Skip to main content
Log in

Transcript abundance, enzyme activity and metabolite concentration regulates differential carboxylate efflux in soybean under low phosphorus stress

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Low phosphorus (P) availability in soil owing to adsorption, precipitation and conversion of organic forms drastically limits plant growth and yield. Among several strategies adopted by plants to cope with P starvation, research on root carboxylate exudation to release fixed P in soil is gaining impetus. Since the rate of exudation is a function of carboxylate synthesis and expression of efflux transporters, our objective was to analyse the expression and activity of genes influencing carboxylate exudation in soybean and the effect of P starvation on biomass and P acquisition efficiency. The relative expression levels and enzyme activity of phosphoenolpyruvate carboxylase, malate dehydrogenase and citrate synthase in soybean roots increased during low-P stress, particularly in genotypes exhibiting higher carboxylate efflux. With the exception of two genotypes (G-2656 and HIMSO-1521), the relative expression of efflux transporters for malate and citrate did not correspond to carboxylate exudation. Carboxylates in root apices were higher in NRC-7, HIMSO-1521 and EC-232019 under low-P as compared to sufficient P. P-efficient soybean genotypes (EC-232019 and HIMSO-1521) exhibiting higher carboxylate exudation showed better P acquisition and biomass under low-P stress. Down regulation of pyruvate kinase at the transcript- and enzyme-level was observed under low-P stress in P-efficient genotypes suggesting an effective glycolytic bypass mechanism to facilitate continued carbon flux from glycolytic pathway to the tricarboxylic acid cycle. Hence, transcript abundance, enzyme activity and internal carboxylate concentration in the root tissues govern carboxylate efflux in soybean, in turn, influencing biomass and P uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2 
Fig. 3 

Similar content being viewed by others

References

  • Anoop, V. M., Basu, U., McCammon, M. T., McAlister-Henn, L., & Taylor, G. J. (2003). Modulation of citrate metabolism alters aluminium tolerance in yeast and transgenic canola overexpressing a mitochondrial citrate synthase. Plant Physiology, 132, 2205–2217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary, M. I., Adu-Gyamfi, J. J., Saneoka, H., Nguyen, N. T., Suwa, R., Kanai, S., et al. (2008). The effect of phosphorus deficiency on nutrient uptake, nitrogen fixation and photosynthetic rate in mashbean, mungbean and soybean. Acta Physiologia Plantarum, 30, 537–544.

    Article  CAS  Google Scholar 

  • Delhaize, E., Taylor, P., Hocking, P. J., Simpson, R. J., Ryan, P. R., & Richardson, A. E. (2009). Transgenic barley (Hordeumvulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil. Plant Biotechnology Journal, 7, 391–400.

    Article  CAS  PubMed  Google Scholar 

  • Dong, D., Peng, X., & Yan, X. (2004). Organic acid exudation induced by phosphorus deficiency and/or aluminium toxicity in two contrasting soybean genotypes. Physiologia Plantarum, 122, 190–199.

    Article  CAS  Google Scholar 

  • Gan, Y., Stulen, I., van Keulen, H., & Kuiper, P. J. C. (2002). Physiological changes in soybean (Glycine max) Wuyin9 in response to N and P nutrition. Annals of Applied Biology, 140, 319–329.

    Article  Google Scholar 

  • Gregory, A. L., Hurley, B. A., Tran, H. T., Valentine, A. J., She, Y., Knowles, V. L., & Plaxton, W. C. (2009). In vivo regulatory phosphorylation of the phosphoenolpyruvate carboxylase AtPPC1 in phosphate-starved Arabidopsis thaliana. Biochemical Journal, 420, 57–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, C., Pineros, M. A., Tian, J., Yao, Z., Sun, L., Liu, J., et al. (2013). Low-PH, aluminium, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils. Plant Physiology, 161, 1347–1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao, H., Wan, H., Shaff, J., Wang, X., Yan, X., & Kochian, L. V. (2006). Phosphorus and aluminium interactions in soybean in relation to aluminium tolerance. Exudation of specific organic acids from different regions of the intact root system. Plant Physiology, 141, 674–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipton, D. S., Blanchar, R. W., & Blevins, D. G. (1987). Citrate, malate and succinate concentration in exudates from P-sufficient and P-stressed Medicagosativa L. seedlings. Plant Physiology, 85, 315–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, J., Gao, X., Dong, Z., Yi, J., & An, L. (2012). Improved phosphorus acquisition by tobacco through transgenic expression of mitochondrial malate dehydrogenase from Penicilliumoxalicum. Plant Cell Reports, 31, 49–56.

    Article  PubMed  Google Scholar 

  • Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytical Chemico Acta, 27, 31–36.

    Article  CAS  Google Scholar 

  • Ohwaki, Y., & Hirata, H. (1992). Differences in carboxylic acid exudation among P-starved leguminous crops in relation to carboxylic acid contents in plant tissues and phospholipid level in roots. Soil Science and Plant Nutrition, 38(2), 235–243.

    Article  CAS  Google Scholar 

  • Pandey, R., Krishnapriya, V., Kishora, N., Singh, S. B., & Singh, B. (2013). Shoot labelling with 14CO2: a technique for assessing total root carbon exudation under phosphorus stress. Indian Journal of Plant Physiology, 18(3), 250–262.

    Article  Google Scholar 

  • Pandey, R., Meena, S. K., Krishnapriya, V., Ahmad, A., & Kishora, N. (2014). Root carboxylate exudation capacity under phosphorus stress does not improve grain yield in green gram. Plant Cell Reports, 33, 919–928.

    Article  CAS  PubMed  Google Scholar 

  • Qiu, J., & Israel, D. W. (1994). Carbohydrate accumulation and utilization in soybean plants in response to altered phosphorus nutrition. Physiologia Plantarum, 90, 722–728.

    Article  CAS  Google Scholar 

  • Rengel, Z., & Marschner, P. (2005). Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytologist, 168, 305–312.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, P. R., Delhaize, E., & Jones, D. L. (2001). Function and mechanism of organic acid exudation from plant roots. Annual Review of Plant Physiology and Molecular Biology, 52, 527–560.

    Article  CAS  Google Scholar 

  • Ryan, M. H., Tibbett, M., Edmonds-Tibbett, T., Suriyagoda, L. D. B., Lambers, H., Cawthray, G. R., & Pang, J. (2012). Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition. Plant, Cell and Environment, 35, 2170–2180.

    Article  CAS  PubMed  Google Scholar 

  • Sadasivam, S., & Manickam, A. (2008). Biochemical Methods. New Delhi: New Age International Publishers.

    Google Scholar 

  • Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  • Schulze, J., Tesfaye, M., Litjens, R. H. M. G., Bucciarelli, B., Trepp, G., Miller, S., et al. (2002). Malate plays a central role in plant nutrition. Plant and Soil, 247, 133–139.

    Article  CAS  Google Scholar 

  • Sugiyama, T., Goto, Y., & Akazawa, T. (1968). Pyruvate kinase activity of wheat plants grown under potassium deficient conditions. Plant Physiology, 43, 730–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tesfaye, M., Temple, S. J., Allan, D. L., Vance, C. P., & Samac, D. A. (2001). Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminium. Plant Physiology, 127, 1836–1844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsvetkova, G. E., & Georgiev, G. I. (2003). Effect of phosphorus nutrition on the nodulation, nitrogen fixation and nutrient use efficiency of Bradyrhizobiumjaponicum-soybean (Glycine max L. Merr.) symbiosis. Bulgarian Journal of Plant Physiology, 2003, 331–335.

    Google Scholar 

  • Uhde-Stone, C., Gilbert, G., Jonhson, J. M. F., Litjens, R., Zinn, K. E., Temple, S. J., Vance, C. P., & Allan, D. L. (2003). Acclimation of white lupin to phosphorus deficiency involves enhanced expression of genes related to organic acid metabolism. Plant and Soil, 248, 99–116.

    Article  CAS  Google Scholar 

  • Wang, Y., Xu, H., Kou, J., Shi, L., Zhang, C., & Xu, F. (2013). Dual effects of transgenic Brassica napus overexpressing CS gene on tolerances to aluminium toxicity and phosphorus deficiency. Plant and Soil, 362, 231–246.

    Article  CAS  Google Scholar 

  • Wouterlood, M., Cawthray, G. R., Scanlon, T. T., Lambers, H., & Veneklaas, E. J. (2004). Carboxylate concentrations in the rhizosphere of lateral roots of chickpea (Cicerarietinum) increase during plant development, but are not correlated with phosphorus status of soil or plants. New Phytologist, 162, 745–753.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Extra Mural Research Division [Grant number 38(1354)/13/EMR-II] of Council of Scientific and Industrial Research, New Delhi, India. Senior Research Fellowship provided by ICAR-IARI, New Delhi to VK is sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vengavasi, K., Kumar, A. & Pandey, R. Transcript abundance, enzyme activity and metabolite concentration regulates differential carboxylate efflux in soybean under low phosphorus stress. Ind J Plant Physiol. 21, 179–188 (2016). https://doi.org/10.1007/s40502-016-0219-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-016-0219-2

Keywords

Navigation