Current Oral Health Reports

, Volume 5, Issue 3, pp 194–201 | Cite as

Fiber-Reinforced Composites for Implant Applications

  • Pekka K. VallittuEmail author
Dental Restorative Materials (M Özcan, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Dental Restorative Materials


Purpose of Review

Although metals, ceramics, and particulate filler resin composites have successfully been used as implant biomaterials for decades, devices made out of these materials do not meet all surgical requirements. This review describes the structure and mechanism of function of biostable glass fiber-reinforced composite (FRC) implants, which contain bioactive glass.

Recent Findings

For instance, metal objects may interfere with some medical imaging systems (computer tomography, magnetic resonance imaging) and biomechanical mismatch of implant and bone may cause stress shielding-related bone resorption. There has been a lot of development in the field of composite biomaterials and bioactive materials and more focus of implant development has been put to biostable composites as implant material. Biostability of implantable medical devices is important to ensure success of the treatment in short and long term especially in load-bearing applications.


FRC with continuous glass fibers in a biostable thermoset resin matrix provides high strength and high toughness non-metallic biomaterial. By adding bioactive glass to the FRC implant, the implant supports osteogenesis and vascularization, and provides even antimicrobial properties for the implant. Although the FRC implants and the material are used clinically in cranioplasties, further research is needed to demonstrate the most suitable implant designs for load-bearing applications for jaw bone reconstructions and orthopedics.


Resin composites Bioactivity Cranioplasty Implant Fiber-reinforced composite 


Compliance with Ethical Standards

Conflict of Interest

The author is an inventor and scientific consultant in the dental FRC material producing Stick Tech Ltd.—a member of GC group. The author has a role also as Member of the Board and shareholder of the Skulle Implants Corporation.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Park JB, Lakes RS. Biomaterials: an introduction. New York: Plenum Press; 1992.CrossRefGoogle Scholar
  2. 2.
    Bonfield W, Grynpas M, Tully AE, Bowman J, Abram J. Hydroxyapatite reinforced polyethylene—a mechanically compatible implant material for bone replacement. Biomaterials. 1981;2:185–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Vasconcelos DM, Santos SG, Lamghari M, Barbosa MA. The two faces of metal ions: from implants rejection to tissue repaiur/regeneration. Biomaterials. 2016;84:262–75.PubMedCrossRefGoogle Scholar
  4. 4.
    Wong RK, Gandolfi BM, St-Hilaire H, Wise M, Moses M. Complications of hydroxyapatite bone cement in secondary pediatric craniofacial reconstruction. J Craniofac Surg. 2011;22:247–51.PubMedCrossRefGoogle Scholar
  5. 5.
    Gooch MR, Gin GE, Kenning TJ, German J. Complications of cranioplasty following decompressive craniectomy: analysis of 62 cases. Neurosurg Focus. 2009;26:E9.PubMedCrossRefGoogle Scholar
  6. 6.
    Szpalsky C, Barr J, Wetterau M, Saadeh PB, Warren SM. Cranial bone defects: current and future strategies. Neurosurg Focus. 2010;29:1–11.Google Scholar
  7. 7.
    • Kuusisto N, Vallittu PK, Lassila LV, Huumonen S. Evaluation of intensity of artefacts in CBCT by radio-opacity of composite simulation models of implants in vitro. Dentomaxillofac Radiol. 2015;44(2):157–61. Study highlights the artifact of metals and zirconia ceramics in cone-beam computer tomography. CrossRefGoogle Scholar
  8. 8.
    Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74(7):1487–510.CrossRefGoogle Scholar
  9. 9.
    Smith DC. Recent developments and prospects in dental polymers. J Prosthet Dent. 1962;12:1066–78.CrossRefGoogle Scholar
  10. 10.
    Vallittu PK. Glass fiber reinforcement in repaired acrylic resin removable dentures: preliminary results of a clinical study. Quintess Int. 1997;28:39–44.Google Scholar
  11. 11.
    Moritz N, Vallittu PK. Bioactive silicate glass in implantable medical devices: from research to clinical applications. In: Boccaccini A, Brauer DS, Hupa L, editors. Bioactive glasses. Fundamentals, technology and applications: Royal Society of Chemistry; 2017. p. 442–70.Google Scholar
  12. 12.
    Narva K. Fibre-reinforced denture base polymers. Clinical performance and mechanical properties. Thesis. Annales Universitatis Turkuensis. University of Turku, 2004.Google Scholar
  13. 13.
    Narva KK, Lassila LVJ, Vallittu PK. The static strength and modulus of fiber reinforced denture base polymers. Dent Mater. 2005;21:421–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Narva KK, Lassila LVJ, Vallittu PK. Flexural fatigue of denture base polymer with fiber-reinforced composite reinforcement. Compos A: Appl Sci Manuf. 2005;36:1275–81.CrossRefGoogle Scholar
  15. 15.
    Waltimo T, Luo G, Samaranayake LP, Vallittu PK. Glass fibre-reinforced composite laced with chlorhexidine digluconate and yeast adhesion. J Mater Sci Mater Med. 2004;15:117–21.PubMedCrossRefGoogle Scholar
  16. 16.
    Ladizesky NH. The integration of dental resins with highly drawn polyethylene fibres. Clin Mater. 1990;6:181–92.PubMedCrossRefGoogle Scholar
  17. 17.
    Ladizesky NH, Chow TW, Ward IM. The effect of highly drawn polyethylene fibres on the mechanical properties of denture base resins. Clin Mater 990:6:209–225.Google Scholar
  18. 18.
    Ladizesky NH, Ho CF, Chow TW. Reinforcement of complete denture bases with continuous high performance polyethylene fibers. J Prosthet Dent. 1992;68:934–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Cheng YY, Chow TW. Fabrication of complete denture bases reinforced with polyethylene woven fabric. J Prosthodont. 1999;8:268–72.PubMedCrossRefGoogle Scholar
  20. 20.
    Ladizesky NH, Chow TW, Cheng YY. Denture base reinforcement using woven polyethylene fiber. Int J Prosthodont. 1994;7:307–14.PubMedGoogle Scholar
  21. 21.
    Körber HK, Körber S. Experimentelle Untersuchungen zur Passgenauigkeit von GFK-Bruckengerusten “Vectris”. Quintess Zahntech. 1998;24:43–53.Google Scholar
  22. 22.
    Kolbeck C, Rosentritt M, Behr M, Lang R, Handel G. In vitro examination of the fracture strength of 3 different fiber composite and 1 all-ceramic posterior inlay fixed partial denture systems. J Prosthodont. 2002;11:248–53.PubMedCrossRefGoogle Scholar
  23. 23.
    Loose M, Rosentritt M, Leibrock A, Behr M, Handel G. In vitro study of fracture strength and marginal adaptation of fiber-reinforced-composite versus all ceramic fixed partial dentures. Eur J Prosthodont Restor Dent. 1998;6:55–62.PubMedGoogle Scholar
  24. 24.
    Göhring TN, Schmidlin PR, Lutzt F. Two-year clinical and SEM evaluation of glass-fiber-reinforced inlay fixed partial dentures. Am J Dent. 2002;15:35–40.PubMedGoogle Scholar
  25. 25.
    Behr M, Rosentritt M, Lang R, Handel G. Flexural properties of fiber reinforced composite using a vacuum/pressure or a manual adapatation manufacturing process. J Dent. 2000;28:509–14.PubMedCrossRefGoogle Scholar
  26. 26.
    Freilich MA, Karmarker AC, Burstone CJ, Goldberg AJ. Development and clinical applications of a light-polymerized fiber-reinforced composite. J Prosthet Dent. 1998;80:311–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Freilich MA, Duncan JP, Alarcon EK, Eckrote KA, Goldberg AJ. The design and fabrication of fiber-reinforced implant prostheses. J Prosthet Dent. 2002;88:449–54.PubMedCrossRefGoogle Scholar
  28. 28.
    Freilich MA, Meiers JC, Duncan JP, Eckrote KA, Goldberg AJ. Clinical evaluation of fiber-reinforced fixed bridges. J Am Dent Assoc. 2002;133:1524–34.PubMedCrossRefGoogle Scholar
  29. 29.
    Freilich MA, Duncan JP, Meiers JC, Goldberg AJ. Preimpregnated, fiber-reinforced prostheses. Part I. Basic rationale and complete coverage and intracoronal fixed partial denture design. Quintessence Int. 1998;29:689–96.PubMedGoogle Scholar
  30. 30.
    Ahlstrand WM, Finger WJ. Direct and indirect fiber-reinforced fixed partial dentures: case reports. Quintessence Int. 2002;33:359–65.PubMedGoogle Scholar
  31. 31.
    Behr M, Hindelang U, Rosentritt M, Lang R, Handel G. Comparison of failure rates of adhesive-fixed partial dentures for in vivo and in vitro studies. Clin Oral Investig. 2000;4:25–30.PubMedCrossRefGoogle Scholar
  32. 32.
    Behr M, Rosentritt M, Handel G. Fiber-reinforced composite crowns and FPDs: a clinical report. Int J Prosthodont. 2003;15:239–43.Google Scholar
  33. 33.
    Göhring TN, Mormann WH, Lutz F. Clinical and scanning electron microscopic evaluation of fiber-reinforced inlay fixed partial dentures: preliminary results after one year. J Prosthet Dent. 1999;82:662–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Meiers JC, Duncan JP, Freilich MA, Goldberg AJ. Preimpregnated, fiber-reinforced prostheses: part II. Direct applications: splints and fixed partial dentures. Quintessence Int. 1998;29:761–8.PubMedGoogle Scholar
  35. 35.
    Meiers JC, Freilich MA. Conservative anterior tooth replacement using fiber-reinforced composite. Oper Dent. 2000;25:239–43.PubMedGoogle Scholar
  36. 36.
    Rosentritt M, Behr M, Lang R, Handel G. Experimental design of FPD made of all-ceramics and fibre-reinforced composite. Dent Mater. 2000;16:159–65.PubMedCrossRefGoogle Scholar
  37. 37.
    Vallittu PK. The effect of glass fiber reinforcement on the fracture resistance of a provisional fixed partial denture. J Prosthet Dent. 1998;79:125–30.PubMedCrossRefGoogle Scholar
  38. 38.
    Vallittu PK. Prosthodontic treatment with glass fiber reinforced composite resin bonded fixed partial denture. A clinical report. J Prosthet Dent. 1999;82:132–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Dyer SC, Lassila LVJLVJ, Vallittu PK. The effect of internal fiber arrangement on the delamination failure in hybrid composite dental prostheses. J Phys Mesomech. 2004;7:119–22.Google Scholar
  40. 40.
    Dyer SR, Lassila LVJ, Jokinen M, Vallittu PK. Effect of fiber position and orientation on fracture load of fiber-reinforced composite. Dent Mater. 2004;20:947–55.PubMedCrossRefGoogle Scholar
  41. 41.
    Shinya A, Yokoyama D, Lassila LV, Shinya A, Vallittu PK. Three-dimensional finite element analysis of metal and FRC adhesive fixed dental prosthesis. J Adhes Dent. 2008;10(5):365–71.PubMedGoogle Scholar
  42. 42.
    Dyer SR, Lassila LVJ, Alander P, Vallittu PK. Static strength of molar region direct technique glass-fibre-reinforced composite fixed partial denture. J Oral Rehabil. 2005;32:351–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Özcan M, Breuklander MH, Vallittu PK. Effect of slot preparation on the strength oif glass fiber-reinforced composite inlay retained fixed partial dentures. J Prosthet Dent. 2005;93:337–45.PubMedCrossRefGoogle Scholar
  44. 44.
    Vallittu PK, Shinya A, Baraba A, Kerr I, Keulemans I, Kreulen C, et al. Fiber-reinforced composites in fixed prosthodontics—quo vadis? Dent Mater. 2017;33:877–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Malmstom H, Dellanzo-Savu A, Xiao J, Feng C, Jabeen A, Romero M, et al. Success, clinical performance and patient satisfaction of direct fibre-reinforced composite fixed partial dentures—a two-year clinical study. J Oral Rehabil. 2015;42:906–13.CrossRefGoogle Scholar
  46. 46.
    Kumbuloglu O, Özcan M. Clinical survival of indirect, anterior 3-unit surface-retained fibre-reinforced composite fixed dental prosthesis: up to 7.5-years follow-up. J Dent. 2015;43:656–63.PubMedCrossRefGoogle Scholar
  47. 47.
    Butterworth C, Ellakwa AE, Shortall A. A fiber-reinforced composites in restorative dentistry. Dent Update. 2003;30:300–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Van Dijken JWV, Sunnegård-Grönberg KS. Fiber-reinforced packable resin composite in class II cavities. J Dent. 2006;34:763–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Garoushi S, Lassila LVJ, Tezvergil A, Vallittu PK. Load bearing capacity of fibre-reinforced and particlulate filler composite resin combination. J Dent. 2006;34:179–84.PubMedCrossRefGoogle Scholar
  50. 50.
    Garoushi S, Lassila LVJ, Tezvergil A, Vallittu PK. Fiber-reinforced composite substructure: load bearing capacity of an onlay restoration and flexural properties of the material. J Contemp Dent Pract. 2006;7:1–8.PubMedGoogle Scholar
  51. 51.
    Garoushi SK, Lassila LVJ, Vallittu PK. Short fiber reinforced composite: the effect of fiber length and volume fraction. J Contemp Dent Pract. 2006;7(5):10–7.PubMedGoogle Scholar
  52. 52.
    Garoushi S, Vallittu PK, Lassila LVJ. Fracture resistance of short random oriented glass fiber reinforced composite premolar crown. Acta Biomater. 2007;3(5):779–84.PubMedCrossRefGoogle Scholar
  53. 53.
    Garoushi S, Lassila LVJ, Vallittu PK. Direct composite resin restoration of damaged incisors using short fiber-reinforced composite resin. J Dent. 2007;35:731–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Garoushi SK, Ballo AM, Lassila LVJ, Vallittu PK. Fracture resistance of fragmented incisal edges restored with fiber-reinforced composite. J Adhes Dent. 2006;8(2):91–5.PubMedGoogle Scholar
  55. 55.
    Garoushi S, Lassila LVJ, Tezvergil A, Vallittu PK. Static and fatigue compression test for particulate filler composite resin with fiber-reinforced composite substructure. Dent Mater. 2007;23(1):17–23.PubMedCrossRefGoogle Scholar
  56. 56.
    Garoushi SK, Vallittu PK, Watts DC, Lassila LVJ. Polymerization shrinkage of experimental short glass fiber reinforced composite with semi-interpenetrating polymer network matrix. Dent Mater. 2008;24(2):211–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Garoushi S, Vallittu PK, Lassila LVJ. Fracture toughness, compressive strength and load-bearing capacity of short glass fiber-reinforced composite resin. Chin J Dent Res. 2011;14:1–5.Google Scholar
  58. 58.
    Garoushi S, Vallittu PK, Watts DC, Lassila LV. Effect of nanofiller fractions and temperature on polymerization shrinkage of glass fiber reinforced filling material. Dent Mater. 2008;24:606–10.PubMedCrossRefGoogle Scholar
  59. 59.
    Garoushi SK, Lassila LV, Vallittu PK. Direct composite resin restoration of an anterior tooth: effect of fiber-reinforced composite substructure. Eur J Prosthodont Restor Dent. 2007;15(2):61–6.PubMedGoogle Scholar
  60. 60.
    Garoushi S, Vallittu PK, Lassila LVJ. Depth of cure and surface microhardness of experimental short fiber-reinforced composite. Acta Odontol Scand. 2008;66:38–42.PubMedCrossRefGoogle Scholar
  61. 61.
    Sewón LA, Ampula L, Vallittu PK. Rehabilitation of a periodontal patient with rapidly progressing marginal alveolar bone loss. A case report. J Clin Periodontol. 2000;27:615–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Valyi P, Gorzo I, Varrela T, Sewon L, Vallittu P. Effect of occlusal therapy with FRC splint on periodontal parameters in maintaince phase. Fogorv Sz. 2005;98:159–63.PubMedGoogle Scholar
  63. 63.
    Özcan M. Kumbuloglu O. Periodontal and trauma splints using fiber reinforced resin composites. Chapter 8. In: Vallittu PK, Özcan M (eds) Clinical guide to principles of fiber-reinforced composites in dentistry. Woodhead Publishing. 2017, pp.111–124.Google Scholar
  64. 64.
    Mannocci F, Sheriff M, Watson TF, Vallittu PK. Penetration of bonding resins into fiber posts: a confocal microscopic study. Aust Endod J. 2005;38:46–51.CrossRefGoogle Scholar
  65. 65.
    Mannocci F, Ferrari M, Watson TF. Intermittent loading of teeth restored using quartz fiber, carbon-quartz fiber, and zirconium dioxide ceramic root canal posts. J Adhes Dent. 1999;1:153–8.PubMedGoogle Scholar
  66. 66.
    Qualthrough AJ, Chandler NP, Purton DG. A comparison of the retention of tooth coloured posts. Quintessence Int. 2003;34:199–201.Google Scholar
  67. 67.
    Lassila LV, Tanner J, Le bell AM, Narva K, Vallittu PK. Flexural properties of fiber-reinforced root canal posts. Dent Mater. 2004;20:29–36.PubMedCrossRefGoogle Scholar
  68. 68.
    LeBell A-M, Tanner J, Lassila LVJ, Kangasniemi I, Vallittu PK. Bonding of composite resin luting cement to fibre-reinforced composite root canal post. J Adhes Dent. 2004;6:319–25.Google Scholar
  69. 69.
    LeBell A-M, Lassila LVJ, Kangasniemi I, Vallittu PK. Bonding of fibre-reinforced composite post to root canal dentin. J Dent. 2005;33:533–9.CrossRefGoogle Scholar
  70. 70.
    Le Bell-Rönnlöf AM, Lassila LV, Kangasniemi I, Vallittu PK. Load-bearing capacity of human incisor restored with varipous fiber-reinforced composite posts. Dent Mater. 2011;27:107–15.CrossRefGoogle Scholar
  71. 71.
    Tanner J, Le Bell-Rönnlöf A-M, Vallittu P. Root canal anchoring systems. Chapter 7. In: Vallittu PK, Özcan M eds.: Clinical guide to principles of fiber-reinforced composites in dentistry. Woodhead Publishing. 2017, pp. 97–109.Google Scholar
  72. 72.
    Ferrari M, Sorrentino R, Juloski J, Grandini S, Carrabba M, Discepoli N, et al. Post-retained single crowns versus fixed dental prostheses: a 7-year prospective clinical study. J Dent Res. 2017:22034517724146.
  73. 73.
    Sorrentino R, DiMauro MI, Ferrari M, Leone R, Zarone F. Complications of endodontically treated teeth restored with fiber posts and single crowns or fixed dental prostheses—a systematic review. Clin Oral Investig. 2016;20:1449–57.PubMedCrossRefGoogle Scholar
  74. 74.
    Vallittu PK. Are we misusing fiber posts. Guest editorial. Dent Mater. 2016;32:125–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Rantala LI, Lastumaki TM, Peltomaki T, Valliuttu PK. Fatigue resistance of removable orthodontic appliance reinforced with glass fibre weave. J Oral Rehabil. 2003;30:501–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Scribante A, Sfondrini MF. Orthodontic retainers. In Vallittu PK, Özcan M, editors. Clinical guide to principles of fiber-reinforced composites in dentistry. Woodhead Publishing; 2017, p. 187–202.Google Scholar
  77. 77.
    Özcan M, van der Sleen JM, Kurunmäki H, Vallittu PK. Comparison of repair methods for ceramic-fused-to-metal crowns. J Prosthodont. 2006;15:283–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Vallittu PK. Use of woven glass fibres to reinforce a composite veneer. A fracture resistance and acoustic emission study. J Oral Rehabil. 2002;29:423–9.PubMedCrossRefGoogle Scholar
  79. 79.
    • Vallittu PK. High aspect ratio fillers: fiber-reinforced composites and their anisotropic properties. Dent Mater. 2014;31:1–7. Review describes the mechanism of function of fiber-reinforced composites. PubMedCrossRefGoogle Scholar
  80. 80.
    Tezvergil A, Lassila LVJ, Vallittu PK. The effect of fiber orientation on the thermal expansion coefficients of the fiber reinforced composites. Dent Mater. 2003;19:471–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Vallittu PK. Effect of 180 weeks water storage on the flexural properties of E-glass and silica fiber acrylic resin composite. Int J Prosthodont. 2000;13:334–9.PubMedGoogle Scholar
  82. 82.
    Tezvergil A, Lassila LVJ, Vallittu PK. The effect of fiber orientation on the polymerization shrinkage strain of fiber reinforced composite. Dent Mater. 2006;22:610–6.PubMedCrossRefGoogle Scholar
  83. 83.
    Vallittu PK, Ruyter IE, Ekstrand K. Effect of water storage on the flexural properties of E-glass and silica fiber acrylic resin composite. Int J Prosthodont. 1998;11:340–50.PubMedGoogle Scholar
  84. 84.
    Rosen MR. From treating solution to filler surface and beyond. The life histrory of a silane coupling agent. J Coatings Technol. 1978;50:70–82.Google Scholar
  85. 85.
    Matinlinna JP, Dahl JE, Karlsson S, Lassila LVJ, Vallittu PK. The effect of the novel silane system to the flexural properties of E-glass fiber reinforced composites. Silanes and other coupling agents 2009;5:107–121.Google Scholar
  86. 86.
    Matinlinna JP, Lassila LVJ, Vallittu PK. Experimental novel silane system in adhesion promotion between dental resin and pretreated titanium. SILICON. 2009;1:249–54.CrossRefGoogle Scholar
  87. 87.
    Vallittu PK, Özcan M. An overview of fixed dental prostheses and the dynamic treatment approach. In: Vallittu PK, Özcan M eds. Clinical guide to principles of fiber-reinforced composites in dentistry. Woodhead Publishing; 2017, p. 59–64.Google Scholar
  88. 88.
    Brydone AS, Meek D, Maclaine AS. Bone grafting, orthopedic biomaterials, and the clinical need for bone engineering. Proc Inst Mech Eng Part H. 2010;225:1329–43.CrossRefGoogle Scholar
  89. 89.
    Vallittu PK. Bioactive glass-containing cranial implants: an overview. J Mater Sci. 2017;52(15):8772–84.CrossRefGoogle Scholar
  90. 90.
    Aitasalo KMJ, Piitulainen JM, Rekola J, Vallittu PK. Craniofacial bone reconstruction with bioactive fiber-reinforced composite implant. Head Neck. 2013;36:722–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Piitulainen JM, Mattila R, Moritz N, Vallittu PK. Load-bearing capacity and fracture behaviour of glass fiber-reinforced composite cranioplasty implants. J Appl Biomater Funct Mater. 2017;0:0. CrossRefGoogle Scholar
  92. 92.
    Tuusa S, Peltola M, Tirri T, Lassila LVJ, Vallittu PK. Comparison of two glass fiber-reinforced composite structures as implant material in calvarial bone defect. Bioceramics Key Eng Mater. 2007;361-363:471–4.CrossRefGoogle Scholar
  93. 93.
    Tuusa SM-R, Peltola MJ, Tirri T, Puska MA, Röyttä M, Aho H, et al. Reconstruction of critical size calvarial bone defect in rabbits with glass-fiber-reinforced composite with bioactive glass granule coating. J Biomed Mater Res B Appl Biomater. 2008;84:510–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Tuusa SM-R, Peltola MJ, Tirri T, Röyttä M, Aho H, Lassila LVJ, et al. Reconstruction of critical size calvarial bone defects in rabbits with glass-fiber-reinforced composite with bioactive glass granule coating. J Biomed Mater Res B Appl Biomater. 2008;84(2):510–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Ballo AM, Kokkari AK, Meretoja VV, Lassila LVJ, Vallittu PK, Närhi TO. Osteoblast proliferation and maturation on bioactive fiber-reinforced composite. J Mater Sci Mater Med. 2008;19(10):3169–77.PubMedCrossRefGoogle Scholar
  96. 96.
    Hench LL, West JK. Biological applications of bioactive glasses. Life Chemistry Reports. 1996;13:187–241.Google Scholar
  97. 97.
    Hench LL, Xynos ID, Polak JM. Bioactive glasses for in situ tissue regeneration. J Biomater Sci Polym Ed. 2004;15(4):543–62.PubMedCrossRefGoogle Scholar
  98. 98.
    Ballo AM, Cekic-Nagas I, Ergun G, Lassila L, Palmquist A, Borchardt P, et al. Osseointegration of fiber-reinforced composite implants: histological and ultrastructural observations. Dent Mater. 2014;30(12):e384–95.PubMedCrossRefGoogle Scholar
  99. 99.
    Välimäki VV, Aro HT. Molecular basis for action of bioactive glasses as bone graft substitute. Scand J Surg. 2006;95(2):95–102.PubMedCrossRefGoogle Scholar
  100. 100.
    Boccaccini AR, Minay EJ, Krause D. Bioglass coatings on superelastic NiTi wires by electrophoretic deposition (EPD). Electrophoretic Depos Fundam Appl II Key Eng Mater. 2006;314:219–24.Google Scholar
  101. 101.
    Ojansivu M, Vanhatupa S, Björkvik L, Häkkänen H, Kellomäki M, Autio R, et al. Bioactive glass ions as strong enhancers of osteogenic differentiation in human adipose stem cells. Acta Biomater. 2015;21:190–203.PubMedCrossRefGoogle Scholar
  102. 102.
    Vallittu PK, Närhi TO, Hupa L. Fiber glass-bioactive glass implants. Review Dent Mater. 2015;31:371–81.PubMedCrossRefGoogle Scholar
  103. 103.
    Posti JP, Piitulainen JM, Hupa L, Fagerlund S, Frantzén J, Aitasalo KM, et al. A glass fiber-reinforced composite - bioactive glass cranioplasty implant: a case study of an early development stage implant removed due to a late infection. J Mech Behav Biomed Mater. 2015;55:191–200.PubMedCrossRefGoogle Scholar
  104. 104.
    Monfoulet LE, Becquart P, Marcaht D, Vandamme K, Bourguignon M, Pacard E, et al. The pH in the microenvironment of human mesenchymal stem cells is a critical factor for optimal osteogenesis in tissue-engineered constructs. Tissue Eng A. 2014;20:1827–40.CrossRefGoogle Scholar
  105. 105.
    Zhang D, Leppäranta O, Munukka E, Ylänen H, Viljane MK, Eerola E, et al. Antimicrobial effects and dissolution behaviour of six bioactive glasses. J Biomed Mater Res A. 2010;93:475–83.PubMedGoogle Scholar
  106. 106.
    Leppäranta O, Vaahtio M, Peltola T, Zhang D, Hupa L, Hupa M, et al. Antimicrobial effect of bioactive glasses on clinically important anaerobic bacteria in vitro. J Mater Sci Mater Med. 2008;19:547–51.PubMedCrossRefGoogle Scholar
  107. 107.
    Munukka E, Leppäranta O, Korkeamäki M, Vaahtio M, Peltola T, Zhang D, et al. Bacterial effects of bioactive glass on clinically important aerobic bacteria. J Mater Sci Mater Med. 2008;19:27–32.PubMedCrossRefGoogle Scholar
  108. 108.
    • Lindfors N, Geurts J, Drago L, Arts JJ, Juutilainen V, Hyvönen P, et al. Antibacterial bioactive glass S53P4, for chronic bone infections—a multinational study. Adv Exp Med Biol. 2017;97:81–92. The study demonstrates antimicrobial effect of bioactive glass in clinical use. Google Scholar
  109. 109.
    Stoor P, Söderling E, Grenman R. Interactions between the bioactive glass S53P4 and the anthropic rhinitis-associated microorganism Klebsiella ozaenae. J Biomed Mater Res. 1999;48:869–74.PubMedCrossRefGoogle Scholar
  110. 110.
    Stoor P, Söderling E, Salonen JI. Antibacterial effects of a bioactive glass paste on oral microorganisms. Acta Odontol Scand. 1998;56:161–5.PubMedCrossRefGoogle Scholar
  111. 111.
    Aitasalo K, Piitulainen JM, Rekola J, Vallittu PK. Craniofacial bone reconstruction with bioactive fibre composite implant. Head Neck. 2014;36:722–8. Scholar
  112. 112.
    • Piitulainen JM, Kauko T, Aitasalo KMJ, Vuorinen V, Vallittu PK, Posti JP. Outcomes of cranioplasty with synthetic materials and autologous bone grafts. World Neurosurg. 2015. Pii: S1878–8750(15)00036–4. Doi 10.1016. Clinical study, where function and good success of fiber-reinforced composite and bioactive glass implants have been shown for the first time. Google Scholar
  113. 113.
    Piitulainen J, Posti JP, Aitasalo K, Vuorinen V, Vallittu P, Serlo W. Pediatric cranial defect reconstruction using bioactive fiber reinforced composite implant: early outcomes. Acta Neurochir. 2015;157(4):681–7. Scholar
  114. 114.
    Abdulmajeed AA, Walboomers XF, Massera J, Kokkari AK, Vallittu PK, Närhi TO. Blood and fibroblast responses to thermoset BisGMA–TEGDMA/glass fiber-reinforced composite implants in vitro. Clin Oral Implants Res. 2013;25:843–51. PubMedCrossRefGoogle Scholar
  115. 115.
    Ballo AM, Akca EA, Ozen T, Lassila L, Vallittu PK, Närhi TO. Bone tissue responses to glass fiber-reinforced composite implants—a histomorphometric study. Clin Oral Implants Res. 2009;20(6):608–15.PubMedGoogle Scholar
  116. 116.
    Abdulmajeed AA, Kokkari AK, Käpylä J, Massera J, Hupa L, Vallittu PK, et al. In vitro blood and fibroblast responses to BisGMA-TEGDMA/bioactive glass composite implants. J Mater Sci Mater Med. 2014;25:151–62.PubMedCrossRefGoogle Scholar
  117. 117.
    Lee SY, Piao CM, Koak JY, Kim SK, Kim YS, Ku Y, et al. A 3-year prospective radiographic evaluation of marginal bone level around different implant systems. J Oral Rehabil. 2010;37:538–44.PubMedCrossRefGoogle Scholar
  118. 118.
    Shinya A, Ballo AM, Lassila LV Shinya A, Närhi TO, Vallittu PK. Stress and strain analysis of the bone-implant interface: a comparison of fiber-reinforced composite and titanium implants utilizing 3-dimensional finite element study. J Oral Implantol. 2011;37:133–40.PubMedCrossRefGoogle Scholar
  119. 119.
    Ormianer Z, Lewinstein I, Moses O. Heat generation in 1-piece implants during abutment preparation with high-speed cutting instruments. Implant Dent. 2013;22:60–5.PubMedCrossRefGoogle Scholar
  120. 120.
    Abrahamson I, Berglundh T, Lindhe J. The mucosal barrier following abutment dis/reconnection. An experimental study in dogs. J Clin Periodontol. 1997;24:568–72.CrossRefGoogle Scholar
  121. 121.
    Iglhaut G, Becker K, Golubovic V, Schliephake H, Michatovic I. The impact of dis-/reconnection of laser microgrooved and machined implant abutments on soft and hard tissue healing. Clin Oral Implants Res. 2013;24:391–7.PubMedCrossRefGoogle Scholar
  122. 122.
    • Thesleff T, Lehtimäki K, Niskakangas T, Huovinen S, Mannerström B, Miettinen S, et al. Cranioplasty with adipose-derived stem cells, beta-tricalcium phosphate granules and supporting mesh: six-year clinical follow-up results. Stem Cells Transl Med. 2017;6:1576–82. The study shows the clinical drawbacks of the stem cell-based treatment of cranial bone defects. PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Athanasiou KA, Agrawal CM, Barber FA, Burkhart SS. Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy. 1998;14(7):726–37.PubMedCrossRefGoogle Scholar
  124. 124.
    Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopaedic devices. Biomaterials. 2000;21:2335–46.PubMedCrossRefGoogle Scholar
  125. 125.
    Meyer F, Wardale J, Best S, Cameron R, Rushton N, Brooks R. Effects of lactic acid and glycolic acid on human osteoblasts: a way to understand PLGA involvement in PLGA/calcium phosphate composite failure. J Orthop Res. 2012;30(6):864–71.PubMedCrossRefGoogle Scholar
  126. 126.
    Ignatius AA, Claes LE. In vitro biocompatibility of bioresorbable polymers: poly(L, DL-lactide) and poly(L-lactide-co-glycolide). Biomaterials. 1996;17(8):831–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Pihlajamäki H, Salminen S, Laitinen O, Tynninen O, Böstman O. Tissue response to polyglycolide, polydioxanone, polylevolactide, and metallic pins in cancellous bone: an experimental study on rabbits. J Orthop Res. 2006;24(8):1597–606.PubMedCrossRefGoogle Scholar
  128. 128.
    Böstman O, Pihlajamäki H. Adverse tissue reactions to bioabsorbable fixation devices. Clin Orthop Relat Res. 2000;371(371):216–27.CrossRefGoogle Scholar
  129. 129.
    Barber FA, Dockery WD. Long-term absorption of poly-L-lactic acid interference screws. Arthroscopy. 2006;22(8):820–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomaterials Science, Turku Clinical Biomaterials Centre – TCBC, Institute of DentistryUniversity of TurkuTurkuFinland
  2. 2.Welfare DivisionCity of TurkuTurkuFinland

Personalised recommendations