Skip to main content
Log in

Effect of nickel on plant water relations and growth in green gram

  • Short Communication
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Effect of nickel on water potential (ψw), osmotic potential (ψs), turgor potential (ψp) and relative water content (RWC) was studied in the first trifoliate leaf of green gram [Vigna radiata (L.) Wilczek] in order to establish its possible influences on growth through altered water relations. Plants were grown on silica with nutrient solution containing 1, 10, 100 and 1,000 μM, Ni as NiC12·6H2O. The effect of Ni on water relations was highly concentration dependent. The growth promoting concentration of Ni (1 μM) resulted in the highest ψw and ψp, and lowest ψs. The growth inhibiting concentrations of Ni (10, 100 and 1,000 μM) significantly decreased ψw and ψp. At 1,000 μM Ni significantly increased ψs. At 1 μM Ni significantly increased RWC, while it was adversely affected at 10–1,000 μM Ni concentrations. One μM Ni treatment increased chlorophyll contents and growth, while higher concentrations (10–1,000 μM) of Ni significantly decreased the chlorophyll contents and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Arnon, D. J. (1949). Copper enzyme in isolated chloroplast, polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, 1–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Awasthi, K., & Sinha, P. (2013). Nickel stress induced antioxidant defence system in sponge gourd (Luffa cylindrical). Journal of Plant Physiology & Pathology, 1, 1–5.

    Google Scholar 

  • Barcelo, J., Poschenrieder, C., Andreu, I., & Gunse, B. (1986a). Cadmium-induced decrease of water stress resistance in bush bean plants (Phaseolus vulgaris L. cv. Contender). I. Effects of Cd on water potential, relative water content and cell wall elasticity. Journal of Plant Physiology, 125, 17–25.

    Article  CAS  Google Scholar 

  • Barcelo, J., & Poschenrieder, C. (1990). Plant water relations as affected by heavy metal stress: a review. Journal of Plant Nutrition, 13, 1–37.

    Article  CAS  Google Scholar 

  • Barcelo, J., Poshenrieder, C., & Gunse, B. (1986b). Water relations of chromium VI treated bush bean plants (Phaseolus vulgaris L. cv. Contender) under both normal and water stress conditions. Journal of Experimental Botany, 37, 178–187.

    Article  CAS  Google Scholar 

  • Barrs, H. D., & Weatherley, P. E. (1962). A re-examination of the relative turgidity technique for estimating water deficit in leaves. Australian Journal of Biological Sciences, 15, 413–418.

    Google Scholar 

  • Bishnoi, N. R., Sheoran, I. S., & Singh, R. (1993). Influence of cadmium and nickel on photosynthesis and water relations in wheat leaves of different insertion level. Photosynthetica, 28, 473–479.

    CAS  Google Scholar 

  • Bloom, A. J. (2002). Mineral nutrition. In L. Taiz & E. Zeiger (Eds.), Plant Physiology (pp. 67–86). Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Brown, P. H., Welch, R. M., & Cary, E. E. (1987). Nickel: A micronutrient essential for higher plants. Plant Physiology, 85, 801–803.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, C., Huang, D., & Lu, J. (2009). Functions and toxicity of nickel in plants: recent advances and future prospects. Clean, 37, 304–313.

    CAS  Google Scholar 

  • Clark, R. B. (1982). Plant response to mineral element toxicity and deficiency. In M. N. Christiansen & C. F. Lewis (Eds.), Breeding plants for less favorable environments (pp. 71–142). New York: Wiley.

    Google Scholar 

  • Dekock, P. C., Hall, A., & Inkson, H. E. (1979). A study of peroxidase and catalase distribution in the potato tuber. Annals of Botany, 43, 295–298.

    CAS  Google Scholar 

  • Dixon, N. E., Gazzola, C., Blakely, R. L., & Lerner, B. (1975). Jack-Bean Urease (EC. 3.5.1.5.3) A metalloenzyme. A simple biological role for nickel. Journal of American Chemical Society, 97, 4131–4133.

    Article  CAS  Google Scholar 

  • Doganlar, Z. B., Cakmak, S., & Yanik, T. (2012). Metal uptake and physiological changes in Lemna gibba exposed to manganese and nickel. International Journal of Biology, 4, 148–157.

    Article  CAS  Google Scholar 

  • Dunn, C. E. (2007). New Perspectives on Biogeochemical Exploration. Proceedings of Exploration Fifth Decennial International Conference on Mineral Exploration (pp. 249–261).

  • Eskew, D. L., Welch, R. M., & Norvell, W. A. (1984). Nickel in higher plants: Further evidence for an essential role. Plant Physiology, 76, 691–693.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ezhilvannan, D., Sharavanan, P. S., & Vijayaragavan, M. (2011). Changes in growth, sugar starch contents in groundnut (Arachis hypogea L.) plants under nickel toxicity. Current Botany, 2, 24–26.

    Google Scholar 

  • Fishbein, W. N., Smith, M. J., Nagarajan, K., & Scurzi, W. (1976). The first natural nickel metalloenzyme: Urease. Federation Proceedings, 35, 1680–1976.

    Google Scholar 

  • Goransson, A., & Eldhuset, T. D. (1987). Effects of aluminium on growth and nutrient uptake of Betula pendula seedling. Physiologia Plantarum, 63, 193–199.

    Article  Google Scholar 

  • Gordan, W. R., Schwemmer, S. S., & Hillman, W. S. (1978). Nickel and the metabolism of urea by Lemna paucicostata Hegelm. 6746. Planta, 140, 265–268.

    Article  Google Scholar 

  • Hull, R. J. (2003). How do turfgrasses use nickel? www.turfgrass.com.

  • Jagetiya, B. L. (1998). Effect of nickel and cobalt on major biochemical constituents, physiology, growth and yield in Vigna radiata (L.) Wilczek and Triticum aestivum L. Ph.D. Thesis, M.L. Sukhadia University, Udaipur, India.

  • Kirkham, M. B. (1978). Water relations of cadmium treated plants. Journal of Environmental Quality, 7, 334–336.

    Google Scholar 

  • Lei, M., Chen, T. B., Huang, Ze-C, Wang, Yao-D, & Huang, Yu-Y. (2008). Simultaneous compartmentalization of lead and arsenic in co-hyperaccumulator Viola principis H. de Boiss.: An application of SRXRF microprobe. Chemosphere, 72, 1491–1496.

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari, R., & Dubey, R. S. (2011). Effect of nickel toxicity on the alteration of phosphate pool and the suppressing activity of phospholytic enzymes in germinating seeds and growing seedlings of rice. International Journal of Plant Physiology and Biochemistry, 3, 50–59.

    CAS  Google Scholar 

  • Manivasagaperumal, R., Vijayaranjan, P., Balamurugan, S., & Thiyagarajan, G. (2011). Effect of copper on growth, dry matter, yield and nutrient content of Vigna radiata (L.) Wilczek. Journal of Phytology, 3, 53–62.

    CAS  Google Scholar 

  • Marschner, H. (2002). Mineral nutrition of higher plants (2nd ed.). New York: Academic Press.

    Google Scholar 

  • Najafi, F., Khavari-Nejad, R. A., & Hasanjanzadeh, F. (2011). The physiological responses of sunflower (Helianthus annuus L.) to NiSO4. African Journal of Plant Sciences, 5, 201–206.

    CAS  Google Scholar 

  • Pandey, N., & Pathak, G. C. (2006). Nickel alters antioxidative defense and water status in green gram. Indian Journal of Plant Physiology, 11, 113–118.

    CAS  Google Scholar 

  • Parmar, P., Mandakini, J., Bhaumik, D., & Subramanian, R. B. (2012). Nickel accumulation by Colocassia esculentum and its impact on plant growth and physiology. African Journal of Agriculture and Research, 7, 3579–3587.

    Google Scholar 

  • Samarakoon, A. B., & Rauser, W. E. (1979). Carbohydrate levels and photoassimilate export from leaves of Phaseolus vulgaris exposed to excess cobalt, nickel and zinc. Plant Physiology, 63, 1165–1169.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shewry, P. R., & Peterson, P. J. (1974). The uptake of chromium by barley seedlings (Hordeum vulgare L.). Journal of Botany, 25, 785–797.

    CAS  Google Scholar 

  • Sokal, R. R., James, F., & Rohl, F. (1981). Biometry. San Francisco, CA: Freeman, W.H. and Company.

    Google Scholar 

  • Walker, C. D., Graham, R. D., Madison, J. T., Cary, E. E., & Welch, R. M. (1985). Effects of Ni deficiency on some nitrogen metabolites in cowpeas (Vigna unguiculata L. Walp.). Plant Physiology, 79, 474–479.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Welch, R. M. (1981). The biological significance of nickel. Journal of Plant Nutrition, 3, 345–356.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhagawatilal Jagetiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jagetiya, B., Soni, A. & Yadav, S. Effect of nickel on plant water relations and growth in green gram. Ind J Plant Physiol. 18, 372–376 (2013). https://doi.org/10.1007/s40502-013-0053-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-013-0053-8

Keywords

Navigation