Skip to main content


Log in

Advances and Challenges in Oral Biofilm Control

  • Microbiology (M Klein, Section Editor)
  • Published:
Current Oral Health Reports Aims and scope Submit manuscript


Purpose of Review

The paper aims to critically study the literature published over the past 3 years as relevant to oral biofilm control. The emphasis of this review is the interests and importance of new findings, seeking the following answers: (i) what is the major challenge in oral biofilm control?, (ii) what are the new anti-biofilm approaches?, and (iii) what are the further researches?

Recent Findings

In addition to mechanical plaque removal and the use of chemical agents against pathogenic biofilm, there is a need for development of new anti-biofilm approaches. The majority of the new studies aiming to control oral biofilm have been performed with the characterization of the extracellular matrix components. Exopolysaccharides (EPS), proteins, lipids, nucleic acids (eDNA), lipoteichoic acids (LTA), and lipopolysaccharides have been identified in the matrices of bacterial biofilms and are considered the current targets to oral biofilm control.


The extracellular matrix is essential for the existence of the biofilm and by its virulence both in bacterial and fungal pathogens. The better understanding of the biomechanical properties of the EPS matrix is the main advance and is leading to new chemical and/or biological approaches to remove or disorganize cariogenic biofilms. Recently, researches are focusing on the extracellular matrix for oral biofilm control with further clinical applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


Papers of particular interest, published recently, have been highlighted as: • Of Importance •• Of major importance

  1. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG. The human oral microbiome. J Bacteriol. 2010;192(19):5002–17. doi:10.1128/JB.00542-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Willems HM, Xu Z, Peters BM. Polymicrobial biofilm studies: from basic science to biofilm control. Curr Oral Health Rep. 2016;3(1):36–44. doi:10.1007/s40496-016-0078-y.

    Article  PubMed  Google Scholar 

  3. Marsh PD, Devine DA. How is the development of dental biofilms influenced by the host? J Clin Periodontol. 2011;38(Suppl 11):28–35. doi:10.1111/j.1600-051X.2010.01673.x.

    Article  PubMed  Google Scholar 

  4. Maddi A, Scannapieco FA. Oral biofilms, oral and periodontal infections, and systemic disease. Am J Dent. 2013;26(5):249–54.

    PubMed  Google Scholar 

  5. Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, Romero H, Simón-Soro A, Pignatelli M, Mira A. The oral metagenome in health and disease. ISME J. 2012;6(1):46–56. doi:10.1038/ismej.2011.85.

    Article  CAS  PubMed  Google Scholar 

  6. Dupuy A, David MS, Li L, Heider TN, Peterson JD, Montano EA, Dongari-Bagtzoglou A, Diaz PI, Strausbaugh LD. Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: discovery of Malassezia as a prominent commensal. PLoS One. 2014;9(3):e90899. doi:10.1371/journal.pone.0090899.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, Gillevet PM. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 2010;6(1):e1000713. doi:10.1371/journal.ppat.1000713.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tsai HF, Sammons LR, Zhang X, Suffis SD, Su Q, Myers TG, Marr KA, Bennett JE. Microarray and molecular analyses of the azole resistance mechanism in Candida glabrata oropharyngeal isolates. Antimicrob Agents Chemother. 2010;54(8):3308–17. doi:10.1128/AAC.00535-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev. 2009;73(2):310–47. doi:10.1128/MMBR.00041-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nobile CJ, Mitchell AP. Microbial biofilms: e pluribus unum. Curr Biol. 2007;17(10):R349–53. doi:10.1016/j.cub.2007.02.035.

    Article  CAS  PubMed  Google Scholar 

  11. Zarnowski R, Westler WM, Lacmbouh GA, Marita JM, Bothe JR, Bernhardt J, Lounes-Hadj Sahraoui A, Fontaine J, Sanchez H, Hatfield RD, Ntambi JM, Nett JE, Mitchell AP, Andes DR. Novel entries in a fungal biofilm matrix encyclopedia. MBio. 2014;5(4):e01333–14. doi:10.1128/mBio.01333-14. This report is the first to decipher the complex and unique macromolecular composition of the Candida biofilm matrix. It demonstrated the clinical relevance of matrix components, and it was showed that multiple matrix components are needed for protection from antifungal drugs

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Klein MI, Hwang G, Santos PH, Campanella OH, Koo H. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms. Front Cell Infect Microbiol. 2015;5:10. doi:10.3389/fcimb.2015.00010. This manuscript shows that eDNA enhances EPS synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pleszczyńska M, Wiater A, Bachanek T, Szczodrak J. Enzymes in therapy of biofilm-related oral diseases. Biotechnol Appl Biochem. 2016; doi:10.1002/bab.1490.

    PubMed  Google Scholar 

  14. Bowen WH, Koo H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res. 2011;45(1):69–86. doi:10.1159/000324598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vacca-Smith AM, Bowen WH. Binding properties of streptococcal glucosyltransferases for hydroxyapatite, saliva-coated hydroxyapatite, and bacterial surfaces. Arch Oral Biol. 1998;43(2):103–10. doi:10.1016/S0003-9969(97)00111-8.

    Article  CAS  PubMed  Google Scholar 

  16. Gregoire S, Xiao J, Silva BB, Gonzalez I, Agidi PS, Klein MI, Ambatipudi KS, Rosalen PL, Bauserman R, Waugh RE, Koo H. Role of glucosyltransferase B in interactions of Candida albicans with Streptococcus mutans and with an experimental pellicle on hydroxyapatite surfaces. Appl Environ Microbiol. 2011;77(18):6357–67. doi:10.1128/AEM.05203-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Koo H, Falsetta ML, Klein MI. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res. 2013;92(12):1065–73. doi:10.1177/0022034513504218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xiao J, Klein MI, Falsetta ML, Lu B, Delahunty CM, Yates 3rd JR, Heydorn A, Koo H. The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS Pathog. 2012;8(4):e1002623. doi:10.1371/journal.ppat.1002623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623–33. doi:10.1038/nrmicro2415.

    CAS  PubMed  Google Scholar 

  20. Martins M, Uppuluri P, Thomas DP, Cleary IA, Henriques M, Lopez-Ribot JL, Oliveira R. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms. Mycopathologia. 2010;169(5):323–31. doi:10.1007/s11046-009-9264-y.

    Article  CAS  PubMed  Google Scholar 

  21. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. Extracellular DNA required for bacterial biofilm formation. Science. 2002;295(5559):1487. doi:10.1126/science.295.5559.1487.

    Article  CAS  PubMed  Google Scholar 

  22. Mulcahy H, Charron-Mazenod L, Lewenza S. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog. 2008;4(11):e1000213. doi:10.1371/journal.ppat.1000213.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Izano EA, Amarante MA, Kher WB, Kaplan JB. Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol. 2008;74(2):470–6. doi:10.1128/AEM.02073-07.

    Article  CAS  PubMed  Google Scholar 

  24. Berne C, Kysela DT, Brun YV. A bacterial extracellular DNA inhibits settling of motile progeny cells within a biofilm. Mol Microbiol. 2010;77(4):815–29. doi:10.1111/j.1365-2958.2010.07267.x.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Okshevsky M, Regina VR, Meyer RL. Extracellular DNA as a target for biofilm control. Curr Opin Biotechnol. 2015;33:73–80. doi:10.1016/j.copbio.2014.12.002.

    Article  CAS  PubMed  Google Scholar 

  26. Liao S, Klein MI, Heim KP, Fan Y, Bitoun JP, Ahn SJ. Burne RA3, Koo H, Brady LJ, Wen ZT. Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery. J Bacteriol. 2014;196(13):2355–66. doi:10.1128/JB.01493-14.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nobbs AH, Jenkinson HF, Jakubovics NS. Stick to your gums: mechanisms of oral microbial adherence. J Dent Res. 2011;90(11):1271–8. doi:10.1177/0022034511399096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nadell CD, Drescher K, Wingreen NS, Bassler BL. Extracellular matrix structure governs invasion resistance in bacterial biofilms. ISME J. 2015;9(8):1700–9. doi:10.1038/ismej.2014.246.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pleszczyńska M, Wiater A, Janczarek M, Szczodrak J. (1 → 3)-α-D-Glucan hydrolases in dental biofilm prevention and control: a review. Int J Biol Macromol. 2015;79:761–78. doi:10.1016/j.ijbiomac.2015.05.052.

    Article  PubMed  Google Scholar 

  30. Jakubovics NS, Burgess JG. Extracellular DNA in oral microbial biofilms. Microbes Infect. 2015;17(7):531–7. doi:10.1016/j.micinf.2015.03.015.

    Article  CAS  PubMed  Google Scholar 

  31. Baelo A, Levato R, Julián E, Crespo A, Astola J, Gavaldà J, Engel E, Mateos-Timoneda MA, Torrents E. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections. J Control Release. 2015;209:150–8. doi:10.1016/j.jconrel.2015.04.028. This study showed that repeated administration of DNase I-coated nanoparticles encapsulating ciprofloxacin was able to target and disassemble Pseudomonas aeruginosa biofilm by degrading the extracellular DNA that stabilize the biofilm matrix

    Article  CAS  PubMed  Google Scholar 

  32. Delben JA, Zago CE, Tyhovych N, Duarte S, Vergani CE. Effect of atmospheric-pressure cold plasma on pathogenic oral biofilms and in vitro reconstituted oral epithelium. PLoS One. 2016;11(5):e0155427. doi:10.1371/journal.pone.0155427.

    Article  PubMed  PubMed Central  Google Scholar 

  33. de Sousa DL, Lima RA, Zanin IC, Klein MI, Janal MN, Duarte S. Effect of twice-daily blue light treatment on matrix-rich biofilm development. PLoS One. 2015;10(7):e0131941. doi:10.1371/journal.pone.0131941.

    Article  PubMed  Google Scholar 

  34. Horev B, Klein MI, Hwang G, Li Y, Kim D, Koo H, Benoit DS. pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence. ACS Nano. 2015;9(3):2390–404. doi:10.1021/nn507170s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references


This work was supported by a São Paulo Research Foundation (FAPESP) scholarship 2016/00256-3 to B.H.D.P. and by the Coordination for the Improvement of Higher Education Personnel (CAPES) scholarship 6483-15-1 to C.A.G.A.C.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Simone Duarte.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Microbiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panariello, B.H.D., de Araújo Costa, C.A.G., Pavarina, A.C. et al. Advances and Challenges in Oral Biofilm Control. Curr Oral Health Rep 4, 29–33 (2017).

Download citation

  • Published:

  • Issue Date:

  • DOI: