Skip to main content

Factors Affecting the Marginal Fit of CAD-CAM Restorations and Concepts to Improve Outcomes

Abstract

Purpose of Review

With the advent of CAD-CAM technology, it is essential to examine factors that affect outcomes of restorations fabricated by the new methodologies.

Recent Findings

This report assesses and compares ceramic crown fabrication systems to determine what factors affect marginal fit and provide solutions for better outcomes.

Summary

The review revealed key scientific evidence about what factors influence the marginal fit of CAD-CAM ceramic restorations. Solutions were recommended to help the clinician achieve greater long-term success when providing this treatment to their patients. The dental microscope enables the dental practitioner to achieve improved clinical outcomes in all phases of restorative dentistry, especially CAD-CAM restorations.

This is a preview of subscription content, access via your institution.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Boitelle P, Mawussi B, Tapie L, Fromentin O. A systematic review of CAD/CAM fit restoration evaluations. J Oral Rehabil. 2014;41:853–74. https://doi.org/10.1111/joor.12205This review emphasized deficiency in the number of clinical studies on accuracy of CAD-CAM restorations and inconsistency in protocols preclude solid evidenced based conclusions.

    Article  CAS  Google Scholar 

  2. • Papadiochou S, Pissiotis AL. Marginal adaptation and CAD-CAM technology: A systematic review of restorative material and fabrication techniques. J Prosthet Dent. 2018;119(4):545–51. https://doi.org/10.1016/j.prosdent.2017.07.001This review concluded there is lack of evidence to conclude CAD-CAM restorations have superior marginal adaptation.

    Article  Google Scholar 

  3. Hamza TA, Sherif RM. In vitro evaluation of marginal discrepancy of monolithic zirconia restorations fabricated with different CAD-CAM systems. J Prosthet Dent. 2017;117(6):762–6. https://doi.org/10.1016/j.prosdent.2016.09.011.

    Article  CAS  PubMed  Google Scholar 

  4. •• Schestatsky R, Zucuni CP, Venturini AB, de Lima Burgo TA, Bacchi A, Valandro LF, et al. CAD-CAM milled versus pressed lithium-disilicate monolithic crowns adhesively cemented after distinct surface treatments: fatigue performance and ceramic surface characteristics. J Mech Behav Biomed Mater. 2019;94:144–54. https://doi.org/10.1016/j.jmbbm.2019.03.005This study compared CAD/CAM’s different classes of materials possessing various levels of machinability compared to pressed manufacturing.

    Article  CAS  PubMed  Google Scholar 

  5. Contrepois M, Soenen A, Bartala M, Laviole O. Marginal adaptation of ceramic crowns: a systematic review. J Prosthet Dent. 2013;110(6):447–454.e10. https://doi.org/10.1016/j.prosdent.2013.08.003.

    Article  PubMed  Google Scholar 

  6. • Holmes JR, Bayne SC, Holland GA, Sulik WD. Considerations in measurement of marginal fit. J Prosthet Dent. 1989;62:405–8. https://doi.org/10.1016/0022-3913(89)90170-4This paper is considered the gold standard for evaluative criteria for marginal fit.

    Article  CAS  Google Scholar 

  7. Demir N, Ozturk AN, Malkoc MA. Evaluation of the marginal fit of full ceramic crowns by the microcomputed tomography (micro-CT) technique. Eur J Dent. 2014;8:437–44. https://doi.org/10.4103/1305-7456.143612.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sorensen JA. A rationale for comparison of plaque-retaining properties of crown systems. J Prosthet Dent. 1989;62:264–9. https://doi.org/10.1016/0022-3913(89)90329-6.

    Article  CAS  PubMed  Google Scholar 

  9. McLean JW, von Fraunhofer JA. The estimation of cement film thickness by an vivo technique. Br Dent J. 131(1971):107–11. https://doi.org/10.1038/sj.bdj.4802708.

    Article  CAS  Google Scholar 

  10. Akbar JH, Petrie CS, Walker MP, Williams K, Eick JD. Marginal adaptation of Cerec 3 CAD/CAM composite crowns using two different finish line preparation designs. J Prosthodont. 2006;15:155–63. https://doi.org/10.1111/j.1532-849x.2006.00095.x.

    Article  PubMed  Google Scholar 

  11. Abduo J, Lyons K, Swain M. Fit of zirconia fixed partial denture: a systematic review. J Oral Rehabil. 2010 Nov;37(11):866–76. https://doi.org/10.1111/j.1365-2842.2010.02113.x.

    Article  CAS  PubMed  Google Scholar 

  12. Att W, Komine F, Gerds T, Strub JR. Marginal adaptation of three different zirconium dioxide three-unit fixed dental prostheses. J Prosthet Dent. 2009;101:239–47. https://doi.org/10.1016/S0022-3913(09)60047-0.

    Article  CAS  PubMed  Google Scholar 

  13. Ural C, Burgaz Y, Saraç D. In vitro evaluation of marginal adaptation in five ceramic restoration fabricating techniques. Quintessence Int. 2010;41:585–90. PMID: 20614046

  14. Bourbia M, Ma D, Cvitkovitch DG, Santerre JP, Finer Y. Cariogenic bacteria degrade dental resin composites and adhesives. J Dent Res. 2013;92(11):989–94. https://doi.org/10.1177/0022034513504436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nedeljkovic I, De Munck J, Ungureanu A-A, Slomka V, Bartic C, Vananroye A, et al. Biofilm-induced changes to the composite surface. J Dent. 2017 Aug;63:36–43. https://doi.org/10.1016/j.jdent.2017.05.015.

    Article  CAS  PubMed  Google Scholar 

  16. •• Kusuma Yulianto HD, Rinastiti M, Cune MS, de Haan-Visser W, Atema-Smit J, Busscher HJ, et al. Biofilm composition and composite degradation during intra-oral wear. Dent Mater. 2019;35(5):740–50. https://doi.org/10.1016/j.dental.2019.02.024This study examined the effect of cariogenic bacteria on the tooth-restoration interface.

    Article  CAS  PubMed  Google Scholar 

  17. Montagner AF, Opdam NJ, Ruben JL, Bronkhorst EM, Cenci MS, Huysmans MC. Behavior of failed bonded interfaces under in vitro cariogenic challenge. Dent Mater. 2016;32(5):668–75. https://doi.org/10.1016/j.dental.2016.02.005.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kuper NK, Opdam NJM, Ruben JL, de Soet JJ, Cenci MS, Bronkhorst EM, et al. Gap size and wall lesion development next to composite. J Dent Res. 2014;93(7 Suppl):108S–13S. https://doi.org/10.1177/0022034514534262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. • Maske TT, Hollanders ACC, Kuper NK, Bronkhorst EM, Cenci MS, Huysmans MCDNJM. A threshold gap size for in situ secondary caries lesion development. J Dent. 2019;80:36–40. https://doi.org/10.1016/j.jdent.2018.10.014This in-vitro study demonstrated the marginal gap is minimal for secondary caries development.

    Article  CAS  Google Scholar 

  20. Denry I. How and when does fabrication damage adversely affect the clinical performance of ceramic restorations? Dent Mater. 2013;29(1):85–96. https://doi.org/10.1016/j.dental.2012.07.001.

    Article  CAS  PubMed  Google Scholar 

  21. Fraga S, Amaral M, Bottino MA, Valandro LF, Kleverlaan CJ, May LG. Impact of machining on the flexural fatigue strength of glass and polycrystalline CAD/CAM ceramics. Dent Mater. 2017;33(11):1286–97. https://doi.org/10.1016/j.dental.2017.07.019.

    Article  CAS  PubMed  Google Scholar 

  22. Romanyk DL, Martinez YT, Veldhuis S, Rae N, Guo Y, Sirovica S, et al. Strength-limiting damage in lithium silicate glass-ceramics associated with CAD-CAM. Dent Mater. 2019;35(1):98–104. https://doi.org/10.1016/j.dental.2018.11.004.

    Article  CAS  PubMed  Google Scholar 

  23. Gold SA, Ferracane JL, da Costa J. Effect of crystallization firing on marginal gap of CAD/CAM fabricated lithium disilicate crowns. J Prosthodont. 2018;27(1):63–6. https://doi.org/10.1111/jopr.12638.

    Article  PubMed  Google Scholar 

  24. Azarbal A, Azarbal M, Engelmeier RL, Kunkel TC. Marginal fit comparison of CAD/CAM crowns milled from two different materials. J Prosthodont. 2018;27(5):421–8. https://doi.org/10.1111/jopr.12683.

    Article  PubMed  Google Scholar 

  25. Furtado de Mendonca A, Shahmoradi M, Gouvêa CVD, De Souza GM, Ellakwa A. Microstructural and mechanical characterization of CAD/CAM materials for monolithic dental restorations. J Prosthodont. 2019;28(2):e587–94. https://doi.org/10.1111/jopr.12964.

    Article  PubMed  Google Scholar 

  26. Mounajjed R, M Layton D, Azar B. The marginal fit of E.max Press and E.max CAD lithium disilicate restorations: A critical review. Dent Mater J. 2016;35(6):835–44. https://doi.org/10.4012/dmj.2016-008.

    Article  CAS  PubMed  Google Scholar 

  27. Azar B, Eckert S, Kunkela J, Ingr T, Mounajjed R. The marginal fit of lithium disilicate crowns: Press vs. CAD/CAM. Braz Oral Res. 2018;32:e001. https://doi.org/10.1590/1807-3107/2018.vol32.0001.

    Article  PubMed  Google Scholar 

  28. Shim JS, Lee JS, Lee JY, Choi YJ, Shin SW, Ryu JJ. Effect of software version and parameter settings on the marginal and internal adaptation of crowns fabricated with the CAD/CAM system. J Appl Oral Sci. 2015;23:515–22. https://doi.org/10.1590/1678-775720150081.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hamza TA, Ezzat HA, MMK EL-H, HAEM K, Shokry TE, Rosenstiel SF. Accuracy of ceramic restorations made with two CAD/CAM systems. J Prosthet Dent. 2013;109:83–7. https://doi.org/10.1016/S0022-3913(13)60020-7.

    Article  CAS  PubMed  Google Scholar 

  30. Kirsch C, Ender A, Attin T, Mehl A. Trueness of four different milling procedures used in dental CAD/CAM systems. Clin Oral Investig. 2017;21(2):551–8. https://doi.org/10.1007/s00784-016-1916-y.

    Article  PubMed  Google Scholar 

  31. Okutan M, Heydecke G, Butz F, Strub JR. Fracture load and marginal fit of shrinkage- free ZrSiO4 all-ceramic crowns after chewing simulation. J Oral Rehabil. 2006;33:827–32. https://doi.org/10.1111/j.1365-2842.2006.01637.x.

    Article  CAS  PubMed  Google Scholar 

  32. Kale E, Yilmaz B, Seker E, Özcelik TB. Effect of fabrication stages and cementation on the marginal fit of CAD-CAM monolithic zirconia crowns. J Prosthet Dent. 2017;118(6):736–41. https://doi.org/10.1016/j.prosdent.2017.01.004.

    Article  CAS  PubMed  Google Scholar 

  33. Albert FE, El-Mowafy OM. Marginal adaptation and microleakage of Procera AllCeram crowns with four cements. Int J Prosthodont. 2004;17:529–35.

    PubMed  Google Scholar 

  34. •• Yu H, Chen YH, Cheng H, Sawase T. Finish-line designs for ceramic crowns: a systematic review and meta-analysis. J Prosthet Dent. 2019;122(1):22–30. https://doi.org/10.1016/j.prosdent.2018.10.002This review examined the effect of diamond shape during tooth preparation on marginal gap development.

    Article  CAS  PubMed  Google Scholar 

  35. Skjold A, Schriwer C, Øilo M. Effect of margin design on fracture load of zirconia crowns. Eur J Oral Sci. 2019;127(1):89–96. https://doi.org/10.1111/eos.12593.

    Article  CAS  PubMed  Google Scholar 

  36. Lehmensiek M, Askar H, Brouwer F, Blunck U, Paris S, Schwendicke F. Restoration integrity, but not material or cementation strategy determined secondary caries lesions next to indirect restorations in vitro. Dent Mater. 2018;34(12):e317–23. https://doi.org/10.1016/j.dental.2018.09.004.

    Article  CAS  PubMed  Google Scholar 

  37. Winkelmeyer C, Wolfart S, Marotti J. Analysis of tooth preparations for zirconia-based crowns and fixed dental prostheses using stereolithography data sets. J Prosthet Dent. 2016;116(5):783–9. https://doi.org/10.1016/j.prosdent.2016.03.019.

    Article  CAS  PubMed  Google Scholar 

  38. Renne W, McGill ST, Forshee KV, DeFee MR, Mennito AS. Predicting marginal fit of CAD/CAM crowns based on the presence or absence of common preparation errors. J Prosthet Dent. 2012;108(5):310–5. https://doi.org/10.1016/S0022-3913(12)60183-8.

    Article  PubMed  Google Scholar 

  39. • Renne W, Wolf B, Kessler R, McPherson K, Mennito AS. Evaluation of the marginal fit of CAD/CAM crowns fabricated using two different chairside CAD/CAM systems on preparations of varying quality. J Esthet Restor Dent. 2015;27(4):194–202. https://doi.org/10.1111/jerd.12148This study demonstrated the importance of preparation over scanning and milling systems utilized.

    Article  Google Scholar 

  40. Rosenstiel SF, Land MF, Fujimoto J. Con- temporary fixed prosthodontics. 4th ed. St Louis: Mosby Elsevier; 2006. p. 325–7.

    Google Scholar 

  41. Shillingburg HT, Hobo S, Whitsett LD, Ja-Cobi R, Brackett SE. Fundamentals of fixed prosthodontics. 3rd ed. Chicago: Quintessence Publishing; 1997. p. 437.

    Google Scholar 

  42. Hmaidouch R, Neumann P, Mueller WD. Influence of preparation form, luting space setting and cement type on the marginal and internal fit of CAD/ CAM crown copings. Int J Comput Dent. 2011;14:219–26.

    CAS  PubMed  Google Scholar 

  43. Euán R, Figueras-Álvarez O, Cabratosa-Termes J, Brufau-de Barberà M, Gomes-Azevedo S. Comparison of the marginal adaptation of zirconium dioxide crowns in preparations with two different finish lines. J Prosthodont. 2012;21(4):291–5. https://doi.org/10.1111/j.1532-849X.2011.00831.x.

    Article  PubMed  Google Scholar 

  44. Ferreira A, Oliveira F, Bottino MA. Vertical marginal discrepancy of ceramic copings with different ceramic materials, finish lines, and luting agents: an in vitro evaluation. J Prosthet Dent. 2004;92:250–7. https://doi.org/10.1016/j.prosdent.2004.06.023.

    Article  CAS  Google Scholar 

  45. Cho L, Choi J, Yi YJ, Park CJ. Effect of finish line variants on marginal accuracy and fracture strength of ceramic optimized polymer/fiber-reinforced composite crowns. J Prosthet Dent. 2004;91:554–60. https://doi.org/10.1016/j.prosdent.2004.03.004.

    Article  CAS  PubMed  Google Scholar 

  46. Keeling A, Wu J, Ferrari M. Confounding factors affecting the marginal quality of an intra-oral scan. J Dent. 2017;59:33–40. https://doi.org/10.1016/j.jdent.2017.02.003.

    Article  Google Scholar 

  47. •• Abduo J, Elseyoufi M. Accuracy of intraoral scanners: a systematic review of influencing factors. Eur J Prosthodont Restor Dent. 2018;26(3):101–21. https://doi.org/10.1922/EJPRD_01752Abduo21This review examined important elements when considering intra-oral scanning over conventional impression techniques.

    Article  CAS  PubMed  Google Scholar 

  48. Mangano F, Gandolfi A, Luongo G, Logozzo S. Intraoral scanners in dentistry: a review of the current literature. BMC Oral Health. 2017;17(1):149. https://doi.org/10.1186/s12903-017-0442-x.

    Article  PubMed  PubMed Central  Google Scholar 

  49. • Nedelcu R, Olsson P, Nyström I, Thor A. Finish line distinctness and accuracy in 7 intraoral scanners versus conventional impression: an in vitro descriptive comparison. BMC Oral Health. 2018;18(1):27. https://doi.org/10.1186/s12903-018-0489-3This study demonstrated the potential issues scanners have compared to conventional impressions.

  50. Li YQ, Wang H, Wang YJ, Chen JH. Effect of different grit sizes of diamond rotary instruments for tooth preparation on the retention and adaptation of complete coverage restorations. J Prosthet Dent. 2012;107(2):86–93. https://doi.org/10.1016/S0022-3913(12)60029-8.

    Article  PubMed  Google Scholar 

  51. Geminiani A, Abdel-Azim T, Ercoli C, Feng C, Meirelles L, Massironi D. Influence of oscillating and rotary cutting instruments with electric and turbine handpieces on tooth preparation surfaces. J Prosthet Dent. 2014;112(1):51–8. https://doi.org/10.1016/j.prosdent.2014.02.007.

    Article  PubMed  Google Scholar 

  52. Solá-Ruiz MF, Faus-Matoses I, Del Rio HJ, Fons-Font A. Study of surface topography, roughness, and microleakage after dental preparation with different instrumentation. Int J Prosthodont. 2014;27(6):530–3. https://doi.org/10.11607/ijp.3932.

    Article  PubMed  Google Scholar 

  53. Faus-Matoses I, Solá-Ruiz F. Dental preparation with sonic vs high-speed finishing: analysis of microleakage in bonded veneer restorations. J Adhes Dent. 2014;16(1):29–34. https://doi.org/10.3290/j.jad.a30754.

    Article  PubMed  Google Scholar 

  54. • Ellis R, Bennani V, Purton D, Chandler N, Lowe B. The effect of ultrasonic instruments on the quality of preparation margins and bonding to dentin. J Esthet Restor Dent. 2012;24(4):278–85. https://doi.org/10.1111/j.1708-8240.2011.00495.xThis study demonstrated sonic handpieces have a positive effect on finish line margins and bonding.

    Article  Google Scholar 

  55. Bowers DJ, Glickman GN, Solomon ES, He J. Magnification’s effect on endodontic fine motor skills. J Endod. 2010;36:1135–8. https://doi.org/10.1016/j.joen.2010.03.003.

    Article  PubMed  Google Scholar 

  56. Ferreira R, Prado M, de Jesus Soares A, Zaia AA, de Souza-Filho FJ. Influence of using clinical microscope as auxiliary to perform mechanical cleaning of post space: a bond strength analysis. J Endod\. 2015;41(8):1311–6. https://doi.org/10.1016/j.joen.2015.05.003.

    Article  PubMed  Google Scholar 

  57. Setzer FC, Shah S, Kohli M, Karabucak B, Kim S. Outcome of endodontic surgery: a meta-analysis of the literature - part 1: comparison of traditional root- end surgery and endodontic microsurgery. J Endod\. 2010;36:1757–65. https://doi.org/10.1016/j.joen.2010.08.007.

    Article  PubMed  Google Scholar 

  58. Setzer FC, Kohli M, Shah S, Karabucak B, Kim S. Outcome of endodontic surgery: a meta-analysis of the literature - part 2: comparison of endodontic microsurgical techniques with and without the use of higher magnification. J Endod\. 2012;38:1–10. https://doi.org/10.1016/j.joen.2011.09.021.

    Article  PubMed  Google Scholar 

  59. Tsesis I, Rosen E, Taschieri S, Telishevsky Strauss Y, Ceresoli V, Del Fabbro M. Outcomes of surgical endodontic treatment performed by a modern technique: an updated meta-analysis of the literature. J Endod\. 2013;39:332–9. https://doi.org/10.1016/j.joen.2012.11.044.

    Article  PubMed  Google Scholar 

  60. Friedman MJ, Landesman HM. Microscope-assisted precision (MAP) dentistry. A challenge for new knowledge. J Calif Dent Assoc. 1998;26(12):900–5.

    CAS  PubMed  Google Scholar 

  61. Musikant BL, Cohen BI, Deutsch AS. The surgical microscope, not just for the specialist. N Y State Dent J. 1996;62(8):33–5.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Atlas.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Modern Production Laboratory Advances in Dental Technology

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atlas, A., Isleem, W., Bergler, M. et al. Factors Affecting the Marginal Fit of CAD-CAM Restorations and Concepts to Improve Outcomes. Curr Oral Health Rep 6, 277–283 (2019). https://doi.org/10.1007/s40496-019-00245-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40496-019-00245-2

Keywords