Skip to main content
Log in

Induction of hairy roots and over production of anthraquinones in Oldenlandia umbellata L.: a dye yielding medicinal plant by using wild type Agrobacterium rhizogenes strain

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Hairy root cultures of Oldenlandia umbellata L. was established by infecting leaf explants with wild type Agrobacterium rhizogenes strain (MTCC 532). Leaf explants were co-cultured with activated bacteria in half strength Murashige and Skoog (MS) basal medium containing 500 mg l−1 ampicillin for the induction of hairy roots. To facilitate effective transfer of T-DNA of Ri plasmid, duration of co-cultivation and concentration of acetosyringone were standardized as 48 h and 200 µM, respectively. Roots were produced from the infected leaves within 14 days. Fast growing roots (2–3 cm) were excised and sub-cultured in half strength basal MS liquid medium for the development of transgenic lines. Thus ten hairy root lines were raised and superior line L3 was selected on the basis of fresh weight (1.5 g), dry weight (0.26 g) and anthraquinone (AQ) content (10.374 mg g−1 dry wt). Superior line (L3) was further cultured to test stability of AQ production and found that stable production of AQ during five consecutive sub-cultures. High performance liquid chromatographic method was adopted for quantification of purpurin from samples. Hairy roots produced 21.83 mg g−1 purpurin, while roots from wild growing plants produced 6.08 mg g−1 purpurin. Thus purpurin content in hairy roots was about 3.6 times higher than wild growing roots. Further, polymerase chain reaction based amplification using primers specific for genes rolA, rolB, and rolC confirmed the transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aoki, S., & Syono, K. (1999). Synergistic function of rolB, rolC, ORF13 and ORF14 of TL-DNA of Agrobacterium rhizogenes in hairy root induction in Nicotiana tabacum. Plant Cell Physiology, 40, 252–256.

    Article  CAS  Google Scholar 

  • Bonhomme, V., Laurain-Matter, D., Lacoux, J., Fliniaux, M. A., & Jacquin-Dubreuil, A. (2000). Tropan alkaloid production by hairy roots of Atropa belladona obtained after transformation with Agrobacterium rhizogenes 15834 and Agrobacterium tumefaciens containing rol A, B, C genes only. Journal of Biotechnology, 81, 151–158.

    Article  CAS  PubMed  Google Scholar 

  • Borroto, J., Coll, J., Rivas, M., Blanco, M., Concepcion, O., Yudelsy, A., et al. (2008). Anthraquinones from in vitro root culture of Morinda royoc L. Plant Cell Tissue Organ Culture, 94, 181–187.

    Article  CAS  Google Scholar 

  • Bulgakov, V. P. (2008). Functions of rol genes in plant secondary metabolism. Biotechnology Advances, 26, 318–324.

    Article  CAS  PubMed  Google Scholar 

  • Bulgakov, V. P., Tchernoded, G. K., Mischenko, N. P., Shkryl, Y. N., Fedoreyev, S. A., & Zhuravlev, Y. N. (2004). The rolB and rolC genes activate synthesis of anthraquinones in Rubia cordifolia cells by mechanism independent of octa decanoid signaling pathway. Plant Science, 166, 1069–1075.

    Article  CAS  Google Scholar 

  • Frackowiak, A., Skibinski, P., Gawel, W., Zaczynska, E., Czarny, A., & Gancarz, R. (2010). Synthesis of glycoside derivatives of hydroxylanthraquinone with ability to dissolve and inhibit formation of crystals of calcium oxalate; potential compounds in kidney stone therapy. European Journal of Medicinal Chemistry, 45, 1001–1007.

    Article  CAS  PubMed  Google Scholar 

  • Giri, A., & Narasu, L. (2000). Transgenic hairy roots: Recent trends and applications. Biotechnology Advances, 18, 1–22.

    Article  CAS  PubMed  Google Scholar 

  • Hagendoorn, M. J. M., Van der Plas, L. H. W., & Segers, G. J. (1994). Accumulation of anthraquinones in Morinda citrifolia cell suspensions. Plant Cell Tissue Organ Culture, 38, 227–234.

    Article  CAS  Google Scholar 

  • Han, Y. S., Van der Heijden, R., Lefeber, A. W. M., Erkelens, C., & Verpoorte, R. (2002). Biosynthesis of anthraquinones in cell cultures of Cinchona ‘Robusta’ proceeds via the methyl erythritol 4-phosphate pathway. Phytochemistry, 59, 45–55.

    Article  CAS  PubMed  Google Scholar 

  • Han, Y. S., Van der Heijden, R., & Verpoorte, R. (2001). Biosynthesis of anthraquinones in cell cultures of the Rubiaceae. Plant Cell, Tissue Organ Culture, 67, 201–220.

    Article  CAS  Google Scholar 

  • Henzi, M. X., Christey, M. C., & McNeil, D. L. (2000). Factors that influence Agrobacterium rhizogenes-mediated transformation of broccoli (Brassica oleracea L. var. italica). Plant Cell Reports, 19, 994–999.

    Article  CAS  Google Scholar 

  • Huang, Q., Lu, G., Shen, H., Chung, C. M., & Ong, N. M. (2007). Anti-cancer properties of anthraquinones from rhubarb. Medicinal Research Reviews, 27, 609–630.

    Article  CAS  PubMed  Google Scholar 

  • Krishnan, S. R. S., & Siril, E. A. (2015). Enhanced in vitro shoot regeneration in Oldenlandia umbellata L. by using quercetin: A naturally occurring auxin-transport Inhibitor. In Proceedings of National Academy of Science, India, Section B biological sciences. doi:10.1007/s40011-015-0672-0.

  • Kumary, J. K., & Sinha, A. K. (2004). Resurgence of natural colourants: A holistic view. Natural Product Research, 18, 59–84.

    Article  Google Scholar 

  • Lajis, N. H., Abdullah, M. A., Ismail, N. H., Ali, A. M., Marziah, M., Ariff, A. B., et al. (2000). Anthraquinones from cell suspension culture of Morinda elliptica. Natural Product Science, 6, 40–43.

    Google Scholar 

  • Ono, N., & Tian, L. (2011). The multiplicity of hairy root cultures: Prolific possibilities. Plant Science, 180, 439–446.

    Article  CAS  PubMed  Google Scholar 

  • Roy, A., Lakshmi, T., & Geeta, R. V. (2012). Estimation of quercetin in Acacia catechu ethanolic bark extracts by HPLC method. International Journal of Pharm Tech Research, 4, 501–505.

    CAS  Google Scholar 

  • Shkryl, Y. N., Veremeichik, G. N., Bulgakov, V. P., Tchernoded, G. K., Mischenko, N. P., Fedoreyen, S. A., & Zhuravlev, Y. N. (2008). Individual and combined effect of rol A, B and C genes on AQ production in Rubia cordifolia transformed calli. Biotechnology and Bioengineering, 100, 118–125.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R., & Chauhan, S. M. S. (2004). 9,10-Anthraquinones and other biologically active compounds from the genus Rubia. Chemistry & Biodiversity, 1, 1241–1264.

    Article  CAS  Google Scholar 

  • Siva, R. (2007). Status of natural dyes and dye yielding plants in India. Current Science, 92, 916–925.

    CAS  Google Scholar 

  • Siva, R. (2010). Plant dyes. In B. Singh (Ed.), Industrial crop and uses (pp. 349–357). Wallingford: CAB International.

    Chapter  Google Scholar 

  • Siva, R., Mayes, S., Behera, S. K., & Rajasekaran, C. (2012). Anthraquinones dye production using root cultures of Oldenlandia umbellata L. Industrial Crops and Products, 37, 415–419.

    Article  CAS  Google Scholar 

  • Siva, R., Mudgal, G., Rajesh, D., Khan, F. N., Vijyakumar, V., & Rajasekaran, C. (2009). Characterization of novel pH indicator of natural dye Oldenlandia umbellata L. Natural Product Research, 23, 1210–1217.

    Article  Google Scholar 

  • Snedecor, G. W., & Cochran, W. G. (1962). Statistical methods (4th ed.). Iowa: The Iowa State University Press.

    Google Scholar 

  • Sreeranjini, S., & Siril, E. A. (2013). Production of anthraquinones from adventitious root derived callus and suspension cultures of Morinda citrifolia L. in response to auxins, cytokinins and sucrose levels. Asian Journal of Plant Science and Research, 3, 131–138.

    CAS  Google Scholar 

  • Srivastava, S., & Srivastava, A. K. (2007). Hairy root culture for mass-production of high-value secondary metabolites. Critical Reviews in Biotechnology, 27, 29–43.

    Article  CAS  PubMed  Google Scholar 

  • Stieger, P. A., Meyer, A. D., Kathmann, P., Frundt, C., Niederhauser, I., Barone, M., & Kuhlemeier, C. (2004). The orf13 T-DNA gene of Agrobacterium rhizogenes confers meristematic competence to differentiated cells. Plant Physiology, 135, 1798–1808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, M. L., Zhu, X. M., Shao, J. R., Tang, Y. X., & Wu, Y. M. (2011). Production and metabolic engineering of bioactive substances in plant hairy root culture. Applied Microbiology and Biotechnology, 90, 1229–1239.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. P.M. Radhamany, Professor and Head, Department of Botany, University of Kerala for facilities provided. SKSR thanks University of Kerala, Thiruvananthapuram, India for granting University JRF (Ac E1B1/43700/2011 dt. 26/12/11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Siril.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saranya Krishnan, S.R., Siril, E.A. Induction of hairy roots and over production of anthraquinones in Oldenlandia umbellata L.: a dye yielding medicinal plant by using wild type Agrobacterium rhizogenes strain. Ind J Plant Physiol. 21, 271–278 (2016). https://doi.org/10.1007/s40502-016-0229-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-016-0229-0

Keywords

Navigation