Indian Journal of Plant Physiology

, Volume 18, Issue 2, pp 136–141 | Cite as

Moisture deficit stress affects yield and quality in groundnut seeds

  • K. ChakrabortyEmail author
  • S. K. Bishi
  • A. L. Singh
  • K. A. Kalariya
  • Lokesh Kumar
Original Article


A pot study was carried out using six groundnut cultivars viz. JL 286, TPG 41, HNG 10, GG 20, CSMG 84-1 and GG 11 during Kharif 2011 to find out the influence of moisture deficit stress on yield, seed and oil quality and composition. Prolonged moisture deficit stress reduced pod and fodder yield and oil content, while accumulation of raffinose like oligosaccharides (RFOs) increased in the seeds. Stability of oil (O/L ratio) did not alter significantly due to moisture deficit stress. In general, the Virginia Runner cultivars showed more reduction in yield and other nutritional characters, but accumulated more compatible solutes in terms of RFOs to combat moisture deficit stress, indicating acquisition of tolerant characteristics in this group at the expense of yield and nutritional characters of the seed.


Groundnut RFOs Oil content Seed quality Moisture deficit stress 



Authors gratefully acknowledge the Director, DGR for providing facilities and technical support from Mr. P.V. Zala and Mr. C.B. Patel for carrying out the experiment.


  1. Akkasaeng, P., Tantisuwichwong, N., Prakrongrak, N., Jogloy, S., & Pathanothai, A. (2007). Isolation and identification of peanut leaf proteins regulated by water stress. Pakistan Journal of Biological Sciences, 10, 1611–1617.PubMedCrossRefGoogle Scholar
  2. Babu, V. R., & Rao, D. V. M. (1983). Water stress adaptations in the groundnut (Arachis hypogaea L.)—foliar characteristics and adaptations to moisture stress. Plant Physiology and Biochemistry, 10, 64–80.Google Scholar
  3. Bhalani, G. K., & Parameswaran, M. (1992). Influence of differential irrigation on kernel lipid profile in groundnut. Plant Physiology and Biochemistry, 19, 11–14.Google Scholar
  4. Boote, K. J., & Ketring, D. L. (1990). Peanut. In B. A. Stewart & D. R. Nielson (Eds.), Irrigation of Agricultural Crops. Madison: ASA-CSSA-SSSA.Google Scholar
  5. Castillo, E. M., de Lumen, B. O., Reyes, P. S., & de Lumen, H. Z. (1990). Raffinose synthase and galactinol synthase in developing seeds and leaves of legumes. Journal of Agriculture and Food Chemistry, 38, 351–355.CrossRefGoogle Scholar
  6. Chaiyadee, S., Jogloy, S., Songsri, P., Singkham, N., Vorasoot, N., Sawatsitang, P., et al. (2013). Soil moisture affects fatty acids and oil quality parameters in peanut. International Journal of Plant Production, 7, 81–96.Google Scholar
  7. Chung, S. Y., Vercellotti, J. R., & Sanders, T. H. (1997). Increase of glycolytic enzymes in peanuts during peanut maturation and curing: evidence of anaerobic metabolism. Journal of Agriculture and Food Chemistry, 45, 4516–4521.CrossRefGoogle Scholar
  8. Conkerton, E. J., Ross, L. F., Daigle, D. J., Kvien, C. S., & Mc-Combs, C. (1989). The effect of drought stress on peanut seed composition. II. Oil, protein and minerals. Oleagineux, 44, 593–599.Google Scholar
  9. Dwivedi, S. L., Nigam, S. N., Jambunathan, R., Sahrawat, K. L., Nagabhushanam, G. V. S., & Raghunath, K. (1993). Effects of genotypes and environments on oil content and oil quality parameters and their correlations in peanut (Arachis hypogaea L.). Peanut Science, 20, 84–89.CrossRefGoogle Scholar
  10. Dwivedi, S. L., Nigam, S. N., Rao, R. C. N., Singh, U., & Rao, K. V. S. (1996). Effect of drought on oil, fatty acids and protein contents of groundnut (Arachis hypogaea L.) seeds. Field Crops Research, 48, 125–133.CrossRefGoogle Scholar
  11. Hashim, I. B., Koehler, P. E., Eitenmiller, R. R., & Kvien, C. K. (1993). Fatty acid composition and tocopherol content of drought stressed Florunner peanuts. Peanut Science, 20, 21–24.CrossRefGoogle Scholar
  12. Kumar, V., Rani, A., Goyal, L., Dixit, A. K., Manjaya, J. G., Dev, J., et al. (2010). Sucrose and raffinose family oligosaccharides (RFOs) in soybean seeds as influenced by genotype and growing location. Journal of Agriculture and Food Chemistry, 58, 5081–5508.CrossRefGoogle Scholar
  13. Lowry, O. H., Rosenbrough, N. J., & Randall, R. J. (1951). Protein measurement with folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.PubMedGoogle Scholar
  14. Meisner, C. A., & Karnok, K. J. (1992). Peanut root response to drought stress. Agronomy Journal, 84, 159–165.CrossRefGoogle Scholar
  15. Misra, J. B., & Mathur, R. S. (1998). A simple and economic procedure for transmethylation of fatty acids of groundnut oil for analysis by GLC. International Arachis Newsletter, 18, 40–42.Google Scholar
  16. Misra, J. B., Mathur, R. S., & Bhatt, D. M. (2000). Near-infrared transmittance spectroscopy: a potential tool for non-destructive determination of oil content in groundnuts. Journal of the Science of Food and Agriculture, 80, 237–240.CrossRefGoogle Scholar
  17. Musingo, M. N., Basha, S. M., Sanders, T. H., Cole, R. J., & Blankenship, P. D. (1989). Effect of drought and temperature stress on peanut (Arachis hypogaea L.) seed composition. Journal of Plant Physiology, 134, 710–715.CrossRefGoogle Scholar
  18. Peters, S., Mundree, S. G., Thomson, J. A., Farrant, J. M., & Keller, F. (2007). Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit. Journal of Experimental Botany, 58, 1947–1956.PubMedCrossRefGoogle Scholar
  19. Reddy, T. Y., Reddy, V. R., & Anbumozhi, V. (2003). Physiological responses of groundnut (Arachis hypogea L.) to drought stress and its amelioration: a critical review. Plant Growth Regulation, 41, 75–88.CrossRefGoogle Scholar
  20. Sanders, T. H. (1980). Fatty acid composition of lipid classes in oils from peanuts differing in variety and maturity. Journal of the American Oil Chemists Society, 57, 12–15.CrossRefGoogle Scholar
  21. Santos, T. B., Budzinski, I. G. F., Marur, C. J., Petkowicz, C. L. O., Pereira, L. F. P., & Vieira, L. G. E. (2011). Expression of three galactinol synthase isoforms in Coffea arabica L. and accumulation of raffinose and stachyose in response to abiotic stresses. Plant Physiology and Biochemistry, 49, 441–448.PubMedCrossRefGoogle Scholar
  22. Singh, A. L. (2011). Physiological basis for realizing yield potentials in groundnut. In A. Hemantranjan (Ed.), Advances in plant physiology (Vol. 12, pp. 131–242). Jodhpur: Scientific Publishers (India).Google Scholar
  23. Singh, A. L., & Basu, M. S. (2005). Integrated nutrient management in groundnut—a farmer’s manual (p. 54). Junagadh: National Research Center for Groundnut (ICAR).Google Scholar
  24. Vorasoot, N., Songsri, P., Akkasaeng, C., Jogloy, S., & Patanothai, A. (2003). Effect of water stress on yield and agronomic characters of peanut (Arachis hypogaea L.). Songklanakarin Journal of Science and Technology, 25, 283–288.Google Scholar
  25. Weatherley, P. E. (1950). Studies in water relations of cotton plants. I. The field measurement of water deficit in leaves. New Phytologist, 49, 81–87.CrossRefGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2013

Authors and Affiliations

  • K. Chakraborty
    • 1
    Email author
  • S. K. Bishi
    • 1
  • A. L. Singh
    • 1
  • K. A. Kalariya
    • 1
  • Lokesh Kumar
    • 1
  1. 1.Directorate of Groundnut ResearchJunagadhIndia

Personalised recommendations