Skip to main content

Advertisement

Log in

Facially Driven Digital Diagnostic Waxing: New Software Features to Simulate and Define Restorative Outcomes

  • Modern Production Laboratory Advances in Dental Technology (M Bergler and E Steger, Section Editors)
  • Published:
Current Oral Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Computer-aided design (CAD) softwares minimize human designing errors, reduce time and cost, and serve as more powerful diagnostic and designing tools for treatment planning in restorative dentistry when compared with conventional diagnostic waxing techniques. The goal of this article was to review the features of the available dental and open-source CAD softwares for a facially driven digital diagnostic waxing elaboration.

Recent Findings

The literature review demonstrated that when digital technologies are selected, the fundamental concepts remain, but the protocol differs. When fabricating a facially driven diagnostic waxing, the digitized dentition obtained from either an intraoral scanner or digitized conventional stone cast can be merged with either two-dimensional (2D) photographs or three-dimensional (3D) extraoral facial scans of the patient at different positions. This superimposition procedure has been described in dental and open-source CAD softwares. Indeed, dental CAD softwares offer intuitive tools for dental professionals; however, the flexibility in creating virtual designs is more limited compared with open-source softwares.

Summary

Digital technologies serve as a more powerful diagnostic and design tool when compared with conventional procedures. The integration of different digital technologies has promoted the development of a 3D virtual patient, allowing clinicians and dental technicians to superimpose data on patients’ facial skeletons, extraoral soft tissue, and dentition. Both dental and open-source CAD softwares greatly improve the facially driven diagnostic waxing predictability because they incorporate the patient’s facial references.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Goldstein RE. Esthetics in dentistry. Vol 1: Principles, communication, treatment methods, edn 2. Ontario: BC Decker; 1998. p. 3–51.

    Google Scholar 

  2. Chiche GJ, Pinault A. Esthetics of anterior fixed prosthodontics. Chicago: Quintessence; 1996. p. 33–50.

    Google Scholar 

  3. Fradeani M. Esthetic rehabilitation in fixed prosthodontics. Vol 1: Esthetic analysis: a systematic approach to prosthetic treatment. Chicago: Quintessence; 2004. p. 22–30.

    Google Scholar 

  4. Rufenacht CR. Fundamentals of esthetics. Chicago: Quintessence; 1990. p. 205–41.

    Google Scholar 

  5. Spear FM, Kokich VG. A multidisciplinary approach to esthetic dentistry. Dent Clin N Am. 2007;51:487–505.

    PubMed  Google Scholar 

  6. Ackerman MB, Ackerman JL. Smile analysis and design in the digital era. J Clin Orthod. 2002;36:221–36.

    PubMed  Google Scholar 

  7. The glossary of prosthodontic terms. edn 9th. J Prosthet Dent 2017;117:e32.

  8. Kois DE, Schmidt KK, Raigrodski AJ. Esthetic templates for complex restorative cases: rationale and management. J Esthet Restor Dent. 2008;20:239–48.

    PubMed  Google Scholar 

  9. Marzola R, Derbabian K, Donovan TE, Arcidiancono A. The science of communicating the art of esthetic dentistry: part I: patient-dentist-patient communication. J Esthet Dent. 2000;12:131–8.

    CAS  PubMed  Google Scholar 

  10. Kokich V, Kiyak HA, Shapiro PA. Comparing the perception of dentists and laypeople to altered dental esthetics. J Esthet Dent. 1999;11:311–24.

    PubMed  Google Scholar 

  11. Magne P, Salem P, Magne M. Influence of symmetry and balance on visual perception of a white female smile. J Prosthet Dent. 2018;120:573–82.

    PubMed  Google Scholar 

  12. Revilla-León M, Meyer MJ, Barrington JJ, Sones A, Umorin MP, Taleghani M, et al. Perception of occlusal plane that is non parallel to interpupillary and comissural lines but with the maxillary dental midline ideally positioned. J Prosthet Dent. 2019; (in press).

  13. Magne P, Magne M, Belser U. The diagnostic template: a key element to the comprehensive esthetic treatment concept. Int J Periodontics Restorative Dent. 1996;16:560–9.

    CAS  PubMed  Google Scholar 

  14. Donovan TE, Cho GC. Diagnostic provisional restorations in restorative dentistry: the blueprint for success. J Can Dent Assoc. 1999;65:272–5.

    CAS  PubMed  Google Scholar 

  15. Duret F. Toward a new symbolism in the fabrication of prosthetic design. Les Cahiers de Prothèse. 1985;13:65–71.

    CAS  PubMed  Google Scholar 

  16. Zimmermann M, Mehl A, Mörmann WH, Reich S. Intraoral scanning systems—a current overview. Int J Comput Dent. 2015;18:101–29.

    CAS  PubMed  Google Scholar 

  17. Liu S, Srinivasan M, Mörzinger R, Lancelle M, Beeler T, Gross M, et al. Reliability of a three-dimensional facial camera for dental and medical applications: a pilot study. J Prosthet Dent. 2019; (in press).

  18. Wismeijer D, Mans R, Van Genuchten M, Reijers HA. Patients’ preferences when comparing analogue implant impressions using a polyether impression material versus digital impressions (Intraoral Scan) of dental implants. Clin Oral Implants Res. 2014;25:1113–8.

    PubMed  Google Scholar 

  19. Joda T, Brägger U. Patient-centered outcomes comparing digital and conventional implant impression procedures: a randomized crossover trial. Clin Oral Implants Res. 2016;27:e185–9.

    PubMed  Google Scholar 

  20. Eaton KA, Reynolds PA, Grayden SK, Wilson NH. A vision of dental education in the third millennium. Br Dent J. 2008;205:261–71.

    CAS  PubMed  Google Scholar 

  21. Schoenbaum TR. Dentistry in the digital age: an update. Dentistry Today. 2012;31:108–13.

    PubMed  Google Scholar 

  22. •• Joda T, Gallucci G. The virtual patient in dental medicine. Clin Oral Impl Res. 2015;26:725–6 Proof of virtual patient principle.

    Google Scholar 

  23. Noguchi N, Tsuji M, Shigematsu M, Goto M. An orthognathic simulation system integrating teeth, jaw and face data using 3d cephalometry. Int J Oral Maxillofac Surg. 2007;36:640–5.

    CAS  PubMed  Google Scholar 

  24. Rangel FA, Maal TJ, Bergé SJ, Van Vlijmen OJ, Plooij JM, Schutyser F, et al. Integration of digital dental casts in 3-dimensional facial photographs. Am J Orthod Dentofacial Orthop. 2008;134:820Y826.

    Google Scholar 

  25. Rosati R, De Menezes M, Rossetti A, Sforza C, Ferrario VF. Digital dental cast placement in 3-dimensional, full-face reconstruction: a technical evaluation. Am J Orthod Dentofacial Orthop. 2010;138:84Y88.

    Google Scholar 

  26. Plooij JM, Maal TJ, Haers P, Borstlap WA, Kuijpers-Jagtman AM, Bergé SJ. Digital three-dimensional image fusion processes for planning and evaluating orthodontics and orthognathic surgery. A systematic review. Int J Oral Maxillofac Surg. 2011;40:341–52.

    Google Scholar 

  27. Galantucci LM, Percoco G, Lavecchia F, Di Gioia E. Noninvasive computerized scanning method for the correlation between the facial soft and hard tissues for an integrated three-dimensional anthropometry and cephalometry. J Craniofac Surg. 2013;24:797–804.

    PubMed  Google Scholar 

  28. Kurbad A, Kurbad S. Cerec Smile Design—a software tool for the enhancement of restorations in the esthetic zone. Int J Comput Dent. 2013;16:255–69.

    PubMed  Google Scholar 

  29. •• Joda T, Brägger U, Gallucci G. Systematic literature review of digital three-dimensional superimposition techniques to create virtual dental patients. Int J Oral Maxillofac Implants. 2015;30:330–7 Systematic review virtual patient principle literature.

    PubMed  Google Scholar 

  30. Sancho-Puchades M, Fehmer V, Hämmerle C, Sailer I. Advanced smile diagnosis using CAD/CAM mock-ups. Int J Esthet Dent. 2015;10:374–91.

    PubMed  Google Scholar 

  31. Cattoni F, Mastrangelo F, Gherlone EF, Gastaldi G. A new total digital smile planning technique (3D-DSP) to fabricate CAD-CAM mockups for esthetic crowns and veneers. Int J Dent. 2016;2016:6282587.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hassan B, Greven M, Wismeijer D. Integrating 3D facial scanning in a digital workflow to CAD/CAM design and fabricate complete dentures for immediate total mouth rehabilitation. J Adv Prosthodont. 2017;9:381–6.

    PubMed  PubMed Central  Google Scholar 

  33. Hassan B, Gimenez Gonzalez B, Tahmaseb A, Greven M, Wismeijer D. A digital approach integrating facial scanning in a CAD-CAM workflow for complete-mouth implant-supported rehabilitation of patients with edentulism: a pilot clinical study. J Prosthet Dent. 2017;117:486–92.

    PubMed  Google Scholar 

  34. Coachman C, Calamita MA, Coachman FG, Coachman RG, Sesma N. Facially generated and cephalometric guided 3D digital design for complete mouth implant rehabilitation: a clinical report. J Prosthet Dent. 2017;117:577–86.

    PubMed  Google Scholar 

  35. Mangano C, Luongo F, Migliario M, Mortellaro C, Mangano FG. Combining Intraoral Scans, Cone Beam Computed Tomography and Face Scans: The Virtual Patient. J Craniofac Surg. 2018;29:2241–6.

    PubMed  Google Scholar 

  36. • Cascón WP, De Gopegui JR, Revilla-León M. Facially generated and additively manufactured baseplate and occlusion rim for treatment planning a complete-arch rehabilitation: A dental technique. J Prosthet Dent. 2018;S0022–3913:30632–42 Open source software and 3D printing technologies used on a maxillary completely edentulous patient for treatment planning purposes.

    Google Scholar 

  37. Pozzi A, Arcuri L, Moy PK. The smiling scan technique: Facially driven guided surgery and prosthetics. J Prosthodont Res. 2018;62:514–7.

    PubMed  Google Scholar 

  38. Lin WS, Harris BT, Phasuk K, Llop DR, Morton D. Integrating a facial scan, virtual smile design, and 3D virtual patient for treatment with CAD-CAM ceramic veneers: a clinical report. J Prosthet Dent. 2018;119:200–5.

    PubMed  Google Scholar 

  39. Revilla-León M, Sánchez-Rubio JL, Besné-Torre A, Özcan M. A report on a diagnostic digital workflow for esthetic dental rehabilitation using additive manufacturing technologies. Int J Esthet Dent. 2018;13:184–96.

    PubMed  Google Scholar 

  40. Revilla-León M, Besné-Torre A, Sánchez-Rubio JL, Fábrega JJ, Özcan M. Digital tools and 3D printing technologies integrated into the workflow of restorative treatment: a clinical report. J Prosthet Dent. 2019;121:3–8.

    PubMed  Google Scholar 

  41. Revilla-León M, Fountain J, Piedra Cascón W, Özcan M, Zandinejad A. Workflow description of additively manufactured clear silicone indexes for injected provisional restorations: A novel technique. J Esthet Restor Dent. 2019;2019.

  42. Revilla-León M, Raney L, Cascón-Piedra W, Barrington J, Zandinejad A, Özcan M. Digital workflow for an esthetic rehabilitation using a facial and intraoral scanner and an additive manufactured silicone index: a dental technique. J Prosthet Dent. 2019; (in press).

  43. Bohner L, Gamba DD, Hanisch M, Marcio BS, Tortamano Neto P, Laganá DC, et al. Accuracy of digital technologies for the scanning of facial, skeletal and intraoral tissues: a systematic review. J Prosthet Dent. 2019;121:246–51.

    PubMed  Google Scholar 

  44. Knoops PG, Beaumont CA, Borghi A, Rodriguez-Florez N, Breakey RW, Rodgers W, et al. Comparison of three-dimensional scanner systems for craniomaxillofacial imaging. J Plast Reconstr Aesthet Surg. 2017;70:441–9.

    Google Scholar 

  45. Cho SH, Chang WG. Mirror-image anterior crown fabrication with computer-aided design and rapid prototyping technology: a clinical report. J Prosthet Dent. 2013;109:75–8.

    PubMed  Google Scholar 

  46. Abduo J, Bennamoun M, Tennant M. Influence of conventional and digital wax-ups on axial toothcContour. Int J Periodontics Restorative Dent. 2015;35:e50–9.

    PubMed  Google Scholar 

  47. Coachman C, Calamita MA. Digital smile design: a tool for treatment planning and communication in esthetic dentistry. Quintessence Dent Technol. 2012;35:103–11.

    Google Scholar 

  48. McLaren EA, Garber DA, Figueira J. The photoshop smile design technique (part 1): digital dental photography. Compend Contin Educ Dent. 2013;34:772–4.

    PubMed  Google Scholar 

  49. Lin WS, Zandinejad A, Metz MJ, Harris BT, Morton D. Predictable restorative work flow for computer-aided design and computer-aided manufacture fabricated ceramic veneers utilizing a virtual smile design principle. Oper Dent. 2015;40:357–63.

    CAS  PubMed  Google Scholar 

  50. Hämmerle CHF, Cordaro L, van Assche N, Benic GI, Bornstein M, Gamper F, et al. Digital technologies to support planning, treatment and fabrication processes and outcome assessments in implant dentistry. Summary and consensus statements. The 4th EAO consensus conference. Clin Oral Implants Res. 2015;26:97–101.

    PubMed  Google Scholar 

  51. Meereis CT, de Souza GB, Albino LG, Ogliari FA, Piva E, Lima GS. Digital smile design for computer-assisted esthetic rehabilitation: two-year follow-up. Oper Dent. 2016;41:E13–22.

    CAS  PubMed  Google Scholar 

  52. Piedra Cascón W, Revilla-León M. Digital workflow for the design and additively manufacture of a splinted framework and custom tray for the impression of multiple implants: a dental technique. J Prosthet Dent. 2018;120:805–11.

    PubMed  Google Scholar 

  53. Galibourg A, Brenes C. Virtual smiel design tip: From 2D to 3D design with free software. J Prosthet Dent. 2019; (in press).

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or non-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Revilla-León.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Modern Production Laboratory Advances in Dental Technology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piedra-Cascón, W., Hsu, V.T. & Revilla-León, M. Facially Driven Digital Diagnostic Waxing: New Software Features to Simulate and Define Restorative Outcomes. Curr Oral Health Rep 6, 284–294 (2019). https://doi.org/10.1007/s40496-019-00233-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40496-019-00233-6

Keywords

Navigation