Skip to main content

Advertisement

Log in

Current Developments on Enamel and Dentin Remineralization

  • Dental Restorative Materials (M Özcan and P Cesar, Section Editor)
  • Published:
Current Oral Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To present an overview of the ongoing research on enamel and dentin remineralization and to describe particle-mediated and biomimetic approaches. The importance of restoring tissue functionality as the ultimate goal of remineralization is emphasized.

Recent Findings

Calcium-releasing particles and adjuvants to increase fluoride uptake by enamel are described in the literature. In order to recover the prismatic structure in mineral-depleted enamel, amelogenin-derived peptides and amelogenin analogues have been proposed as templates for apatite deposition. In dentin, mineral deposition per se is not enough to recover the mechanical properties, and the use of biomimetic analogs is necessary to guide apatite formation into the collagen intrafibrillar spaces.

Summary

The use of biomimetic analogues associated with ion-releasing materials seems a promising approach for both enamel and dentin remineralization. Clinical translational protocols are still premature and have, so far, only been explored experimentally in vitro, with good outcomes particularly on structural and functional repair of artificial dentin carious lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Murdoch-Kinch CA, McLean ME. Minimally invasive dentistry. J Am Dent Assoc. 2003;134(1):87–95. https://doi.org/10.14219/jada.archive.2003.0021.

    Article  PubMed  Google Scholar 

  2. •• Innes NPT, Chu CH, Fontana M, Lo ECM, Thomson WM, Uribe S, et al. A century of change towards prevention and minimal intervention in cardiology. J Dent Res. 2019;98(6):611–7. https://doi.org/10.1177/0022034519837252This paper summarizes adaptation in caries management and restorative treatments which mostly occurred in the last 20 to 30 years and were leading to the concept of minimally-invasive dentistry which emphasizes tissue repair and conservation over surgical removal.

    Article  CAS  PubMed  Google Scholar 

  3. Gao SS, Zhang S, Mei ML, Lo EC, Chu CH. Caries remineralisation and arresting effect in children by professionally applied fluoride treatment - a systematic review. BMC Oral Health. 2016;16:12. https://doi.org/10.1186/s12903-016-0171-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lenzi TL, Montagner AF, Soares FZ, de Oliveira Rocha R. Are topical fluorides effective for treating incipient carious lesions?: a systematic review and meta-analysis. J Am Dent Assoc. 2016;147(2):84–91 e1. https://doi.org/10.1016/j.adaj.2015.06.018.

    Article  PubMed  Google Scholar 

  5. Li X, Wang J, Joiner A, Chang J. The remineralisation of enamel: a review of the literature. J Dent. 2014;42(Suppl 1):S12–20. https://doi.org/10.1016/S0300-5712(14)50003-6.

    Article  CAS  PubMed  Google Scholar 

  6. Philip N. State of the art enamel remineralization systems: the next frontier in caries management. Caries Res. 2018;53(3):284–95. https://doi.org/10.1159/000493031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Melo MA, Weir MD, Rodrigues LK, Xu HH. Novel calcium phosphate nanocomposite with caries-inhibition in a human in situ model. Dent Mater. 2013;29(2):231–40. https://doi.org/10.1016/j.dental.2012.10.010.

    Article  CAS  PubMed  Google Scholar 

  8. Souza JG, Tenuta LM, Del Bel Cury AA, Nobrega DF, Budin RR, de Queiroz MX, et al. Calcium prerinse before fluoride rinse reduces enamel demineralization: an in situ caries study. Caries Res. 2016;50(4):372–7. https://doi.org/10.1159/000446407.

    Article  CAS  PubMed  Google Scholar 

  9. Meyer-Lueckel H, Wierichs RJ, Schellwien T, Paris S. Remineralizing efficacy of a CPP-ACP cream on enamel caries lesions in situ. Caries Res. 2015;49(1):56–62. https://doi.org/10.1159/000363073.

    Article  CAS  PubMed  Google Scholar 

  10. Gonzalez-Cabezas C, Fernandez CE. Recent advances in remineralization therapies for caries lesions. Adv Dent Res. 2018;29(1):55–9. https://doi.org/10.1177/0022034517740124.

    Article  CAS  PubMed  Google Scholar 

  11. Taha AA, Patel MP, Hill RG, Fleming PS. The effect of bioactive glasses on enamel remineralization: a systematic review. J Dent. 2017;67:9–17. https://doi.org/10.1016/j.jdent.2017.09.007.

    Article  CAS  PubMed  Google Scholar 

  12. Parkinson CR, Siddiqi M, Mason S, Lippert F, Hara AT, Zero DT. Anticaries potential of a sodium monofluorophosphate dentifrice containing calcium sodium phosphosilicate: exploratory in situ randomized trial. Caries Res. 2017;51(2):170–8. https://doi.org/10.1159/000453622.

    Article  CAS  PubMed  Google Scholar 

  13. Alania Y, Natale LC, Nesadal D, Vilela H, Magalhaes AC, Braga RR. In vitro remineralization of artificial enamel caries with resin composites containing calcium phosphate particles. J Biomed Mater Res B Appl Biomater. 2018. https://doi.org/10.1002/jbm.b.34246.

    Article  Google Scholar 

  14. Langhorst SE, O'Donnell JN, Skrtic D. In vitro remineralization of enamel by polymeric amorphous calcium phosphate composite: quantitative microradiographic study. Dent Mater. 2009;25(7):884–91. https://doi.org/10.1016/j.dental.2009.01.094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pinto MFC, Alania Y, Natale LC, Magalhaes AC, Braga RR. Effect of bioactive composites on microhardness of enamel exposed to carious challenge. Eur J Prosthodont Restor Dent. 2018;26(3):122–8. https://doi.org/10.1922/EJPRD_01781Pinto07.

    Article  CAS  PubMed  Google Scholar 

  16. • Braga RR. Calcium phosphates as ion-releasing fillers in restorative resin-based materials. Dent Mater. 2019;35(1):3–14. https://doi.org/10.1016/j.dental.2018.08.288A recent review written by one of the authors discussing the use of calcium orthophosphates particles as additives in restorative resin-based materials.

    Article  CAS  PubMed  Google Scholar 

  17. Krishnan V, Bhatia A, Varma H. Development, characterization and comparison of two strontium doped nano hydroxyapatite molecules for enamel repair/regeneration. Dent Mater. 2016;32(5):646–59. https://doi.org/10.1016/j.dental.2016.02.002.

    Article  CAS  PubMed  Google Scholar 

  18. Souza BM, Comar LP, Vertuan M, Fernandes Neto C, Buzalaf MA, Magalhaes AC. Effect of an experimental paste with hydroxyapatite nanoparticles and fluoride on dental demineralisation and remineralisation in situ. Caries Res. 2015;49(5):499–507. https://doi.org/10.1159/000438466.

    Article  CAS  PubMed  Google Scholar 

  19. Lelli M, Putignano A, Marchetti M, Foltran I, Mangani F, Procaccini M, et al. Remineralization and repair of enamel surface by biomimetic Zn-carbonate hydroxyapatite containing toothpaste: a comparative in vivo study. Front Physiol. 2014;5:333. https://doi.org/10.3389/fphys.2014.00333.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shen P, Walker GD, Yuan Y, Reynolds C, Stanton DP, Fernando JR, et al. Importance of bioavailable calcium in fluoride dentifrices for enamel remineralization. J Dent. 2018;78:59–64. https://doi.org/10.1016/j.jdent.2018.08.005.

    Article  CAS  PubMed  Google Scholar 

  21. Lippert F, Gill KK. Carious lesion remineralizing potential of fluoride- and calcium-containing toothpastes: A laboratory study. J Am Dent Assoc. 2019. https://doi.org/10.1016/j.adaj.2018.11.022.

    Article  Google Scholar 

  22. Karlinsey RL, Pfarrer AM. Fluoride plus functionalized beta-TCP: a promising combination for robust remineralization. Adv Dent Res. 2012;24(2):48–52. https://doi.org/10.1177/0022034512449463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thilo E. The structural chemistry of condensed inorganic phosphates. Angew Chem Int Ed Engl. 1965;4(12):1061–71. https://doi.org/10.1002/anie.196510611.

    Article  CAS  Google Scholar 

  24. Danelon M, Takeshita EM, Peixoto LC, Sassaki KT, Delbem ACB. Effect of fluoride gels supplemented with sodium trimetaphosphate in reducing demineralization. Clin Oral Investig. 2014;18(4):1119–27. https://doi.org/10.1007/s00784-013-1102-4.

    Article  PubMed  Google Scholar 

  25. Manarelli MM, Delbem AC, Lima TM, Castilho FC, Pessan JP. In vitro remineralizing effect of fluoride varnishes containing sodium trimetaphosphate. Caries Res. 2014;48(4):299–305. https://doi.org/10.1159/000356308.

    Article  CAS  PubMed  Google Scholar 

  26. Goncalves FMC, Delbem ACB, Pessan JP, Nunes GP, Emerenciano NG, Garcia LSG, et al. Remineralizing effect of a fluoridated gel containing sodium hexametaphosphate: an in vitro study. Arch Oral Biol. 2018;90:40–4. https://doi.org/10.1016/j.archoralbio.2018.03.001.

    Article  CAS  PubMed  Google Scholar 

  27. Manarelli MM, Delbem AC, Binhardi TD, Pessan JP. In situ remineralizing effect of fluoride varnishes containing sodium trimetaphosphate. Clin Oral Investig. 2015;19(8):2141–6. https://doi.org/10.1007/s00784-015-1492-6.

    Article  CAS  PubMed  Google Scholar 

  28. Takeshita EM, Danelon M, Castro LP, Cunha RF, Delbem AC. Remineralizing potential of a low fluoride toothpaste with sodium trimetaphosphate: an in situ study. Caries Res. 2016;50(6):571–8. https://doi.org/10.1159/000449358.

    Article  CAS  PubMed  Google Scholar 

  29. Danelon M, Garcia LG, Pessan JP, Passarinho A, Camargo ER, Delbem ACB. Effect of fluoride toothpaste containing nano-sized sodium hexametaphosphate on enamel remineralization: an in situ study. Caries Res. 2018;53(3):260–7. https://doi.org/10.1159/000491555.

    Article  CAS  PubMed  Google Scholar 

  30. Lv X, Yang Y, Han S, Li D, Tu H, Li W, et al. Potential of an amelogenin based peptide in promoting remineralization of initial enamel caries. Arch Oral Biol. 2015;60(10):1482–7. https://doi.org/10.1016/j.archoralbio.2015.07.010.

    Article  CAS  PubMed  Google Scholar 

  31. Chen M, Yang J, Li J, Liang K, He L, Lin Z, et al. Modulated regeneration of acid-etched human tooth enamel by a functionalized dendrimer that is an analog of amelogenin. Acta Biomater. 2014;10(10):4437–46. https://doi.org/10.1016/j.actbio.2014.05.016.

    Article  CAS  PubMed  Google Scholar 

  32. Brookes SJ, Robinson C, Kirkham J, Bonass WA. Biochemistry and molecular biology of amelogenin proteins of developing dental enamel. Arch Oral Biol. 1995;40(1):1–14. https://doi.org/10.1016/0003-9969(94)00135-X.

    Article  CAS  PubMed  Google Scholar 

  33. Zheng W, Ding L, Wang Y, Han S, Zheng S, Guo Q, et al. The effects of 8DSS peptide on remineralization in a rat model of enamel caries evaluated by two nondestructive techniques. J Appl Biomater Funct Mater. 2019;17(1):2280800019827798. https://doi.org/10.1177/2280800019827798.

    Article  CAS  PubMed  Google Scholar 

  34. Yang Y, Lv XP, Shi W, Li JY, Li DX, Zhou XD, et al. 8DSS-promoted remineralization of initial enamel caries in vitro. J Dent Res. 2014;93(5):520–4. https://doi.org/10.1177/0022034514522815.

    Article  CAS  PubMed  Google Scholar 

  35. Hammarstrom L, Heijl L, Gestrelius S. Periodontal regeneration in a buccal dehiscence model in monkeys after application of enamel matrix proteins. J Clin Periodontol. 1997;24(9 Pt 2):669–77.

    Article  CAS  Google Scholar 

  36. Cao Y, Mei ML, Li QL, Lo EC, Chu CH. Enamel prism-like tissue regeneration using enamel matrix derivative. J Dent. 2014;42(12):1535–42. https://doi.org/10.1016/j.jdent.2014.08.014.

    Article  CAS  PubMed  Google Scholar 

  37. Han S, Fan Y, Zhou Z, Tu H, Li D, Lv X, et al. Promotion of enamel caries remineralization by an amelogenin-derived peptide in a rat model. Arch Oral Biol. 2017;73:66–71. https://doi.org/10.1016/j.archoralbio.2016.09.009.

    Article  CAS  PubMed  Google Scholar 

  38. Bagheri GH, Sadr A, Espigares J, Hariri I, Nakashima S, Hamba H, et al. Study on the influence of leucine-rich amelogenin peptide (LRAP) on the remineralization of enamel defects via micro-focus x-ray computed tomography and nanoindentation. Biomed Mater. 2015;10(3):035007. https://doi.org/10.1088/1748-6041/10/3/035007.

    Article  CAS  Google Scholar 

  39. Kirkham J, Firth A, Vernals D, Boden N, Robinson C, Shore RC, et al. Self-assembling peptide scaffolds promote enamel remineralization. J Dent Res. 2007;86(5):426–30. https://doi.org/10.1177/154405910708600507.

    Article  CAS  PubMed  Google Scholar 

  40. • Kind L, Stevanovic S, Wuttig S, Wimberger S, Hofer J, Muller B, et al. Biomimetic remineralization of carious lesions by self-assembling peptide. J Dent Res. 2017;96(7):790–7. https://doi.org/10.1177/0022034517698419A well-conducted investigation on the use of self-assembling peptides for enamel remineralization.

    Article  CAS  PubMed  Google Scholar 

  41. Alkilzy M, Tarabaih A, Santamaria RM, Splieth CH. Self-assembling peptide P11-4 and fluoride for regenerating enamel. J Dent Res. 2018;97(2):148–54. https://doi.org/10.1177/0022034517730531.

    Article  CAS  PubMed  Google Scholar 

  42. Schlee M, Schad T, Koch JH, Cattin PC, Rathe F. Clinical performance of self-assembling peptide P11 -4 in the treatment of initial proximal carious lesions: a practice-based case series. J Investig Clin Dent. 2018;9(1). https://doi.org/10.1111/jicd.12286.

  43. Silvertown JD, Wong BPY, Sivagurunathan KS, Abrams SH, Kirkham J, Amaechi BT. Remineralization of natural early caries lesions in vitro by P11-4 monitored with photothermal radiometry and luminescence. J Investig Clin Dent. 2017;8(4):e12257. https://doi.org/10.1111/jicd.12257.

    Article  Google Scholar 

  44. Takahashi F, Kurokawa H, Shibasaki S, Kawamoto R, Murayama R, Miyazaki M. Ultrasonic assessment of the effects of self-assembling peptide scaffolds on preventing enamel demineralization. Acta Odontol Scand. 2016;74(2):142–7. https://doi.org/10.3109/00016357.2015.1066850.

    Article  CAS  PubMed  Google Scholar 

  45. Wierichs RJ, Kogel J, Lausch J, Esteves-Oliveira M, Meyer-Lueckel H. Effects of self-assembling peptide P11-4, fluorides, and caries infiltration on artificial enamel caries lesions in vitro. Caries Res. 2017;51(5):451–9. https://doi.org/10.1159/000477215.

    Article  CAS  PubMed  Google Scholar 

  46. Chen L, Yuan H, Tang B, Liang K, Li J. Biomimetic remineralization of human enamel in the presence of polyamidoamine dendrimers in vitro. Caries Res. 2015;49(3):282–90. https://doi.org/10.1159/000375376.

    Article  CAS  PubMed  Google Scholar 

  47. Deshpande AS, Fang PA, Zhang X, Jayaraman T, Sfeir C, Beniash E. Primary structure and phosphorylation of dentin matrix protein 1 (DMP1) and dentin phosphophoryn (DPP) uniquely determine their role in biomineralization. Biomacromolecules. 2011;12(8):2933–45. https://doi.org/10.1021/bm2005214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kinney JH, Habelitz S, Marshall SJ, Marshall GW. The importance of intrafibrillar mineralization of collagen on the mechanical properties of dentin. J Dent Res. 2003;82(12):957–61. https://doi.org/10.1177/154405910308201204.

    Article  CAS  PubMed  Google Scholar 

  49. Olszta MJ, Cheng XG, Jee SS, Kumar R, Kim YY, Kaufman MJ, et al. Bone structure and formation: a new perspective. Mater Sci Eng R-Rep. 2007;58(3-5):77–116.

    Article  Google Scholar 

  50. Nudelman F, Pieterse K, George A, Bomans PH, Friedrich H, Brylka LJ, et al. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater. 2010;9(12):1004–9. https://doi.org/10.1038/nmat2875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Niu LN, Zhang W, Pashley DH, Breschi L, Mao J, Chen JH, et al. Biomimetic remineralization of dentin. Dent Mater. 2014;30(1):77–96. https://doi.org/10.1016/j.dental.2013.07.013.

    Article  CAS  PubMed  Google Scholar 

  52. Burwell AK, Thula-Mata T, Gower LB, Habelitz S, Kurylo M, Ho SP, et al. Functional remineralization of dentin lesions using polymer-induced liquid-precursor process. PLoS One. 2012;7(6):e38852. https://doi.org/10.1371/journal.pone.0038852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bertassoni LE, Habelitz S, Marshall SJ, Marshall GW. Mechanical recovery of dentin following remineralization in vitro--an indentation study. J Biomech. 2011;44(1):176–81. https://doi.org/10.1016/j.jbiomech.2010.09.005.

    Article  PubMed  PubMed Central  Google Scholar 

  54. ten Cate JM. Remineralization of caries lesions extending into dentin. J Dent Res. 2001;80(5):1407–11. https://doi.org/10.1177/00220345010800050401.

    Article  PubMed  Google Scholar 

  55. Prati C, Gandolfi MG. Calcium silicate bioactive cements: biological perspectives and clinical applications. Dent Mater. 2015;31(4):351–70. https://doi.org/10.1016/j.dental.2015.01.004.

    Article  CAS  PubMed  Google Scholar 

  56. Bertassoni LE, Habelitz S, Kinney JH, Marshall SJ, Marshall GW Jr. Biomechanical perspective on the remineralization of dentin. Caries Res. 2009;43(1):70–7. https://doi.org/10.1159/000201593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ryou H, Turco G, Breschi L, Tay FR, Pashley DH, Arola D. On the stiffness of demineralized dentin matrices. Dent Mater. 2016;32(2):161–70. https://doi.org/10.1016/j.dental.2015.11.029.

    Article  CAS  PubMed  Google Scholar 

  58. Mukai Y, ten Cate JM. Remineralization of advanced root dentin lesions in vitro. Caries Res. 2002;36(4):275–80. https://doi.org/10.1159/000063924.

    Article  CAS  PubMed  Google Scholar 

  59. Ten Cate JM, Buzalaf MAR. Fluoride mode of action: once there was an observant dentist. J Dent Res. 2019;98(7):725–30. https://doi.org/10.1177/0022034519831604.

    Article  CAS  PubMed  Google Scholar 

  60. Qi YP, Li N, Niu LN, Primus CM, Ling JQ, Pashley DH, et al. Remineralization of artificial dentinal caries lesions by biomimetically modified mineral trioxide aggregate. Acta Biomater. 2012;8(2):836–42. https://doi.org/10.1016/j.actbio.2011.10.033.

    Article  CAS  PubMed  Google Scholar 

  61. Watson TF, Atmeh AR, Sajini S, Cook RJ, Festy F. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: biophotonics-based interfacial analyses in health and disease. Dent Mater. 2014;30(1):50–61. https://doi.org/10.1016/j.dental.2013.08.202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim YK, Yiu CK, Kim JR, Gu L, Kim SK, Weller RN, et al. Failure of a glass ionomer to remineralize apatite-depleted dentin. J Dent Res. 2010;89(3):230–5. https://doi.org/10.1177/0022034509357172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hashem D, Mannocci F, Patel S, Manoharan A, Brown JE, Watson TF, et al. Clinical and radiographic assessment of the efficacy of calcium silicate indirect pulp capping: a randomized controlled clinical trial. J Dent Res. 2015;94(4):562–8. https://doi.org/10.1177/0022034515571415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schwendicke F, Al-Abdi A, Pascual Moscardo A, Ferrando Cascales A, Sauro S. Remineralization effects of conventional and experimental ion-releasing materials in chemically or bacterially-induced dentin caries lesions. Dent Mater. 2019;35(5):772–9. https://doi.org/10.1016/j.dental.2019.02.021.

    Article  CAS  PubMed  Google Scholar 

  65. Sauro S, Watson T, Moscardo AP, Luzi A, Feitosa VP, Banerjee A. The effect of dentine pre-treatment using bioglass and/or polyacrylic acid on the interfacial characteristics of resin-modified glass ionomer cements. J Dent. 2018;73:32–9. https://doi.org/10.1016/j.jdent.2018.03.014.

    Article  CAS  PubMed  Google Scholar 

  66. Deshpande AS, Beniash E. Bio-inspired synthesis of mineralized collagen fibrils. Cryst Growth Des. 2008;8(8):3084–90.

    Article  CAS  Google Scholar 

  67. Olszta MJ, Odom DJ, Douglas EP, Gower LB. A new paradigm for biomineral formation: mineralization via an amorphous liquid-phase precursor. Connect Tissue Res. 2003;44(Suppl 1):326–34.

    Article  CAS  Google Scholar 

  68. Gower LB. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev. 2008;108(11):4551–627.

    Article  CAS  Google Scholar 

  69. Saeki K, Chien YC, Nonomura G, Chin AF, Habelitz S, Gower LB, et al. Recovery after PILP remineralization of dentin lesions created with two cariogenic acids. Arch Oral Biol. 2017;82:194–202. https://doi.org/10.1016/j.archoralbio.2017.06.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rodriguez DE, Thula-Mata T, Toro EJ, Yeh YW, Holt C, Holliday LS, et al. Multifunctional role of osteopontin in directing intrafibrillar mineralization of collagen and activation of osteoclasts. Acta Biomater. 2014;10(1):494–507. https://doi.org/10.1016/j.actbio.2013.10.010.

    Article  CAS  PubMed  Google Scholar 

  71. Niu LN, Jee SE, Jiao K, Tonggu L, Li M, Wang L, et al. Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nat Mater. 2017;16(3):370–8. https://doi.org/10.1038/nmat4789.

    Article  CAS  PubMed  Google Scholar 

  72. Ryou H, Niu LN, Dai L, Pucci CR, Arola DD, Pashley DH, et al. Effect of biomimetic remineralization on the dynamic nanomechanical properties of dentin hybrid layers. J Dent Res. 2011;90(9):1122–8. https://doi.org/10.1177/0022034511414059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sarem M, Ludeke S, Thomann R, Salavei P, Zou Z, Habraken W, et al. Disordered conformation with low Pii helix in phosphoproteins orchestrates biomimetic apatite formation. Adv Mater. 2017;29(35). https://doi.org/10.1002/adma.201701629.

    Article  Google Scholar 

  74. Liu Y, Tjaderhane L, Breschi L, Mazzoni A, Li N, Mao J, et al. Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J Dent Res. 2011;90(8):953–68. https://doi.org/10.1177/0022034510391799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tjaderhane L, Nascimento FD, Breschi L, Mazzoni A, Tersariol IL, Geraldeli S, et al. Strategies to prevent hydrolytic degradation of the hybrid layer-a review. Dent Mater. 2013;29(10):999–1011. https://doi.org/10.1016/j.dental.2013.07.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. • Bacino M, Girn V, Nurrohman H, Saeki K, Marshall SJ, Gower L, et al. Integrating the PILP-mineralization process into a restorative dental treatment. Dent Mater. 2019;35(1):53–63. https://doi.org/10.1016/j.dental.2018.11.030This study proposes methods on how to incorporate process-directing agents into a restorative material to induce functional remineralization of dentin caries.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Ruggiero Braga.

Ethics declarations

Conflict of Interest

Dr. Braga declares no conflicts of interest. Dr. Habelitz reports no conflicts of interest. In addition, Dr. Habelitz has a patent on compositions for the remineralization of dentin pending and not licensed.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Dental Restorative Materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braga, R.R., Habelitz, S. Current Developments on Enamel and Dentin Remineralization. Curr Oral Health Rep 6, 257–263 (2019). https://doi.org/10.1007/s40496-019-00242-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40496-019-00242-5

Keywords

Navigation