Advertisement

Current Oral Health Reports

, Volume 4, Issue 3, pp 215–227 | Cite as

Recent Advances in Adhesive Bonding: The Role of Biomolecules, Nanocompounds, and Bonding Strategies in Enhancing Resin Bonding to Dental Substrates

  • Eliseu A. MünchowEmail author
  • Marco C. Bottino
Dental Restorative Materials (M Özcan, Section Editor)
  • 285 Downloads
Part of the following topical collections:
  1. Topical Collection on Dental Restorative Materials

Abstract

Purpose of review

To present an overview on the main agents (i.e. biomolecules and nanocompounds) and/or strategies currently available to amplify or stabilize resin-dentin bonding.

Recent findings

According to studies retrieved for full-text reading (2014–2017), there are currently six major strategies available to overcome resin-dentin bond degradation: (1) use of collagen crosslinking agents, which may form stable covalent bonds with collagen fibrils, thus strengthening the hybrid layer; (2) use of antioxidants, which may allow further polymerization reactions over time; (3) use of protease inhibitors, which may inhibit or inactivate metalloproteinases; (4) modification of the bonding procedure, which may be performed by using the ethanol-wet bonding (EWB) technique or by applying an additional adhesive (hydrophobic) coating, thereby strengthening the hybrid layer; (5) laser treatment of the substrate prior to bonding, which may cause specific topographic changes in the surface of dental substrates, increasing bonding efficacy; and (6) reinforcement of the resin matrix with inorganic fillers and/or remineralizing agents, which may positively enhance physicomechanical properties of the hybrid layer.

Summary

With the present review, we contributed to the better understanding of adhesion concepts and mechanisms of resin-dentin bond degradation, showing the current prospects available to solve that problematic. In addition, adhesively-bonded restorations may be benefited by the use of some biomolecules, nanocompounds or alternative bonding strategies in order to minimize bond strength degradation.

Keywords

Matrix metalloproteinase inhibitors Collagen Resins Crosslinking agents Dentin-bonding Dentin 

Notes

Acknowledgements

Marco C. Bottino acknowledges start-up funds from the Indiana University School of Dentistry and the National Institutes of Health/National Institute of Dental and Craniofacial Research (NIH/NIDCR) [grant number DE023552]. The content of this review is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Compliance with Ethical Standards

Conflict of Interest

Eliseu A. Münchow and Marco C. Bottino declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as • Of importance •• Of major importance

  1. 1.
    Tezvergil-Mutluay A, Mutluay M, Seseogullari-Dirihan R, Agee KA, Key WO, Scheffel DL, et al. Effect of phosphoric acid on the degradation of human dentin matrix. J Dent Res. 2013;92:87–91.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    •• Pashley DH, Tay FR, Breschi L, Tjaderhane L, Carvalho RM, Carrilho M, et al. State of the art etch-and-rinse adhesives. Dent Mater. 2011;27:1–16. This article represents the state of the art of etch-and-rinse dental adhesives, explaining how bond strength degradation may occur under clinical conditions. CrossRefPubMedGoogle Scholar
  3. 3.
    •• Van Meerbeek B, Yoshihara K, Yoshida Y, Mine A, De Munck J, Van Landuyt KL. State of the art of self-etch adhesives. Dent Mater. 2011;27:17–28. This article represents the state of the art of self-etch dental adhesives, showing important chemical explanations concerning bond strength degradation of resin-dentin adhesion. CrossRefPubMedGoogle Scholar
  4. 4.
    •• De Munck J, Van Landuyt K, Peumans M, Poitevin A, Lambrechts P, Braem M, et al. A critical review of the durability of adhesion to tooth tissue: methods and results. J Dent Res. 2005;84:118–32. This article is a classical study that critically reviewed the literature with regard to the durability of resin to dentin/enamel bonds. CrossRefPubMedGoogle Scholar
  5. 5.
    Brackett WW, Tay FR, Brackett MG, Dib A, Sword RJ, Pashley DH. The effect of chlorhexidine on dentin hybrid layers in vivo. Oper Dent. 2007;32:107–11.CrossRefPubMedGoogle Scholar
  6. 6.
    Carrilho MR, Geraldeli S, Tay F, de Goes MF, Carvalho RM, Tjaderhane L, et al. In vivo preservation of the hybrid layer by chlorhexidine. J Dent Res. 2007;86:529–33.CrossRefPubMedGoogle Scholar
  7. 7.
    Hebling J, Pashley DH, Tjaderhane L, Tay FR. Chlorhexidine arrests subclinical degradation of dentin hybrid layers in vivo. J Dent Res. 2005;84:741–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Tersariol IL, Geraldeli S, Minciotti CL, Nascimento FD, Paakkonen V, Martins MT, et al. Cysteine cathepsins in human dentin-pulp complex. J Endod. 2010;36:475–81.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang SC, Kern M. The role of host-derived dentinal matrix metalloproteinases in reducing dentin bonding of resin adhesives. Int J Oral Sci. 2009;1:163–76.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    • Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater. 2006;22:211–22. This article is an important source of knowledge for understanding the chemical and physical degradation of resin-based dental materials. CrossRefPubMedGoogle Scholar
  11. 11.
    Van Landuyt KL, Snauwaert J, De Munck J, Peumans M, Yoshida Y, Poitevin A, et al. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials. 2007;28:3757–85.CrossRefPubMedGoogle Scholar
  12. 12.
    Tjaderhane L, Nascimento FD, Breschi L, Mazzoni A, Tersariol IL, Geraldeli S, et al. Strategies to prevent hydrolytic degradation of the hybrid layer-a review. Dent Mater. 2013;29:999–1011.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bedran-Russo AK, Yoo KJ, Ema KC, Pashley DH. Mechanical properties of tannic-acid-treated dentin matrix. J Dent Res. 2009;88:807–11.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Castellan CS, Pereira PN, Grande RH, Bedran-Russo AK. Mechanical characterization of proanthocyanidin-dentin matrix interaction. Dent Mater. 2010;26:968–73.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Castellan CS, Pereira PN, Viana G, Chen SN, Pauli GF, Bedran-Russo AK. Solubility study of phytochemical cross-linking agents on dentin stiffness. J Dent. 2010;38:431–6.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lee J, Sabatini C. Glutaraldehyde collagen cross-linking stabilizes resin-dentin interfaces and reduces bond degradation. Eur J Oral Sci. 2017;125:63–71.CrossRefPubMedGoogle Scholar
  17. 17.
    Souza IM, Araujo CS, Soares CJ, Faria ESAL. Effect of dentin pretreatment on bond strength stability of self-etching and etch-and-rinse adhesives to intracoronally bleached dentin. J Adhes Dent. 2016;18:349–54.PubMedGoogle Scholar
  18. 18.
    Venigalla BS, Jyothi P, Kamishetty S, Reddy S, Cherukupalli RC, Reddy DA. Resin bond strength to water versus ethanol-saturated human dentin pretreated with three different cross-linking agents. J Conserv Dent. 2016;19:555–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Carvalho C, Fernandes FP, Freitas Vda P, Franca FM, Basting RT, Turssi CP, et al. Effect of green tea extract on bonding durability of an etch-and-rinse adhesive system to caries-affected dentin. J Appl Oral Sci. 2016;24:211–7.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dikmen B, Gurbuz O, Ozsoy A, Eren MM, Cilingir A, Yucel T. Effect of different antioxidants on the microtensile bond strength of an adhesive system to sodium hypochlorite-treated dentin. J Adhes Dent. 2015;17:499–504.PubMedGoogle Scholar
  21. 21.
    Silva Sousa AB, Vidal CM, Leme-Kraus AA, Pires-de-Souza FC, Bedran-Russo AK. Experimental primers containing synthetic and natural compounds reduce enzymatic activity at the dentin-adhesive interface under cyclic loading. Dent Mater. 2016;32:1248–55.CrossRefPubMedGoogle Scholar
  22. 22.
    Khamverdi Z, Rezaei-Soufi L, Rostamzadeh T. The effect of epigallocatechin gallate on the dentin bond durability of two self-etch adhesives. J Dent (Shiraz). 2015;16:68–74.Google Scholar
  23. 23.
    Gomes Franca FM, Vaneli RC, Conti Cde M, Basting RT, do Amaral FL, Turssi CP. Effect of chlorhexidine and ethanol application on long-term push-out bond strength of fiber posts to dentin. J Contemp Dent Pract. 2015;16:547–53.CrossRefPubMedGoogle Scholar
  24. 24.
    Li H, Li T, Li X, Zhang Z, Li P, Li Z. Morphological effects of MMPs inhibitors on the dentin bonding. Int J Clin Exp Med. 2015;8:10793–803.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Toman M, Toksavul S, Tamac E, Sarikanat M, Karagozoglu I. Effect of chlorhexidine on bond strength between glass-fiber post and root canal dentine after six month of water storage. Eur J Prosthodont Restor Dent. 2014;22:29–34.PubMedGoogle Scholar
  26. 26.
    Abu Nawareg M, Elkassas D, Zidan A, Abuelenain D, Abu Haimed T, Hassan AH, et al. Is chlorhexidine-methacrylate as effective as chlorhexidine digluconate in preserving resin dentin interfaces? J Dent. 2016;45:7–13.CrossRefPubMedGoogle Scholar
  27. 27.
    Chauhan K, Basavanna RS, Shivanna V. Effect of bromelain enzyme for dentin deproteinization on bond strength of adhesive system. J Conserv Dent. 2015;18:360–3.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Diolosa M, Donati I, Turco G, Cadenaro M, Di Lenarda R, Breschi L, et al. Use of methacrylate-modified chitosan to increase the durability of dentine bonding systems. Biomacromolecules. 2014;15:4606–13.CrossRefPubMedGoogle Scholar
  29. 29.
    Cecchin D, Pin LC, Farina AP, Souza M, Vidal Cde M, Bello YD, et al. Bond strength between fiber posts and root dentin treated with natural cross-linkers. J Endod. 2015;41:1667–71.CrossRefPubMedGoogle Scholar
  30. 30.
    Gotti VB, Feitosa VP, Sauro S, Correr-Sobrinho L, Leal FB, Stansbury JW, et al. Effect of antioxidants on the dentin interface bond stability of adhesives exposed to hydrolytic degradation. J Adhes Dent. 2015;17:35–44.PubMedGoogle Scholar
  31. 31.
    Loguercio AD, Stanislawczuk R, Malaquias P, Gutierrez MF, Bauer J, Reis A. Effect of minocycline on the durability of dentin bonding produced with etch-and-rinse adhesives. Oper Dent. 2016;41:511–9.CrossRefPubMedGoogle Scholar
  32. 32.
    • Feitosa SA, Palasuk J, Kamocki K, Geraldeli S, Gregory RL, Platt JA, et al. Doxycycline-encapsulated nanotube-modified dentin adhesives. J Dent Res. 2014;93:1270–6. This article shows how nanotubes can be used as a delivery system for the increase/stabilization of resin-dentin bonds, which may present an innovation in modern adhesive dentistry. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sabatini C, Ortiz PA, Pashley DH. Preservation of resin-dentin interfaces treated with benzalkonium chloride adhesive blends. Eur J Oral Sci. 2015;123:108–15.CrossRefPubMedGoogle Scholar
  34. 34.
    Sabatini C, Pashley DH. Aging of adhesive interfaces treated with benzalkonium chloride and benzalkonium methacrylate. Eur J Oral Sci. 2015;123:102–7.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Pupo YM, Farago PV, Nadal JM, Simao LC, Esmerino LA, Gomes OM, et al. Effect of a novel quaternary ammonium methacrylate polymer (QAMP) on adhesion and antibacterial properties of dental adhesives. Int J Mol Sci. 2014;15:8998–9015.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    • Bedran-Russo AK, Pashley DH, Agee K, Drummond JL, Miescke KJ. Changes in stiffness of demineralized dentin following application of collagen crosslinkers. J Biomed Mater Res B Appl Biomater. 2008;86:330–4. This article brings one of the first insights concerning dentin biomodification with collagen crosslinking agents. CrossRefPubMedGoogle Scholar
  37. 37.
    Frassetto A, Breschi L, Turco G, Marchesi G, Di Lenarda R, Tay FR, et al. Mechanisms of degradation of the hybrid layer in adhesive dentistry and therapeutic agents to improve bond durability: a literature review. Dent Mater. 2016;32:e41–53.CrossRefPubMedGoogle Scholar
  38. 38.
    Bedran-Russo AK, Vidal CM, Dos Santos PH, Castellan CS. Long-term effect of carbodiimide on dentin matrix and resin-dentin bonds. J Biomed Mater Res B Appl Biomater. 2010;94:250–5.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Mazzoni A, Angeloni V, Apolonio FM, Scotti N, Tjaderhane L, Tezvergil-Mutluay A, et al. Effect of carbodiimide (EDC) on the bond stability of etch-and-rinse adhesive systems. Dent Mater. 2013;29:1040–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Tezvergil-Mutluay A, Mutluay MM, Agee KA, Seseogullari-Dirihan R, Hoshika T, Cadenaro M, et al. Carbodiimide cross-linking inactivates soluble and matrix-bound MMPs, in vitro. J Dent Res. 2012;91:192–6.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Mazzoni A, Apolonio FM, Saboia VP, Santi S, Angeloni V, Checchi V, et al. Carbodiimide inactivation of MMPs and effect on dentin bonding. J Dent Res. 2014;93:263–8.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Scheffel DL, Hebling J, Scheffel RH, Agee K, Turco G, de Souza Costa CA, et al. Inactivation of matrix-bound matrix metalloproteinases by cross-linking agents in acid-etched dentin. Oper Dent. 2014;39:152–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Singh P, Nagpal R, Singh UP, Manuja N. Effect of carbodiimide on the structural stability of resin/dentin interface. J Conserv Dent. 2016;19:501–9.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Liu N, Li F, Chen YJ, Zhang L, Lu S, Kang JJ, et al. The inhibitory effect of a polymerisable cationic monomer on functional matrix metalloproteinases. J Dent. 2013;41:1101–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Epasinghe DJ, Yiu CK, Burrow MF, Tay FR, King NM. Effect of proanthocyanidin incorporation into dental adhesive resin on resin-dentine bond strength. J Dent. 2012;40:173–80.CrossRefPubMedGoogle Scholar
  46. 46.
    Liu Y, Dusevich V, Wang Y. Proanthocyanidins rapidly stabilize the demineralized dentin layer. J Dent Res. 2013;92:746–52.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    • Montagner AF, Sarkis-Onofre R, Pereira-Cenci T, Cenci MS. MMP Inhibitors on dentin stability: a systematic review and meta-analysis. J Dent Res. 2014;93:733–43. This article represents a systematic review of studies that used MMP inhibitors to produce resin-dentin bonding stability over time, which demonstrates that self-etching and etch-and-rinse adhesives are benefited by the use of chlorhexidine. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Fang M, Liu R, Xiao Y, Li F, Wang D, Hou R, et al. Biomodification to dentin by a natural crosslinker improved the resin-dentin bonds. J Dent. 2012;40:458–66.CrossRefPubMedGoogle Scholar
  49. 49.
    Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92:827–39.CrossRefPubMedGoogle Scholar
  50. 50.
    Boukpessi T, Menashi S, Camoin L, Tencate JM, Goldberg M, Chaussain-Miller C. The effect of stromelysin-1 (MMP-3) on non-collagenous extracellular matrix proteins of demineralized dentin and the adhesive properties of restorative resins. Biomaterials. 2008;29:4367–73.CrossRefPubMedGoogle Scholar
  51. 51.
    Mazzoni A, Papa V, Nato F, Carrilho M, Tjaderhane L, Ruggeri Jr A, et al. Immunohistochemical and biochemical assay of MMP-3 in human dentine. J Dent. 2011;39:231–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Sulkala M, Tervahartiala T, Sorsa T, Larmas M, Salo T, Tjaderhane L. Matrix metalloproteinase-8 (MMP-8) is the major collagenase in human dentin. Arch Oral Biol. 2007;52:121–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Martin-De Las Heras S, Valenzuela A, Overall CM. The matrix metalloproteinase gelatinase A in human dentine. Arch Oral Biol. 2000;45:757–65.CrossRefPubMedGoogle Scholar
  54. 54.
    Mazzoni A, Mannello F, Tay FR, Tonti GA, Papa S, Mazzotti G, et al. Zymographic analysis and characterization of MMP-2 and −9 forms in human sound dentin. J Dent Res. 2007;86:436–40.CrossRefPubMedGoogle Scholar
  55. 55.
    Dickinson DP. Cysteine peptidases of mammals: their biological roles and potential effects in the oral cavity and other tissues in health and disease. Crit Rev Oral Biol Med. 2002;13:238–75.CrossRefPubMedGoogle Scholar
  56. 56.
    Scaffa PM, Vidal CM, Barros N, Gesteira TF, Carmona AK, Breschi L, et al. Chlorhexidine inhibits the activity of dental cysteine cathepsins. J Dent Res. 2012;91:420–5.CrossRefPubMedGoogle Scholar
  57. 57.
    Mohammadi Z, Abbott PV. Antimicrobial substantivity of root canal irrigants and medicaments: a review. Aust Endod J. 2009;35:131–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Kim J, Uchiyama T, Carrilho M, Agee KA, Mazzoni A, Breschi L, et al. Chlorhexidine binding to mineralized versus demineralized dentin powder. Dent Mater. 2010;26:771–8.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Loguercio AD, Hass V, Gutierrez MF, Luque-Martinez IV, Szezs A, Stanislawczuk R, et al. Five-year effects of chlorhexidine on the in vitro durability of resin/dentin interfaces. J Adhes Dent. 2016;18:35–42.PubMedGoogle Scholar
  60. 60.
    Stanislawczuk R, Reis A, Loguercio AD. A 2-year in vitro evaluation of a chlorhexidine-containing acid on the durability of resin-dentin interfaces. J Dent. 2011;39:40–7.CrossRefPubMedGoogle Scholar
  61. 61.
    Yiu CK, Hiraishi N, Tay FR, King NM. Effect of chlorhexidine incorporation into dental adhesive resin on durability of resin-dentin bond. J Adhes Dent. 2012;14:355–62.PubMedGoogle Scholar
  62. 62.
    Mobarak EH. Effect of chlorhexidine pretreatment on bond strength durability of caries-affected dentin over 2-year aging in artificial saliva and under simulated intrapulpal pressure. Oper Dent. 2011;36:649–60.CrossRefPubMedGoogle Scholar
  63. 63.
    Campos EA, Correr GM, Leonardi DP, Barato-Filho F, Gonzaga CC, Zielak JC. Chlorhexidine diminishes the loss of bond strength over time under simulated pulpal pressure and thermo-mechanical stressing. J Dent. 2009;37:108–14.CrossRefPubMedGoogle Scholar
  64. 64.
    Zhou J, Tan J, Chen L, Li D, Tan Y. The incorporation of chlorhexidine in a two-step self-etching adhesive preserves dentin bond in vitro. J Dent. 2009;37:807–12.CrossRefPubMedGoogle Scholar
  65. 65.
    De Munck J, Mine A, Van den Steen PE, Van Landuyt KL, Poitevin A, Opdenakker G, et al. Enzymatic degradation of adhesive-dentin interfaces produced by mild self-etch adhesives. Eur J Oral Sci. 2010;118:494–501.CrossRefPubMedGoogle Scholar
  66. 66.
    Sulkala M, Wahlgren J, Larmas M, Sorsa T, Teronen O, Salo T, et al. The effects of MMP inhibitors on human salivary MMP activity and caries progression in rats. J Dent Res. 2001;80:1545–9.CrossRefPubMedGoogle Scholar
  67. 67.
    Lauhio A, Salo T, Tjaderhane L, Lahdevirta J, Golub LM, Sorsa T. Tetracyclines in treatment of rheumatoid arthritis. Lancet. 1995;346:645–6.CrossRefPubMedGoogle Scholar
  68. 68.
    Sorsa T, Tjaderhane L, Konttinen YT, Lauhio A, Salo T, Lee HM, et al. Matrix metalloproteinases: contribution to pathogenesis, diagnosis and treatment of periodontal inflammation. Ann Med. 2006;38:306–21.CrossRefPubMedGoogle Scholar
  69. 69.
    Acharya MR, Venitz J, Figg WD, Sparreboom A. Chemically modified tetracyclines as inhibitors of matrix metalloproteinases. Drug Resist Updat. 2004;7:195–208.CrossRefPubMedGoogle Scholar
  70. 70.
    Ryan ME, Greenwald RA, Golub LM. Potential of tetracyclines to modify cartilage breakdown in osteoarthritis. Curr Opin Rheumatol. 1996;8:238–47.CrossRefPubMedGoogle Scholar
  71. 71.
    Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69:562–73.CrossRefPubMedGoogle Scholar
  72. 72.
    Osorio R, Yamauti M, Osorio E, Ruiz-Requena ME, Pashley DH, Tay FR, et al. Zinc reduces collagen degradation in demineralized human dentin explants. J Dent. 2011;39:148–53.CrossRefPubMedGoogle Scholar
  73. 73.
    Sun J, Petersen EJ, Watson SS, Sims CM, Kassman A, Frukhtbeyn S, et al. Biophysical characterization of functionalized titania nanoparticles and their application in dental adhesives. Acta Biomater. 2017;53:585–97.CrossRefPubMedGoogle Scholar
  74. 74.
    Gutierrez MF, Malaquias P, Matos TP, Szesz A, Souza S, Bermudez J, et al. Mechanical and microbiological properties and drug release modeling of an etch-and-rinse adhesive containing copper nanoparticles. Dent Mater. 2017;33:309–20.CrossRefPubMedGoogle Scholar
  75. 75.
    Torres-Mendez F, Martinez-Castanon GA, Torres-Gallegos I, Zavala-Alonso NV, Patino-Marin N, Nino-Martinez N, et al. Effects of silver nanoparticles on the bonding of three adhesive systems to fluorotic enamel. Dent Mater J. 2017;36(3):266–74.CrossRefPubMedGoogle Scholar
  76. 76.
    Barcellos DC, Fonseca BM, Pucci CR, Cavalcanti B, Persici Ede S, Goncalves SE. Zn-doped etch-and-rinse model dentin adhesives: Dentin bond integrity, biocompatibility, and properties. Dent Mater. 2016;32:940–50.CrossRefPubMedGoogle Scholar
  77. 77.
    Sauro S, Osorio R, Watson TF, Toledano M. Influence of phosphoproteins' biomimetic analogs on remineralization of mineral-depleted resin-dentin interfaces created with ion-releasing resin-based systems. Dent Mater. 2015;31:759–77.CrossRefPubMedGoogle Scholar
  78. 78.
    Alkatheeri MS, Palasuk J, Eckert GJ, Platt JA, Bottino MC. Halloysite nanotube incorporation into adhesive systems-effect on bond strength to human dentin. Clin Oral Investig. 2015;19:1905–12.CrossRefPubMedGoogle Scholar
  79. 79.
    Kasraei S, Yarmohammadi E, Ghazizadeh MV. Microshear bond strength of OptiBond All-in-One self-adhesive agent to Er:YAG laser treated enamel after thermocycling and water storage. J Lasers Med Sci. 2016;7:152–8.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Abreu JL, Prado M, Simao RA, Silva EM, Dias KR. Effect of non-thermal argon plasma on bond strength of a self-etch adhesive system to NaOCl-treated dentin. Braz Dent J. 2016;27:446–51.CrossRefPubMedGoogle Scholar
  81. 81.
    Han GJ, Kim JH, Chung SN, Chun BH, Kim CK, Seo DG, et al. Effects of non-thermal atmospheric pressure pulsed plasma on the adhesion and durability of resin composite to dentin. Eur J Oral Sci. 2014;122:417–23.CrossRefPubMedGoogle Scholar
  82. 82.
    Curylofo FA, Messias DC, Silva-Sousa YT, Souza-Gabriel AE. Bond strength of restorative material to dentin submitted to bleaching and Er:YAG laser post-treatment. Photomed Laser Surg. 2014;32:495–9.CrossRefPubMedGoogle Scholar
  83. 83.
    Malekipour MR, Shirani F, Ebrahimi M. The effect of washing water temperature on resin-dentin micro-shear bond strength. Dent Res J (Isfahan). 2016;13:174–80.CrossRefGoogle Scholar
  84. 84.
    Munoz MA, Sezinando A, Luque-Martinez I, Szesz AL, Reis A, Loguercio AD, et al. Influence of a hydrophobic resin coating on the bonding efficacy of three universal adhesives. J Dent. 2014;42:595–602.CrossRefPubMedGoogle Scholar
  85. 85.
    Perdigao J, Munoz MA, Sezinando A, Luque-Martinez IV, Staichak R, Reis A, et al. Immediate adhesive properties to dentin and enamel of a universal adhesive associated with a hydrophobic resin coat. Oper Dent. 2014;39:489–99.CrossRefPubMedGoogle Scholar
  86. 86.
    Sezinando A, Luque-Martinez I, Munoz MA, Reis A, Loguercio AD, Perdigao J. Influence of a hydrophobic resin coating on the immediate and 6-month dentin bonding of three universal adhesives. Dent Mater. 2015;31:e236–46.CrossRefPubMedGoogle Scholar
  87. 87.
    Oliveira CA, Franca FM, Basting RT, Turssi CP, do Amaral FL. Effect of double coating of one-step self-etching adhesive on micromorphology and microtensile bond strength to sound vs demineralized dentin. J Contemp Dent Pract. 2014;15:385–91.CrossRefPubMedGoogle Scholar
  88. 88.
    Lohbauer U, Wagner A, Belli R, Stoetzel C, Hilpert A, Kurland HD, et al. Zirconia nanoparticles prepared by laser vaporization as fillers for dental adhesives. Acta Biomater. 2010;6:4539–46.CrossRefPubMedGoogle Scholar
  89. 89.
    Cadek M, Coleman JN, Barron K, Hedicke K, Blau WJ. Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl Phys Lett. 2002;81:5123–5.CrossRefGoogle Scholar
  90. 90.
    Bottino MC, Batarseh G, Palasuk J, Alkatheeri MS, Windsor LJ, Platt JA. Nanotube-modified dentin adhesive--physicochemical and dentin bonding characterizations. Dent Mater. 2013;29:1158–65.CrossRefPubMedGoogle Scholar
  91. 91.
    Feitosa SA, Munchow EA, Al-Zain AO, Kamocki K, Platt JA, Bottino MC. Synthesis and characterization of novel halloysite-incorporated adhesive resins. J Dent. 2015;43:1316–22.CrossRefPubMedGoogle Scholar
  92. 92.
    Osorio R, Yamauti M, Sauro S, Watson TF, Toledano M. Experimental resin cements containing bioactive fillers reduce matrix metalloproteinase-mediated dentin collagen degradation. J Endod. 2012;38:1227–32.CrossRefPubMedGoogle Scholar
  93. 93.
    Kawai K, Torii M, Tsuchitani Y. Inhibition of water insoluble glucan formation by eluate from amalgams [in Japanese]. Shika Zairyo Kikai. 1989;8:890–5.PubMedGoogle Scholar
  94. 94.
    • Liu Y, Tjaderhane L, Breschi L, Mazzoni A, Li N, Mao J, et al. Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J Dent Res. 2011;90:953–68. This article brings an overview regarding limitations in bonding to dentin and the possible strategies available to prevent bond degradation, which may include increasing conversion and esterase resistance of hydrophilic monomers, using MMP inhibitors or collagen crosslinkers, using the ethanol wet-bonding technique or biomimetic remineralization. CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Donmez N, Belli S, Pashley DH, Tay FR. Ultrastructural correlates of in vivo/in vitro bond degradation in self-etch adhesives. J Dent Res. 2005;84:355–9.CrossRefPubMedGoogle Scholar
  96. 96.
    Shinohara MS, De Goes MF, Schneider LF, Ferracane JL, Pereira PN, Di Hipolito V, et al. Fluoride-containing adhesive: durability on dentin bonding. Dent Mater. 2009;25:1383–91.CrossRefPubMedGoogle Scholar
  97. 97.
    Leitune VC, Collares FM, Trommer RM, Andrioli DG, Bergmann CP, Samuel SM. The addition of nanostructured hydroxyapatite to an experimental adhesive resin. J Dent. 2013;41:321–7.CrossRefPubMedGoogle Scholar
  98. 98.
    Wagner A, Belli R, Stotzel C, Hilpert A, Muller FA, Lohbauer U. Biomimetically- and hydrothermally-grown HAp nanoparticles as reinforcing fillers for dental adhesives. J Adhes Dent. 2013;15:413–22.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Dentistry, Health Science InstituteFederal University of Juiz de ForaGovernador ValadaresBrazil
  2. 2.Department of Biomedical and Applied Sciences, Division of Dental BiomaterialsIndiana University School of DentistryIndianapolisUSA

Personalised recommendations