, Z., & Josine, T. L. (2015a). De novo characterization of the Lycium chinense Mill. leaf transcriptome and analysis of candidate genes involved in carotenoid biosynthesis. Gene, 555(2), 458–463.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics, 10(1), 57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Hua, W., Wang, J., Hannoufa, A., Xu, Z., & Wang, Z. (2013). Deep sequencing of Lotus corniculatus L. reveals key enzymes and potential transcription factors related to the flavonoid biosynthesis pathway. Molecular Genetics and Genomics, 288(3–4), 131–139.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Wang, Z., Chen, J., Liu, C., Zhu, W., Wang, L., et al. (2015b). De novo transcriptome assembly and development of novel microsatellite markers for the traditional chinese medicinal herb, Veratrilla baillonii Franch (Gentianaceae). Evolutionary Bioinformatics Online, 11(39), 1–7.

    Google Scholar 

  • Wu, D., Austin, R. S., Zhou, S., & Brown, D. (2013). The root transcriptome for North American ginseng assembled and profiled across seasonal development. BMC Genomics, 14(1), 1–14.

    Article  CAS  Google Scholar 

  • Wu, B., Suo, F., Lei, W., & Gu, L. (2014). Comprehensive analysis of alternative splicing in Digitalis purpurea by strand-specific RNA-Seq. PLoS One, 9(8), e106001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, B., Wang, M., Ma, Y., Yuan, L., & Lu, S. (2012). High-throughput sequencing and characterization of the small RNA transcriptome reveal features of novel and conserved microRNAs in Panax ginseng. PLoS One, 7(9), e44385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Z., Peters, R. J., Weirather, J., Luo, H., Liao, B., Zhang, X., et al. (2015). Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis. The Plant Journal, 82(6), 951–961.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Ding, G., Lin, H., Cheng, H., Kong, Y., Wei, Y., et al. (2013). Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis. PLoS One, 8(11), e80464.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, Y. H., Li, M. J., Li, X. Y., Chen, X. J., Lin, W. X., & Zhang, Z. Y. (2015). Transcriptome-wide identification of the genes responding to replanting disease in Rehmannia glutinosa L. roots. Molecular Biology Reports, 42(5), 881–892.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, Y., Song, L., Li, M., Liu, G., Chu, Y., Ma, L., et al. (2012). Genetic variation and metabolic pathway intricacy govern the active compound content and quality of the Chinese medicinal plant Lonicera japonica thunb. BMC Genomics, 13(1), 1–20.

    Article  CAS  Google Scholar 

  • Zhang, X., Allan, A. C., Li, C., Wang, Y., & Yao, Q. (2015a). De novo assembly and characterization of the transcriptome of the Chinese medicinal herb, Gentiana rigescens. International Journal of Molecular Sciences, 16(5), 11550–11573.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Q., Chen, W., Sun, L., Zhao, F., Huang, B., Yang, W., et al. (2012). The genome of Prunus mume. Nature Communications, 3, 1318–1325.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, F., Gao, Q., Khan, G., Luo, K., & Chen, S. (2014). Comparative transcriptome analysis of aboveground and underground tissues of Rhodiola algida, an important ethno-medicinal herb endemic to the Qinghai-Tibetan Plateau. Gene, 553(2), 90–97.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, G. H., Jiang, N. H., Song, W. L., Ma, C. H., Yang, S. C., & Chen, J. W. (2016a). De novo sequencing and transcriptome analysis of Pinellia ternata identify the candidate genes involved in the biosynthesis of benzoic acid and ephedrine. Frontiers in Plant Science, 7, 1–14.

    Google Scholar 

  • Zhang, S., Wu, Y., Jin, J., Hu, B., Zeng, W., Zhu, W., et al. (2015b). De novo characterization of Panax japonicus C. A. Mey transcriptome and genes related to triterpenoid saponin biosynthesis. Biochemical and Biophysical Research Communications, 466(3), 450–455.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, G. Q., Xu, Q., Bian, C., Tsai, W. C., Yeh, C. M., Liu, K. W., et al. (2016b). The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Scientific Reports, 6, 1–10.

    Article  Google Scholar 

  • Zhao, S., Tuan, P. A., Li, X., Kim, Y. B., Kim, H., Park, C. G., et al. (2013). Identification of phenylpropanoid biosynthetic genes and phenylpropanoid accumulation by transcriptome analysis of Lycium chinense. BMC Genomics, 14(1), 802–812.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng, X., Pan, C., Diao, Y., You, Y., Yang, C., & Hu, Z. (2013). Development of microsatellite markers by transcriptome sequencing in two species of Amorphophallus (Araceae). BMC Genomics, 14(1), 1–11.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Department of Biotechnology (DBT), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash C. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, S., Sharma, P.C. Next generation sequencing-based exploration of genomes and transcriptomes of medicinal plants. Ind J Plant Physiol. 21, 489–503 (2016). https://doi.org/10.1007/s40502-016-0258-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-016-0258-8

Keywords