Skip to main content

Novel Antidepressant Approaches for Refractory Depression

Abstract

Purpose of Review

Although monoaminergic antidepressants are effective for some depressed patients, at least a third remain treatment refractory even after multiple treatment trials. Investigation into novel antidepressant approaches targeted to specific mechanisms implicated in the pathophysiology of treatment-resistant depression (TRD) has significant potential to improve treatment response rates. This review highlights emerging novel antidepressant approaches for TRD, bridging neuromodulation and novel pharmacotherapeutics. We discuss how these new approaches target depression neurobiology via modulation of neurotrophic factors, cellular metabolic machinery, neurotransmitter systems, and inflammatory activity.

Recent Findings

Since a significant number of depressed patients do not respond to classic monoaminergic-based antidepressants, research focus has shifted to novel approaches that have been providing promising results in TRD. Recent studies detail plenty of new technologies in the field of electrical stimulation, antidepressant medications, and novel mechanisms that are hypothesized to provide antidepressant effects through modulating neurobiological pathways implicated in the neurocircuitry of depression. Some factors known to impair therapeutic efficacy of current front-line treatments include circadian disruption, inflammation, and metabolic disturbances. Dysregulation of these systems can be readily identified using peripheral markers, implying that biologically directed treatment stratification is possible. However, more work is needed to understand how to best align such biomarkers with emerging novel treatments. Nevertheless, this represents an exciting time in the development of novel treatment approaches for psychiatry.

Summary

Understanding the neurobiology of novel therapies that have demonstrated potential antidepressant efficacy is a key factor for research in TRD. Improved alignment of these emerging novel treatments with the pathophysiological targets on which they act will move us a step closer to precision medicine approaches for psychiatry, which in turn, is likely to close the current “response failure” gap and overall levels of TRD.

This is a preview of subscription content, access via your institution.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. WHO, Depression and other common mental disorders: Global Health Estimates. 2017.

  2. Pandarakalam JP. Challenges of treatment-resistant depression. Psychiatr Danub. 2018;30(3):273–84.

    CAS  PubMed  Article  Google Scholar 

  3. Delgado PL. Depression: the case for a monoamine deficiency. J Clin Psychiatry. 2000;61(Suppl 6):7–11.

    CAS  PubMed  Google Scholar 

  4. Price JB, et al. Bioenergetics and synaptic plasticity as potential targets for individualizing treatment for depression. Neurosci Biobehav Rev. 2018;90:212–20.

    PubMed  Article  Google Scholar 

  5. Andrade C, Arumugham SS, Thirthalli J. Adverse effects of electroconvulsive therapy. Psychiatr Clin North Am. 2016;39(3):513–30.

    PubMed  Article  Google Scholar 

  6. Kayser S, et al. Antidepressant effects, of magnetic seizure therapy and electroconvulsive therapy, in treatment-resistant depression. J Psychiatr Res. 2011;45(5):569–76.

    PubMed  Article  Google Scholar 

  7. Fitzgerald PB, et al. Pilot study of the clinical and cognitive effects of high-frequency magnetic seizure therapy in major depressive disorder. Depress Anxiety. 2013;30(2):129–36.

    PubMed  Article  Google Scholar 

  8. • Wang J, et al. Accelerated magnetic seizure therapy for treatment of major depressive disorder: a report of 3 cases. J ECT. 2019;35(2):135–8 Open-label trial that shows that MST provokes no side effects and improved immediate and delayed verbal memory indices.

    PubMed  Article  Google Scholar 

  9. • Fitzgerald PB, et al. A pilot study of the comparative efficacy of 100 Hz magnetic seizure therapy and electroconvulsive therapy in persistent depression. Depress Anxiety. 2018;35(5):393–401 Randomized double-blind trial comparing ECT and MST.

    PubMed  Article  Google Scholar 

  10. Kayser S, et al. Magnetic seizure therapy in treatment-resistant depression: clinical, neuropsychological and metabolic effects. Psychol Med. 2015;45(5):1073–92.

    CAS  PubMed  Article  Google Scholar 

  11. •• Sun Y, et al. Magnetic seizure therapy reduces suicidal ideation and produces neuroplasticity in treatment-resistant depression. Transl Psychiatry. 2018;8(1):253 Provides evidence of MST inducing neuroplasticity.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  12. Conway CR, et al. Association of cerebral metabolic activity changes with vagus nerve stimulation antidepressant response in treatment-resistant depression. Brain Stimul. 2013;6(5):788–97.

    PubMed  PubMed Central  Article  Google Scholar 

  13. Perini GI, et al. Hippocampal gray volumes increase in treatment-resistant depression responding to vagus nerve stimulation. J ECT. 2017;33(3):160–6.

    PubMed  Article  Google Scholar 

  14. Gorgulho AA, et al. Double blinded randomized trial of subcutaneous trigeminal nerve stimulation as adjuvant treatment for major unipolar depressive disorder. Neurosurgery. 2019;85(5):717–28.

    PubMed  Article  Google Scholar 

  15. Cook IA, et al. Trigeminal nerve stimulation in major depressive disorder: acute outcomes in an open pilot study. Epilepsy Behav. 2013;28(2):221–6.

    PubMed  Article  Google Scholar 

  16. Shiozawa P, et al. Effect of a 10-day trigeminal nerve stimulation (TNS) protocol for treating major depressive disorder: a phase II, sham-controlled, randomized clinical trial. Epilepsy Behav. 2015;44:23–6.

    PubMed  Article  Google Scholar 

  17. •• Generoso MB, et al. Effect of a 10-day transcutaneous trigeminal nerve stimulation (TNS) protocol for depression amelioration: a randomized, double blind, and sham-controlled phase II clinical trial. Epilepsy Behav. 2019;95:39–42 Most recent double-blind, sham-controlled trials of sTNS.

    PubMed  Article  Google Scholar 

  18. Silverman DGC, Cook I, DeGiorgio C, Miller P, Susselman M, Schrader L. Effects of trigeminal nerve stimulation on regional brain activity in depression. J Nucl Med. 2011;52.

  19. Tye SJ, Frye MA, Lee KH. Disrupting disordered neurocircuitry: treating refractory psychiatric illness with neuromodulation. Mayo Clin Proc. 2009;84(6):522–32.

    PubMed  PubMed Central  Article  Google Scholar 

  20. Dougherty DD, et al. A randomized sham-controlled trial of deep brain stimulation of the ventral capsule/ventral striatum for chronic treatment-resistant depression. Biol Psychiatry. 2015;78(4):240–8.

    PubMed  Article  Google Scholar 

  21. Holtzheimer PE, et al. Subcallosal cingulate deep brain stimulation for treatment-resistant depression: a multisite, randomised, sham-controlled trial. Lancet Psychiatry. 2017;4(11):839–49.

    PubMed  Article  Google Scholar 

  22. Mayberg HS, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45(5):651–60.

    CAS  PubMed  Article  Google Scholar 

  23. Bergfeld IO, et al. Deep brain stimulation of the ventral anterior limb of the internal capsule for treatment-resistant depression: a randomized clinical trial. JAMA Psychiatry. 2016;73(5):456–64.

    PubMed  Article  Google Scholar 

  24. Bewernick BH, et al. Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry. 2010;67(2):110–6.

    PubMed  Article  Google Scholar 

  25. Sartorius A, et al. Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol Psychiatry. 2010;67(2):e9–e11.

    PubMed  Article  Google Scholar 

  26. Malone DA Jr, et al. Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry. 2009;65(4):267–75.

    PubMed  Article  Google Scholar 

  27. Fenoy AJ, et al. A longitudinal study on deep brain stimulation of the medial forebrain bundle for treatment-resistant depression. Transl Psychiatry. 2018;8(1):111.

    PubMed  PubMed Central  Article  Google Scholar 

  28. Schlaepfer TE, et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology. 2008;33(2):368–77.

    PubMed  Article  Google Scholar 

  29. Millet B, et al. Limbic versus cognitive target for deep brain stimulation in treatment-resistant depression: accumbens more promising than caudate. Eur Neuropsychopharmacol. 2014;24(8):1229–39.

    CAS  PubMed  Article  Google Scholar 

  30. • Brown EC, et al. Metabolic activity in subcallosal cingulate predicts response to deep brain stimulation for depression. Neuropsychopharmacology. 2020;45(10):1681–8 Recent study providing evidence of modulation of metabolic activity through DBS to SCC.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. Hoyer C, et al. Long-term course of brain-derived neurotrophic factor serum levels in a patient treated with deep brain stimulation of the lateral habenula. Neuropsychobiology. 2012;65(3):147–52.

    CAS  PubMed  Article  Google Scholar 

  32. Riva-Posse P, et al. Defining critical white matter pathways mediating successful subcallosal cingulate deep brain stimulation for treatment-resistant depression. Biol Psychiatry. 2014;76(12):963–9.

    PubMed  PubMed Central  Article  Google Scholar 

  33. • Liebrand LC, et al. Distance to white matter trajectories is associated with treatment response to internal capsule deep brain stimulation in treatment-refractory depression. Neuroimage Clin. 2020;28:102363 Provides evidence of enhanced treatment response through white matter stimulation.

    PubMed  PubMed Central  Article  Google Scholar 

  34. Coenen VA, et al. Tractography-assisted deep brain stimulation of the superolateral branch of the medial forebrain bundle (slMFB DBS) in major depression. Neuroimage Clin. 2018;20:580–93.

    PubMed  PubMed Central  Article  Google Scholar 

  35. •• Riva-Posse P, et al. A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol Psychiatry. 2018;23(4):843–9 Demonstrates that treatment response could be enhanced when stimulating a connectome of four white matter bundles.

    CAS  PubMed  Article  Google Scholar 

  36. Fitzgerald PB, et al. A pilot investigation of an intensive theta burst stimulation protocol for patients with treatment resistant depression. Brain Stimul. 2020;13(1):137–44.

    PubMed  Article  Google Scholar 

  37. •• Blumberger DM, et al. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial. Lancet. 2018;391(10131):1683–92 The first randomized non-inferiority trial to compare intermittent TBS treatment with rTMS.

    PubMed  Article  Google Scholar 

  38. Zavorotnyy M, et al. Intermittent theta-burst stimulation moderates interaction between increment of N-acetyl-aspartate in anterior cingulate and improvement of unipolar depression. Brain Stimul. 2020;13(4):943–52.

    PubMed  Article  Google Scholar 

  39. Baeken C, Wu G, Sackeim HA. Accelerated iTBS treatment applied to the left DLPFC in depressed patients results in a rapid volume increase in the left hippocampal dentate gyrus, not driven by brain perfusion. Brain Stimul. 2020;13(5):1211–7.

    PubMed  Article  Google Scholar 

  40. Padberg F, et al. Prefrontal transcranial direct current stimulation (tDCS) as treatment for major depression: study design and methodology of a multicenter triple blind randomized placebo controlled trial (DepressionDC). Eur Arch Psychiatry Clin Neurosci. 2017;267(8):751–66.

    PubMed  Article  Google Scholar 

  41. Brunoni AR, et al. The sertraline vs. electrical current therapy for treating depression clinical study: results from a factorial, randomized, controlled trial. JAMA Psychiatry. 2013;70(4):383–91.

    CAS  PubMed  Article  Google Scholar 

  42. Player MJ, et al. Increase in PAS-induced neuroplasticity after a treatment course of transcranial direct current stimulation for depression. J Affect Disord. 2014;167:140–7.

    PubMed  Article  Google Scholar 

  43. Rohan M, et al. Low-field magnetic stimulation in bipolar depression using an MRI-based stimulator. Am J Psychiatry. 2004;161(1):93–8.

    PubMed  Article  Google Scholar 

  44. • Dubin MJ, et al. A double-blind pilot dosing study of low field magnetic stimulation (LFMS) for treatment-resistant depression (TRD). J Affect Disord. 2019;249:286–93 Recent double-blind randomized controlled trial of LFMS in TRD.

    PubMed  PubMed Central  Article  Google Scholar 

  45. Rohan ML, et al. Rapid mood-elevating effects of low field magnetic stimulation in depression. Biol Psychiatry. 2014;76(3):186–93.

    PubMed  Article  Google Scholar 

  46. •• Xiao L, et al. Rhythmic low-field magnetic stimulation may improve depression by increasing brain-derived neurotrophic factor. CNS Spectr. 2019;24(3):313–21 Suggests that LFMS antidepressant efficacy might be related to modulation of BDNF.

    PubMed  Article  Google Scholar 

  47. Sakaguchi Y, et al. Apoptosis in tumors and normal tissues induced by whole body hyperthermia in rats. Cancer Res. 1995;55(22):5459–64.

    CAS  PubMed  Google Scholar 

  48. Janssen CW, et al. Whole-body hyperthermia for the treatment of major depressive disorder: a randomized clinical trial. JAMA Psychiatry. 2016;73(8):789–95.

    PubMed  Article  Google Scholar 

  49. Hanusch KU, et al. Whole-body hyperthermia for the treatment of major depression: associations with thermoregulatory cooling. Am J Psychiatry. 2013;170(7):802–4.

    PubMed  Article  Google Scholar 

  50. Szmulewicz AG, et al. Dopaminergic agents in the treatment of bipolar depression: a systematic review and meta-analysis. Acta Psychiatr Scand. 2017;135(6):527–38.

    CAS  PubMed  Article  Google Scholar 

  51. Wolke SA, et al. Modulation of anterior cingulate cortex reward and penalty signalling in medication-naive young-adult subjects with depressive symptoms following acute dose lurasidone. Psychol Med. 2019;49(8):1365–77.

    PubMed  PubMed Central  Article  Google Scholar 

  52. • Raison CL, et al. C-reactive protein and response to lurasidone in patients with bipolar depression. Brain Behav Immun. 2018;73:717–24 Shows that antidepressant response to lurasidone is enhanced with increasing levels of pre-treatment C-reactive protein.

    CAS  PubMed  Article  Google Scholar 

  53. Eaves S, Rey JA. Brexpiprazole (Rexulti): a new monotherapy for schizophrenia and adjunctive therapy for major depressive disorder. P T. 2016;41(7):418–22.

    PubMed  PubMed Central  Google Scholar 

  54. Ma M, et al. Antidepressant effects of combination of brexpiprazole and fluoxetine on depression-like behavior and dendritic changes in mice after inflammation. Psychopharmacology. 2017;234(4):525–33.

    CAS  PubMed  Article  Google Scholar 

  55. Thase ME, et al. Adjunctive brexpiprazole 1 and 3 mg for patients with major depressive disorder following inadequate response to antidepressants: a phase 3, randomized, double-blind study. J Clin Psychiatry. 2015;76(9):1232–40.

    PubMed  Article  Google Scholar 

  56. De Carlo V, et al. Effectiveness, tolerability, and dropout rates of vortioxetine in comorbid depression: a naturalistic study. Hum Psychopharmacol. 2020;35(5):e2750.

    PubMed  Article  CAS  Google Scholar 

  57. Christensen MC, Loft H, McIntyre RS. Vortioxetine improves symptomatic and functional outcomes in major depressive disorder: a novel dual outcome measure in depressive disorders. J Affect Disord. 2018;227:787–94.

    CAS  PubMed  Article  Google Scholar 

  58. Fourrier C, et al. Anti-inflammatory treatment of depression: study protocol for a randomised controlled trial of vortioxetine augmented with celecoxib or placebo. Trials. 2018;19(1):447.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  59. • Talmon M, et al. Vortioxetine exerts anti-inflammatory and immunomodulatory effects on human monocytes/macrophages. Br J Pharmacol. 2018;175(1):113–24 Evidence of anti-inflammatory of vortioxetine effects in humans.

    CAS  PubMed  Article  Google Scholar 

  60. Eyre H, et al. Comparing the immune-genomic effects of vilazodone and paroxetine in late-life depression: a pilot study. Pharmacopsychiatry. 2017;50(6):256–63.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. • Kornstein S, et al. Vilazodone efficacy in subgroups of patients with major depressive disorder: a post-hoc analysis of four randomized, double-blind, placebo-controlled trials. Int Clin Psychopharmacol. 2018;33(4):217–23 Evidence that vilazodone significantly reduces depressive symptoms in diverse subgroups of patients.

    PubMed  PubMed Central  Article  Google Scholar 

  62. de Bodinat C, et al. Agomelatine, the first melatonergic antidepressant: discovery, characterization and development. Nat Rev Drug Discov. 2010;9(8):628–42.

    PubMed  Article  CAS  Google Scholar 

  63. Englisch S, et al. Agomelatine for the treatment of major depressive episodes in schizophrenia-spectrum disorders: an open-prospective proof-of-concept study. J Clin Psychopharmacol. 2016;36(6):597–607.

    CAS  PubMed  Article  Google Scholar 

  64. De Berardis D, et al. Effect of agomelatine treatment on C-reactive protein levels in patients with major depressive disorder: an exploratory study in “real-world,” everyday clinical practice. CNS Spectr. 2017;22(4):342–7.

    PubMed  Article  Google Scholar 

  65. Di Giannantonio M, et al. Major depressive disorder, anhedonia and agomelatine: an open-label study. J Biol Regul Homeost Agents. 2011;25(1):109–14.

    PubMed  Google Scholar 

  66. Fuxe K, Borroto-Escuela DO. Basimglurant for treatment of major depressive disorder: a novel negative allosteric modulator of metabotropic glutamate receptor 5. Expert Opin Investig Drugs. 2015;24(9):1247–60.

    CAS  PubMed  Article  Google Scholar 

  67. Peterlik D, et al. Blocking metabotropic glutamate receptor subtype 5 relieves maladaptive chronic stress consequences. Brain Behav Immun. 2017;59:79–92.

    CAS  PubMed  Article  Google Scholar 

  68. Quiroz JA, et al. Efficacy and safety of basimglurant as adjunctive therapy for major depression: a randomized clinical trial. JAMA Psychiatry. 2016;73(7):675–84.

    PubMed  Article  Google Scholar 

  69. Karp JF, et al. Safety, tolerability, and clinical effect of low-dose buprenorphine for treatment-resistant depression in midlife and older adults. J Clin Psychiatry. 2014;75(8):e785–93.

    PubMed  PubMed Central  Article  Google Scholar 

  70. Serafini G, et al. The efficacy of buprenorphine in major depression, treatment-resistant depression and suicidal behavior: a systematic review. Int J Mol Sci. 2018:19(8).

  71. Dilsaver SC. The pathophysiologies of substance abuse and affective disorders: an integrative model? J Clin Psychopharmacol. 1987;7(1):1–10.

    CAS  PubMed  Article  Google Scholar 

  72. Volker D, et al. Oral buprenorphine is anti-inflammatory and modulates the pathogenesis of streptococcal cell wall polymer-induced arthritis in the Lew/SSN rat. Lab Anim. 2000;34(4):423–9.

    CAS  PubMed  Article  Google Scholar 

  73. Hemshekhar M, et al. Buprenorphine alters inflammatory and oxidative stress molecular markers in arthritis. Mediat Inflamm. 2017;2017:2515408.

    Article  CAS  Google Scholar 

  74. Murrough JW, et al. Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression. Biol Psychiatry. 2013;74(4):250–6.

    CAS  PubMed  Article  Google Scholar 

  75. Correia-Melo FS, et al. Efficacy and safety of adjunctive therapy using esketamine or racemic ketamine for adult treatment-resistant depression: a randomized, double-blind, non-inferiority study. J Affect Disord. 2020;264:527–34.

    CAS  PubMed  Article  Google Scholar 

  76. Singh JB, et al. A double-blind, randomized, placebo-controlled, dose-frequency study of intravenous ketamine in patients with treatment-resistant depression. Am J Psychiatry. 2016;173(8):816–26.

    PubMed  Article  Google Scholar 

  77. •• Popova V, et al. Efficacy and safety of flexibly dosed esketamine nasal spray combined with a newly initiated oral antidepressant in treatment-resistant depression: a randomized double-blind active-controlled study. Am J Psychiatry. 2019;176(6):428–38 A phase 3 randomized double-blind study on the recently approved esketamine nasal spray.

    PubMed  Article  Google Scholar 

  78. Zanos P, Gould TD. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry. 2018;23(4):801–11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Loix S, De Kock M, Henin P. The anti-inflammatory effects of ketamine: state of the art. Acta Anaesthesiol Belg. 2011;62(1):47–58.

    CAS  PubMed  Google Scholar 

  80. •• El-Haggar SM, et al. The phosphodiesterase inhibitor pentoxifylline as a novel adjunct to antidepressants in major depressive disorder patients: a proof-of-concept, randomized, double-blind, placebo-controlled trial. Psychother Psychosom. 2018;87(6):331–9 The first randomized, double-blind, and placebo-controlled trial to explore pentoxifylline as an adjunctive therapy.

    PubMed  Article  Google Scholar 

  81. Siegel AN, et al. Novel therapeutic targets in mood disorders: Pentoxifylline (PTX) as a candidate treatment. Prog Neuro-Psychopharmacol Biol Psychiatry. 2021;104:110032.

    CAS  Article  Google Scholar 

  82. •• Saccarello A, et al. Oral administration of S-adenosylmethionine (SAMe) and Lactobacillus plantarum HEAL9 improves the mild-to-moderate symptoms of depression: a randomized, double-blind, placebo-controlled study. Prim Care Companion CNS Disord. 2020;22(4) Demonstrates that the combination of SAMe and L. plantarum provides fast and significant improvement of mild and moderate depressive symptoms.

  83. Cuomo A, et al. S-Adenosylmethionine (SAMe) in major depressive disorder (MDD): a clinician-oriented systematic review. Ann General Psychiatry. 2020;19:50.

    Article  Google Scholar 

  84. Sarris J, et al. S-adenosyl methionine (SAMe) versus escitalopram and placebo in major depression RCT: efficacy and effects of histamine and carnitine as moderators of response. J Affect Disord. 2014;164:76–81.

    CAS  PubMed  Article  Google Scholar 

  85. Rudzki L, et al. Probiotic Lactobacillus plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: a double-blind, randomized, placebo controlled study. Psychoneuroendocrinology. 2019;100:213–22.

    CAS  PubMed  Article  Google Scholar 

  86. Andersson H, et al. Oral administration of Lactobacillus plantarum 299v reduces cortisol levels in human saliva during examination induced stress: a randomized, double-blind controlled trial. Int J Microbiol. 2016;2016:8469018.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  87. •• Kamiya M, et al. Efficacy and safety of TS-121, a novel vasopressin V1B receptor antagonist, as adjunctive treatment for patients with major depressive disorder: a randomized, double-blind, placebo-controlled study. J Psychiatr Res. 2020;128:43–51 The first study to assess antidepressant efficacy of the V1B receptor antagonist TS-121 in TRD.

    PubMed  Article  Google Scholar 

  88. Agorastos A, et al. Vasopressin surrogate marker copeptin as a potential novel endocrine biomarker for antidepressant treatment response in major depression: a pilot study. Front Psychiatry. 2020;11:453.

    PubMed  PubMed Central  Article  Google Scholar 

  89. Osher Y, Belmaker RH. Omega-3 fatty acids in depression: a review of three studies. CNS Neurosci Ther. 2009;15(2):128–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. Nemets B, Stahl Z, Belmaker RH. Addition of omega-3 fatty acid to maintenance medication treatment for recurrent unipolar depressive disorder. Am J Psychiatry. 2002;159(3):477–9.

    PubMed  Article  Google Scholar 

  91. Nemets H, et al. Omega-3 treatment of childhood depression: a controlled, double-blind pilot study. Am J Psychiatry. 2006;163(6):1098–100.

    PubMed  Article  Google Scholar 

  92. Osher Y, Bersudsky Y, Belmaker RH. Omega-3 eicosapentaenoic acid in bipolar depression: report of a small open-label study. J Clin Psychiatry. 2005;66(6):726–9.

    CAS  PubMed  Article  Google Scholar 

  93. •• Yang B, et al. Clinical efficacy and biological regulations of omega-3 PUFA-derived endocannabinoids in major depressive disorder. Psychother Psychosom. 2019;88(4):215–24 The first double-blind, nonplacebo, randomized controlled trial on the effects of omega-3 PUFAs on EC levels and its association to PUFAs antidepressant efficacy.

    PubMed  Article  Google Scholar 

  94. Finzi E, Rosenthal NE. Treatment of depression with onabotulinumtoxinA: a randomized, double-blind, placebo controlled trial. J Psychiatr Res. 2014;52:1–6.

    PubMed  Article  Google Scholar 

  95. Larsen RJ, Kasimatis M, Frey K. Facilitating the furrowed brow: an unobtrusive test of the facial feedback hypothesis applied to unpleasant affect. Cognit Emot. 1992;6(5):321–38.

    Article  Google Scholar 

  96. Magid M, et al. Treatment of major depressive disorder using botulinum toxin A: a 24-week randomized, double-blind, placebo-controlled study. J Clin Psychiatry. 2014;75(8):837–44.

    CAS  PubMed  Article  Google Scholar 

  97. Leira Y, et al. Mild systemic inflammation enhances response to onabotulinumtoxinA in chronic migraineurs. Sci Rep. 2021;11(1):1092.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susannah J. Tye.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Depressive Disorders

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Postorivo, D., Tye, S.J. Novel Antidepressant Approaches for Refractory Depression. Curr Treat Options Psych 8, 141–157 (2021). https://doi.org/10.1007/s40501-021-00246-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40501-021-00246-y

Keywords

  • Treatment-resistant depression
  • Novel therapeutics
  • Neurobiological markers