Skip to main content

Nile Tilapia Fish Skin, Scales, and Spine as Naturally Derived Biomaterials for Tissue Regeneration


Purpose of Review

This study aims to review the literature on the use of Nile tilapia-derived extracellular matrix (ECM) proteins as naturally derived scaffold material for tissue regeneration.

Recent Findings

Nile tilapia has emerged as a particularly relevant specie for the development of fish-derived biomaterials. The skin, scale, and spine of various fish species have been extensively demonstrated as a potential source of native ECM proteins for use in regenerative medicine.


When compared to synthetic polymers, collagen-based biomaterials introduce some disadvantages due to their lower biomechanical stiffness and rapid biodegradation. However, collagen-based biomaterials continue to be one of the most highly investigated natural materials for bone regeneration. Studies have pointed to tilapia as a satisfactory source of collagen for its quality and cost benefit, with good responses in vitro and in vivo, especially studies involving the skin as the main source of production. For both soft and hard tissue regenerations, Nile tilapia skin is being considered as a good source of collagen. Other sources (scales and spine) are less addressed in comparison to skin, which in turn, brings more consistent perspective in relation to clinical use.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.

    Tran V, Wen X. 4 - Rapid prototyping technologies for tissue regeneration. In: Roger Narayan, editor. Rapid prototyping of biomaterials. Cambridge: Woodhead Publishing; 2014. p. 97–155.

  2. 2.

    Pereira HF, Cengiz IF, Silva FS, Reis RL, Oliveira JM. Scaffolds and coatings for bone regeneration. J Mater Sci Mater Med. 2020;31(27):1–15.

    Google Scholar 

  3. 3.

    Pawelec KM, Bestb SM, Cameron RE. Collagen: a network for regenerative medicine. J Mater Chem B. 2016;4(40):6484–96.

    CAS  Article  Google Scholar 

  4. 4.

    Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 2009;78:929–58.

    CAS  Article  Google Scholar 

  5. 5.

    Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm. 2001;2001(221):1–22.

    CAS  Article  Google Scholar 

  6. 6.

    • Alves APNN, Lima Júnior EM, Piccolo NS, de Miranda MJB, Lima Verde MEQ, Ferreira Júnior AEC, et al. Study of tensiometric properties, microbiological and collagen content in nile tilapia skin submitted to different sterilization methods. Cell Tissue Bank. 2018;19(3):373–82 This article proposes a sterilization protocol, showing possible microscopic changes in tilapia skin for use as an occlusive dressing and potential use in tissue regeneration.

    CAS  Article  Google Scholar 

  7. 7.

    Alves APNN, Verde MEQL, Júnior AECF, Silva PG de B, Feitosa VP, Júnior EML, et al. Avaliação microscópica, estudo histoquímico e análise de propriedades tensiométricas da pele de tilápia do Nilo. Rev Bras Queimaduras. 2015;14:203–10.

    Google Scholar 

  8. 8.

    Lineen E, Namias N. Biologic dressing in burns. J Craniofac Surg. 2008;19(4):923–8.

    Article  Google Scholar 

  9. 9.

    Yamada S, Yamamoto K, Ikeda T, Yanagiguchi K, Hayashi Y. Potency of fish collagen as a scaffold for regenerative medicine. Biomed Res Int. 2014;2014:302932.

    Article  Google Scholar 

  10. 10.

    Huang CY, Kuo JM, Wu SJ, Tsai HT. Isolation and characterization of fish scale collagen from tilapia (Oreochromis sp.) by a novel extrusion-hydro-extraction process. Food Chem. 2016;190:997–1006.

    CAS  Article  Google Scholar 

  11. 11.

    Chen J, Li L, Yi R, Xu N, Gao R, Hong B. Extraction and characterization of acid-soluble collagen from scales and skin of tilapia (Oreochromis niloticus). LWT Food Sci Technol. 2016;66:453–9.

    CAS  Article  Google Scholar 

  12. 12.

    Lima-Junior EM, Picollo NS, José M, De Miranda B, Lyeverton W, Ribeiro C. Uso da pele de tilápia (Oreochromis niloticus ), como curativo biológico oclusivo no tratamento de queimaduras. Rev Bras Queimaduras. 2017;16:10–7.

    Google Scholar 

  13. 13.

    • Pinto Medeiros Dias MT, Lima Júnior EM, Negreiros Nunes Alves AP, Monteiro Bilhar AP, Rios LC, Costa BA, et al. Tilapia fish skin as a new biologic graft for neovaginoplasty in Mayer-Rokitansky-Kuster-Hauser syndrome: a video case report. Fertil Steril. 2019;112:174–6 This article emphasizes the newest clinical surgical intervention using tilapia skin as a biological graft.

    Article  Google Scholar 

  14. 14.

    Costa BA, Lima Júnior EM, De Moraes Filho MO, Fechine FV, De Moraes MEA, Silva Júnior FR, et al. Use of tilapia skin as a xenograft for pediatric burn treatment: a case report. J Burn Care Res. 2019;40(5):714–7.

    Article  Google Scholar 

  15. 15.

    Lima Júnior EM, De Moraes Filho MO, Costa BA, Rohleder AVP, Sales Rocha MB, Fechine FV, et al. Innovative burn treatment using tilapia skin as a xenograft: a phase II randomized controlled trial. J Burn Care Res. 2020a;41(3):585–92.

    Article  Google Scholar 

  16. 16.

    Lima Júnior EM, De Moraes Filho MO, Forte AJ, Costa BA, Fechine FV, Alves APNN, et al. Pediatric burn treatment using tilapia skin as a xenograft for superficial partial-thickness wounds: a pilot study. J Burn Care Res. 2020b;41(2):241–7.

    PubMed  Google Scholar 

  17. 17.

    • Dias MTPM, Bilhar APM, Rios LC, Costa BA, Lima Júnior EM, Alves APNN, et al. Neovaginoplasty using Nile tilapia fish skin as a new biologic graft in patients with Mayer-Rokitansky-Küster-Hauser syndrome. J Minim Invasive Gynecol. 2020;27(4):966–72 This article emphasizes the newest clinical surgical intervention using tilapia skin as a biological graft.

    Article  Google Scholar 

  18. 18.

    • Bezerra LRPS, de Moraes Filho MO, Bruno ZV, Lima Júnior EM, Alves APNN, Bilhar APM, et al. Tilapia fish skin: a new biological graft in gynecology. Rev Med da UFC. 2018;58:6 This article emphasizes the newest clinical surgical intervention using tilapia skin as a biological graft.

    Article  Google Scholar 

  19. 19.

    Rodríguez ÁH, Júnior EML, Filho MO d M, Costa BA, Bruno ZV, Filho MPM, et al. Male-to-female gender-affirming surgery using Nile tilapia fish skin as a biocompatible graft. J Minim Invasive Gynecol. 2020;S1553-4650(20):30120–5.

    Google Scholar 

  20. 20.

    Stoppel WL, Ghezzi CE, McNamara SL, Black LD III, Kaplan DL. Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine. Ann Biomed Eng. 2015;43(3):657–80.

    Article  Google Scholar 

  21. 21.

    Albanna MZ, Holmes JH. Skin tissue engineering and regenerative medicine. Ski Tissue Eng Regen Med. 2016:1–443.

  22. 22.

    Lin CC, Ritch R, Lin SM, Ni MH, Chang YC, Lu YL, et al. A new fish scale-derived scaffold for corneal regeneration. Eur Cells Mater. 2010;19:50–7.

    Article  Google Scholar 

  23. 23.

    Tang J, Saito T. Biocompatibility of novel type I collagen purified from tilapia fish scale: an in vitro comparative study. Biomed Res Int. 2015;2015:139476.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Su FY, Bushong EA, Deerinck TJ, Seo K, Herrera S, Graeve OA, et al. Spines of the porcupine fish: structure, composition, and mechanical properties. J Mech Behav Biomed Mater. 2017;73:38–49.

    CAS  Article  Google Scholar 

  25. 25.

    Rama S, Chandrakasan G. Distribution of different molecular species of collagen in the vertebral cartilage of shark (Carcharius acutus). Connect Tissue Res. 1984;12:111–8.

    CAS  Article  Google Scholar 

  26. 26.

    Yu D, Chi CF, Wang B, Ding GF, Li ZR. Characterization of acid- and pepsin-soluble collagens from spines and skulls of skipjack tuna (Katsuwonus pelamis). Chin J Nat Med. 2014;12:712–20.

    CAS  PubMed  Google Scholar 

  27. 27.

    Liu C, Sun J. Hydrolyzed tilapia fish collagen induces osteogenic differentiation of human periodontal ligament cells. Biomed Mater. 2015;10:65020.

    Article  Google Scholar 

  28. 28.

    Suzuki A, Kato H, Kawakami T, Kodama Y, Shiozawa M, Kuwae H, et al. Development of microstructured fish scale collagen scaffolds to manufacture a tissue-engineered oral mucosa equivalent. J Biomater Sci Polym. 2020;0:1–23.

    Google Scholar 

  29. 29.

    Zhou T, Wang N, Xue Y, Ding T, Liu X, Mo X, et al. Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation. Colloids Surf B: Biointerfaces. 2016;143:415–22.

    CAS  Article  Google Scholar 

  30. 30.

    Sun L, Li B, Jiang D, Hou H. Nile tilapia skin collagen sponge modified with chemical cross-linkers as a biomedical hemostatic material. Colloids Surf B: Biointerfaces. 2017;159:89–96.

    CAS  Article  Google Scholar 

  31. 31.

    Sun L, Li B, Yao D, Song W, Hou H. Effects of cross-linking on mechanical, biological properties and biodegradation behavior of Nile tilapia skin collagen sponge as a biomedical material. J Mech Behav Biomed Mater. 2018;80:51–8.

    CAS  Article  Google Scholar 

  32. 32.

    Li D, Gao Y, Wang Y, Yang X, He C, Zhu M, et al. Evaluation of biocompatibility and immunogenicity of micro/nanofiber materials based on tilapia skin collagen. J Biomater Appl. 2019;33:1118–27.

    CAS  Article  Google Scholar 

  33. 33.

    Zhou T, Sui B, Mo X, Sun J. Multifunctional and biomimetic fish collagen/bioactive glass nanofibers: fabrication, antibacterial activity and inducing skin regeneration in vitro and in vivo. Int J Nanomedicine. 2017;12:3495–507.

    CAS  Article  Google Scholar 

  34. 34.

    Hassanbhai AM, Lau CS, Wen F, Jayaraman P, Goh BT, Yu N, et al. In vivo immune responses of cross-linked electrospun tilapia collagen membrane. Tissue Eng - Part A. 2017;23:1110–9.

    CAS  Article  Google Scholar 

  35. 35.

    Lau CS, Hassanbhai A, Wen F, Wang D, Chanchareonsook N, Goh BT, et al. Evaluation of decellularized tilapia skin as a tissue engineering scaffold. J Tissue Eng Regen Med. 2019;13:1779–91.

    CAS  Article  Google Scholar 

  36. 36.

    Bao Z, Sun Y, Rai K, Peng X, Wang S, Nian R, et al. The promising indicators of the thermal and mechanical properties of collagen from bass and tilapia: synergistic effects of hydroxyproline and cysteine. Biomater Sci. 2018;6:3042–52.

    CAS  Article  Google Scholar 

  37. 37.

    • Ouyang QQ, Hu Z, Lin ZP, Quan WY, Deng YF, Li SD, et al. Chitosan hydrogel in combination with marine peptides from tilapia for burns healing. Int J Biol Macromol. 2018;112:1191–8 This article shows the importance of peptides from tilapia skin and its potential in healing process.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Luiz E. Bertassoni.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Dental Restorative Materials

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lima-Verde, M.E.Q., Parthiban, S.P., Junior, A.E.C.F. et al. Nile Tilapia Fish Skin, Scales, and Spine as Naturally Derived Biomaterials for Tissue Regeneration. Curr Oral Health Rep 7, 335–343 (2020).

Download citation


  • Tilapia
  • Scaffold
  • Regeneration
  • Tissue engineering