Skip to main content
Log in

Evaluation of heat tolerance indices in bread wheat (Triticum aestivum L.) genotypes based on physiological, biochemical and molecular markers

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

An experiment was carried out to examine wheat seed germination, vigor index, biochemical indices and genetic diversity associated with heat tolerance, using ISSR markers, under heat stress, viz., 22 ± 1, 25 ± 1, 30 ± 1 and 35 ± 1 °C referred as T0, T1, T2 and T3, respectively, in bread wheat genotypes. Wheat genotypes were categorized as heat tolerant and susceptible based on heat tolerance index (HTI). The germination percentage and seedling vigor index were positively correlated with HTI. The HTI was found higher in tolerant cv. GW-190, followed by GW-496, J-2010-02 and J-2010-10 genotypes under T3. Leaf proline content correlated positively with HTI. Sugars, free amino acids and protein content in leaf correlated positively with each other during heat stress. Total 24 ISSR primers were used to generate 124 bands across 10 wheat genotypes, of which 76 bands were polymorphic with an average of 3.16 bands per marker. The ISSR markers distinguished two clusters of wheat genotypes and out grouped heat tolerant genotype (GW-190 and GW-496) and heat sensitive genotype (J-2010-05) with minimum 68 % similarity. The jaccard similarity coefficient ranged from 0.68 to 0.89. The UBC-811 amplified unique markers distinguished tolerant GW-190 (152 bp) and sensitive J-2010-10 (110 bp) genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ahmed, J. U., & Hasan, M. A. (2011). Evaluation of seedling proline content of wheat genotypes in relation to heat tolerance. Bangladesh Journal of Botany, 40(1), 17–22.

    Article  Google Scholar 

  • Almaghrabi, O. A. (2012). Impact of drought stress on germination and seedling growth parameters of some wheat cultivars. Life Science Journal, 9(1), 590–598.

    Google Scholar 

  • Amirjani, M. (2012). Estimation of wheat responses to “high” heat stress. American-Eurasian Journal of Sustainable Agriculture, 6(4), 222–233.

    Google Scholar 

  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  • Briggle, L. W. (1980). Origin and botany of wheat. In E. Hafliger (Ed.), Wheat (pp. 6–13). Basle: Documenta Ciba-Geigy.

    Google Scholar 

  • Buriro, M., Oad, F. C., Kerio, M. I., Tunio, S., Gandahi, A. W., Hassan, S. W. U., & Oad, S. M. (2011). Wheat seed germination under the influence of temperature regimes. Sarhad Journal of Agriculture, 27(4), 539–543.

    Google Scholar 

  • Cobelline, M., Mazza, L., Cialffi, M., Lafindra, D., & Borghi, B. (1998). Effect of heat shock during grain filling on protein composition and technological quality of wheat. Euphytica, 100, 147–154.

    Article  Google Scholar 

  • Dubois, M., Gillies, R. A., Hemilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 23, 350–360.

    Article  Google Scholar 

  • Eskandari, H., & Kazemi, K. (2011). Germination and seedling properties of different wheat cultivars under salinity conditions. Notulae Scientia Biologicae, 3(3), 130–134.

    Google Scholar 

  • Essemine, J., Ammar, S., & Bouzid, S. (2010). Effect of temperature on root and shoot development in wheat seedlings during early growth stage. Asian Journal of Plant Science, 9(6), 375–379.

    Article  Google Scholar 

  • Fernandez, G. C. J. (1992). Effective selection criteria for assessing stress tolerance. In C. G. Kuo (Ed.), Proceedings of the international symposium on adaptation of vegetables and other food crops in temperature and water stress. Tainan: Publication.

    Google Scholar 

  • Fisher, R., & Yates, N. (1948). Statistical methods for research workers (12th ed., pp. 130–131)., Biological monograph and manuals Edinburg, London: Oliver and Boyd.

    Google Scholar 

  • Ghazi, N. A., Asadulla, A., & Yahia, O. (2007). Seed germination and early growth of three barley cultivars as affected by temperature and water stress. American-Eurasian Journal of Agricultural and Environmental Science, 2(2), 112–117.

    Google Scholar 

  • Ghislain, M., Zhang, D., Fajardo, D., Huamann, Z., & Hijmans, R. H. (1999). Marker assisted sampling of the cultivated Andean potato Solanum phureja collection using RAPD markers. Genetic Resources and Crop Evolution, 46, 547–555.

    Article  Google Scholar 

  • Grass, L., & Burris, J. S. (1995). Effect of heat stress during seed development and maturation on wheat (Triticum durum) seed quality. I. Seed germination and seedling vigor. Canadian Journal of Plant Science, 75, 821–829.

    Article  Google Scholar 

  • Gupta, N. K., Khan, A., Maheshwari, A., Narayan, S., Chhapola, O. P., Arora, A., & Singh, G. (2015). Effect of post anthesis high temperature stress on growth, physiology and antioxidative defense mechanisms in contrasting wheat genotypes. Indian Journal of Plant Phyiology, 20(2), 103–110.

    Article  Google Scholar 

  • Hasan, M. A., & Ahmed, J. U. (2005). Kernel growth physiology of wheat under late planting heat stress. Journal of the Natural Science Foundation of Sri Lanka, 33(3), 193–204.

    Google Scholar 

  • Hasan, M. A., Ahmed, J. U., Hossain, T., Hossain, M. M., & Ullah, M. A. (2004). Germination characteristics and seed reserve mobilization during germination of different wheat genotypes under variable temperature regimes. Journal of the Natural Science Foundation of Sri Lanka, 32(3&4), 97–107.

    Google Scholar 

  • Hendricks, S. B., & Tylorson, R. B. (1976). Variation in germination and amino acid leakage of seeds with temperature related to membrane phase changes. Plant Physiology, 58, 7–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khodarahmpouret, Z., Choukan, R., Bihamta, M. R., & Hervan, E. M. (2011). Determination of the best heat stress tolerance indices in maize (Zea mays L.) inbred lines and hybrids under khuzestan province conditions. Journal of Agriculture Science and Technology, 13, 111–121.

    Google Scholar 

  • Kumar, P., Yadava, R. K., Gollen, B., Kumar, S., Verma, R. K., & Yadav, S. (2011). Nutritional contents and medicinal properties of wheat: A review. International Journal of Life Science and Medical Research, 22, 1–10.

    Google Scholar 

  • Kuroyanagi, T., & Paulsen, G. (1985). Mode of high temperature injury to wheat. II comparison of wheat and rice with and without inflorescences. Physiologia Plantarum, 65, 203–208.

    Article  CAS  Google Scholar 

  • Lee, Y. P., & Takahashi, T. (1966). An improved colorimetric determination of amino acids with the use of ninhydrin. Analytical Bio-chemistry, 14, 71–75.

    CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurements with folin-phenol reagent. The Journal of biological Chemistry, 193, 265–275.

    CAS  PubMed  Google Scholar 

  • Motawei, M. I., Al-Doss, A. A., & Moustafa, K. A. (2007). Genetic diversity among selected wheat lines differing in heat tolerance using molecular markers. Journal of Food, Agriculture and Environment, 5(1), 180–183.

    CAS  Google Scholar 

  • Najaphy, A., Parchin, R. A., & Farshadfa, E. (2011). Evaluation of genetic diversity in wheat cultivars and breeding lines using inter simple sequence repeat markers. Biotechnology and Biotechnological Equipment, 25(4), 2634–2638.

    Article  CAS  Google Scholar 

  • Nikkhah-kouchaksaraei, H., Martyrusian, H., & Nematzadeh, G. (2012). Evaluation of tolerance to heat stress in new varieties of durum wheat (Triticum durum L.). International Journal of Agriculture Research and Review, 2(6), 744–750.

    Google Scholar 

  • Prasanth, V. V., Chakravarthi, D. V. N. T., Kiran, V., Rao, Y. V., Panigrahy, M., Mangrauthia, S. K., et al. (2012). Evaluation of rice germplasm and introgression lines for heat tolerance. Annals of Biological Research, 3(11), 5060–5068.

    CAS  Google Scholar 

  • Rohlf, F. J. (1998). NTSYS-pc. Numerical taxonomy and multivariate analysis system, version 2.02. New York: Exter Software Setauket.

    Google Scholar 

  • Roy, M., & Ghose, B. (1996). Polyamines both common and uncommon under heat stress in rice Oryza sativa callus. Physiology of Plant, 98, 196–200.

    Article  CAS  Google Scholar 

  • Saxena, D. C., Sai Prasad, S. V., Chatrath, Ravish, Mishra, S. C., Watt, Michelle, Prashar, Renu, et al. (2014). Evaluation of root characteristics, canopy temperature depression and stay green trait in relation to grain yield in wheat under early and late sown conditions. Indian Journal of Plant Phyiology, 19(1), 43–47.

    Article  Google Scholar 

  • Sial, A. M., Arain, M. A., Khanzada, S., Naqvi, M. H., Dahot, M. U., & Nizamani, N. A. (2005). Yield and quality parameters of wheat genotypes affected by sowing dates and high temperature stress. Pakistan Journal of Botany, 37, 575–584.

    Google Scholar 

  • Sikder, S., & Paul, N. K. (2010). Study of influence of temperature regimes on germination characteristics and seed reserves mobilization in wheat. African Journal of Plant Science, 4(10), 401–408.

    Google Scholar 

  • Stein, N., Herren, G., & Keller, B. (2001). A new DNA extraction method for high-throughput marker analysis in a large genome species such as Triticum aestivum. Plant Breeding, 120, 354–356.

    Article  CAS  Google Scholar 

  • Thind, S. K., & Malik, C. P. (1987). Correlated changes of some amino acids and protease in wheat seedlings subjected to water and temperature stresses. Phyton (Austria), 28, 261–269.

    Google Scholar 

  • Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: an overview. Environmental and Expimental Botany, 61, 199–223.

    Article  Google Scholar 

  • Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218, 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Wardlaw, I. F., & Moncur, L. (1995). The response of wheat to high temperature following anthesis 1. The rate and duration of kernal filling. Australian Journal of Plant Physiology, 22, 391–397.

    Article  Google Scholar 

  • XueCheng, S., Hu, C. X., Tan, Q. L., Wei, W. X., & Wang, Y. H. (2002). Effect of molybdenum application on content of free amino acids and soluble sugar and protein in winter wheat at different growth stages. Journal of Hauzhong Agriculture University, 21(1), 40–43.

    Google Scholar 

  • Zhu, Y., Jin, H., Rui, H., Yang, W., & Shuijin, Z. (2011). Fingerprinting and identification of closely related wheat (Triticum aestivum L.) cultivars using ISSR and fluorescence-labeled TP-M13-SSR markers. Australian Journal of Crop Science, 5(7), 846–850.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harsukh P. Gajera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katakpara, Z.A., Gajera, H.P., Vaja, K.N. et al. Evaluation of heat tolerance indices in bread wheat (Triticum aestivum L.) genotypes based on physiological, biochemical and molecular markers. Ind J Plant Physiol. 21, 197–207 (2016). https://doi.org/10.1007/s40502-016-0222-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-016-0222-7

Keywords

Profiles

  1. Harsukh P. Gajera