Indian Journal of Plant Physiology

, Volume 20, Issue 1, pp 72–78 | Cite as

Changes in phytonutrients and antioxidant properties of Cordia myxa and Carissa carandas fruit during ripening

Original Article


Fruit ripening is the process resulting in changes in color, taste and texture, which make the fruit acceptable for consumption. A study was conducted to study changes in phytonutrients, viz., soluble proteins, total soluble sugars, antioxidants such as phenols, ascorbic acid and lycopene, and antioxidant activity in terms of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, FRAP and nitric oxide scavenging activity in fruits of Cordia myxa and Carissa carandas at five ripening stages. Soluble proteins, total phenol contents, DPPH radical scavenging activity and nitric oxide scavenging activity decreased, while total soluble sugars, ascorbic acid content and ferric reducing activity increased with the maturity of fruit. Significant increase in antioxidant lycopene was estimated only in the fully ripened red color Carissa fruit. These studies are important for quantifying nutritive value of ripened fruits.


Antioxidant activity Carissa carandas Cordia myxa Lycopene Ripening stages 


  1. Alami, R., & Macksad, A. (1974). Medicinal plants in Kuwait (p. 6). Kuwait: Al-Assriya Press.Google Scholar
  2. Al-Awadi, F. M., Srikumar, T. S., Anim, J. T., & Khan, I. (2001). Antiinflammatory effects of Cordia myxa fruit on experimentally induced colitis in rats. Nutrition, 17(5), 391–396.CrossRefPubMedGoogle Scholar
  3. Ancos, B., Gonzal’s, E. M., & Pilar Cano, M. (2000). Ellagic acid, vitamin C and total phenolic contents and radical scavenging capacity affected by freezing and frozen storage in raspberry fruit. Journal of Agricultural and Food Chemistry, 48(10), 4565–4570.CrossRefPubMedGoogle Scholar
  4. Arancibia-Avila, P., Toledo, F., Park, Y. S., Jung, S. T., Kang, S. G., Heo, B. G., et al. (2008). Antioxidant properties of durian fruit as influenced by ripening. LWT-Food Science and Technology, 41, 2118–2125.CrossRefGoogle Scholar
  5. Balakrishnan, N., Panda, A. B., Raj, N. R., Srivastava, A., & Prathani, R. (2009). The evaluation of nitric oxide scavenging activity of Acalypha indica Linn. root. Asian Journal of Resaerch in Chemistry, 2, 148–150.Google Scholar
  6. Bognar, A., Bohling, H., & Forty, H. (1990). Nutrient retention in chilled foods. In T. R. Gormley (Ed.), Chilled foods, the state of the art (pp. 305–321). London: Elsevier Applied Science.Google Scholar
  7. Bradford, M. (1976). A rapid and sensitive method for the quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefPubMedGoogle Scholar
  8. Burkill, I. H. (1935). A dictionary of the economic products of Malay Peninsular. Kuala Lumpur: Ministry of Agriculture Malaysia.Google Scholar
  9. El Bulk, R. E., Babiker, E. E., & El Tinay, A. H. (1997). Changes in chemical composition of guava fruits during development and ripening. Food Chemistry, 59, 395–399.CrossRefGoogle Scholar
  10. Feskanich, D., Ziegler, R. G., Michaud, D. S., Giovannucci, E. L., Speizer, F. E., Willett, W. C., et al. (2000). Prospective study of fruit and vegetable consumption and risk of lung cancer among men and women. Journal of the National Cancer Institute, 92, 1812–1823.CrossRefPubMedGoogle Scholar
  11. Fish, W. W., Perkin-Veazie, P., & Collins, J. K. (2002). A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. Journal of Food Composition and Analysis, 15, 309–317.CrossRefGoogle Scholar
  12. Gerber, M., Boutron-Ruault, M. C., Hercberg, S., Riboli, E., Scalbert, A., & Siess, M. H. (2002). Food and cancer: State of the art about the protective effect of fruits and vegetables. Bulletin du Cancer, 89, 293–312.PubMedGoogle Scholar
  13. Giovannoni, J. (2001). Molecular biology of fruit maturation and ripening. Annual Review of Plant Physiology and Molecular Biology, 52, 725–749.CrossRefGoogle Scholar
  14. Gupta, V. K., Singh, D., & Svetambari, (2003). Physiological changes in aonla (Emblica officinalis Gaertn.) fruits during growth and development. Haryana Journal of Horticultural Sciences, 32, 37–39.Google Scholar
  15. Halliwell, B., & Gutteridge, J. M. C. (1999). Free radicals in biology and medicine (3rd ed.). Oxford: Oxford University Press.Google Scholar
  16. Hudson, B. J. F. (1990). Food antioxidants. London: Elsevier Applied Science.CrossRefGoogle Scholar
  17. Jayaprakasha, G. K., Tamil selvi, A., & Sakariah, K. K. (2003). Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Research International, 36, 117–122.CrossRefGoogle Scholar
  18. Jayaweera, D. M. A. (1981). Medicinal plans used in Ceylon. Colombo: The national Science Council of Sri Lanka.Google Scholar
  19. Kermasha, S., Barthakur, N. N., Alli, I., & Mohan, N. K. (2006). Changes in chemical composition of kew cultivar of pineapple fruit during development. Journal of the Science of Food and Agriculture, 39, 317–324.CrossRefGoogle Scholar
  20. Krings, U., & Berger, R. G. (2001). Antioxidant activity of some roasted foods. Food Chemistry, 72, 223–229.CrossRefGoogle Scholar
  21. Kulkarni, A. P., & Aradhya, S. M. (2005). Chemical changes and antioxidant activity in pomegranate arils during fruit development. Food Chemistry, 93, 319–324.CrossRefGoogle Scholar
  22. Larson, R. A. (1988). The antioxidant of higher plants. Phytochemistry, 27(4), 969–978.CrossRefGoogle Scholar
  23. McCready, R. M., Gujjolz, J., Silviers, V., & Owers, H. S. (1950). Determination of starch & amylase in vegetables: Application to peas. Analytical Chemistry, 22, 1156.CrossRefGoogle Scholar
  24. Namiki, M. (1990). Antioxidants/antimutagens in food. CRC Critical Reviews in Food Science and Nutrition, 29, 273–300.CrossRefPubMedGoogle Scholar
  25. Navarro, J. M., Flores, P., Garrido, C., & Martinez, V. (2006). Changes in the content of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chemistry, 96, 66–73.CrossRefGoogle Scholar
  26. Nilsson, J., Pillai, D., Onning, G., Persson, C., Nilsson, A., & Akesson, B. (2005). Comparison of the 2,2-azinobis-3-ethylbenzotiazo-line-6-sulfonic acid (ABTS) and ferric reducing anti-oxidant power (FRAP) methods to assess the total antioxidant capacity in extracts of fruit and vegetables. Molecular Nutrition & Food Research, 49, 239–246.CrossRefGoogle Scholar
  27. Oudhia, P. (2007). Cordia myxa L. In G. H. Schmelze & A. Gurib-Fakim (Eds.), PROTA (Plant Resources of Tropical Africa/Ressources ve´ge´tales de l’Afrique tropicale) (pp. 305–321). London: Fondation PROTA.Google Scholar
  28. Oyaizu, M. (1986). Studies on products of browning reaction: antioxidative activity of products of browning reaction prepared from glucosamine. Japanese Journal of Nutrition, 44, 307–315.CrossRefGoogle Scholar
  29. Palafox-Carlosa, H., Yahiab, E., Islas-Osunaa, M. A., Gutierrez-Martinezc, P., Robles-Sánchezd, M., & González-Aguilara, G. A. (2012). Effect of ripeness stage of mango fruit (Mangifera indica L., cv. Ataulfo) on physiological parameters and antioxidant activity. Scientia Horticulturae, 135, 7–13.CrossRefGoogle Scholar
  30. Patel, P. R., & Rao, T. V. R. (2009). Physiological changes in relation to growth and ripening of kirni [(Manilkara hexandra (Roxb.) Dubard] fruit. Fruits, 64, 139–146.CrossRefGoogle Scholar
  31. Raffo, A., Leonardi, C., Fogliano, V., Ambrosino, P., Salucci, M., Gennaro, L., et al. (2002). Nutritional value of cherry tomatoes (Lycopersicon esculentum Cv. Naomi F1) harvested at different ripening stages. Journal of Agricultural and Food Chemistry, 50, 6550–6556.CrossRefPubMedGoogle Scholar
  32. Rangana, S. (1977). Manual of analysis of fruits and vegetable products. New Delhi: Tata Macgrow-Hill Publishing Company Ltd.Google Scholar
  33. Rice-Evans, C. A., & Miller, N. J. (1996). Antioxidant activity of flavonoids as bioactive components of food. Transactions and Biochemistry Society, 24(3), 790–795.Google Scholar
  34. Roe, J. H. (1955). The determination of sugar in blood and spinal fluid with anthrone reagent. The Journal of Biological Chemistry, 212, 335–343.PubMedGoogle Scholar
  35. Sadashivam, S., & Manickum, A. (1992). Biochemical methods for agricultural sciences. New Delhi: Wiley Eastern Ltd.Google Scholar
  36. Sairam, R. K., Srivastava, G. C., & Saxena, D. C. (2000). Increased antioxidant activity under elevated temperature: A mechanism of heat stress tolerance in wheat genotypes. Biologia Plantarum, 43, 245–251.CrossRefGoogle Scholar
  37. Sankhla, N., Gehlot, H. S., Choudhary, R., Joshi, S., & Dinesh, R. (2006). Ecophysiological studies on Indian desert plants: Effect of salt on antioxidant defense systems in Zizyphus spp. In M. A. Khan & D. J. Weber (Eds.), Ecophysiology of high salinity tolerant plants, 201–213. Netherlands: Springer.Google Scholar
  38. Siddhuraju, P., & Becker, K. (2007). The antioxidant and free radical scavenging activities of processed cowpea (Vigna unguiculata L.) see extracts. Food Chemistry, 101, 10–19.CrossRefGoogle Scholar
  39. Simic, M. G. (1988). Mechanism of inhibition of free radical processed in mutagenesis and carcinogenesis. Mutation Research, 202, 377–386.CrossRefPubMedGoogle Scholar
  40. Singleton, V. L., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods in Enzymology, 299, 152–178.CrossRefGoogle Scholar
  41. Stahl, W., & Sies, H. (1996). Lycopene: A biological important carotenoid for humans? Archives of Biochemistry and Biophysics, 336, 1–9.CrossRefPubMedGoogle Scholar
  42. Yan, L. Y., Teng, L. T., & Jhi, T. J. (2006). Antioxidant properties of guava fruit: comparison with some local fruits. Sunway Academic Journal, 3, 9–20.Google Scholar
  43. Zozio, S., Servent, A., Cazal, G., Mbéguié-A-Mbéguié, D., Ravion, S., Pallet, D., & Abel, H. (2014). Changes in antioxidant activity during the ripening of jujube (Ziziphus mauritiana Lamk). Food Chemistry, 150, 448–456.CrossRefPubMedGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2015

Authors and Affiliations

  1. 1.BNF and Stress Physiology Laboratory, Department of BotanyJ. N. Vyas UniversityJodhpurIndia

Personalised recommendations