Current Oral Health Reports

, Volume 4, Issue 1, pp 22–28 | Cite as

Functional Dental Restorative Materials That Hinder Oral Biofilm

  • Hércules Bezerra Dias
  • Victor Trassi Fernandes da Silva Souza
  • Rafael Amorim Martins
  • Ana Carolina Bosco Mendes
  • Monica Irma Aparecida Valdeci de Souza
  • Ângela Cristina Cilense Zuanon
  • Alessandra Nara de Souza RastelliEmail author
Microbiology (M Klein, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Microbiology


Purpose of Review

This review highlighted the state of the art regarding functional materials that have been used to hinder oral biofilm, focused on the materials used over the last 3 years to achieve an antimicrobial effect, considering the effects of its modification on the physical properties.

Recent Findings

Because dental restorations have failures and the main cause was found to be the presence of secondary caries, the recent studies in this field are focused on development of functional dental materials with the ability to hinder oral biofilm. Therefore, composite resins, glass ionomer cement, and dental adhesive systems have been modified with different functional materials to obtain the antibiofilm properties. For this purpose, several antimicrobial materials have been used, such as inorganic fillers nanoparticles, bioactive glass, functional monomers, and chlorhexidine.


The ability of materials to hinder biofilm-dependent diseases depends on the amount of the antimicrobial materials, size, physical and chemical properties. In the last years, studies have demonstrated great results in the use of materials aiming to decrease or control oral biofilm formation; however, some authors indicate that research of bacterial effects on these materials are still needed.


Biofilms Dental materials Products with antimicrobial action Antibacterial agents 



The authors thank the Coordination for the Improvement of Higher Education Personnel (CAPES) and Amazon Research Foundation (FAPEAM) for the scholarships for the graduate students involved in this paper (H. B. Dias, V. T. F. S. Souza, R. A. Martins, A. C. B. Mendes, M. I. Ap. V. Souza).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Chen L, Shen H, Suh BI. Antibacterial dental restorative materials: a state-of-the-art review. Am J Dent. 2012;25(6):337–46.PubMedGoogle Scholar
  2. 2.
    Bourbia M, Ma D, Cvitkovitch DG, Santerre JP, Finer Y. Cariogenic bacteria degrade dental resin composites and adhesives. J Dent Res. 2013;92(11):989–94.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zhang JF, Wu R, Fan Y, Liao S, Wang Y, Wen ZT, et al. Antibacterial dental composites with chlorhexidine and mesoporous silica. J Dent Res. 2014;93(12):1283–9.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Liang X, Soderling E, Liu F, He J, Lassila LV, Vallittu PK. Optimizing the concentration of quaternary ammonium dimethacrylate monomer in bis-GMA/TEGDMA dental resin system for antibacterial activity and mechanical properties. J Mater Sci Mater Med. 2014;25(5):1387–93.CrossRefPubMedGoogle Scholar
  5. 5.
    Miki S, Kitagawa H, Kitagawa R, Kiba W, Hayashi M, Imazato S. Antibacterial activity of resin composites containing surface pre-reacted glass-ionomer (S-PRG) filler. Dent Mater. 2016;32(9):1095–102.CrossRefPubMedGoogle Scholar
  6. 6.
    Korkut E, Torlak E, Altunsoy M. Antimicrobial and mechanical properties of dental resin composite containing bioactive glass. J Appl Biomater Funct Mater. 2016;14(3):e296–301.PubMedGoogle Scholar
  7. 7.
    Khvostenko D, Hilton TJ, Ferracane JL, Mitchell JC, Kruzic JJ. Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations. Dent Mater. 2016;32(1):73–81.CrossRefPubMedGoogle Scholar
  8. 8.
    He J, Soderling E, Lassila LV, Vallittu PK. Synthesis of antibacterial and radio-opaque dimethacrylate monomers and their potential application in dental resin. Dent Mater. 2014;30(9):968–76.CrossRefPubMedGoogle Scholar
  9. 9.
    Tavassoli Hojati S, Alaghemand H, Hamze F, Ahmadian Babaki F, Rajab-Nia R, Rezvani MB, et al. Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dent Mater. 2013;29(5):495–505.CrossRefPubMedGoogle Scholar
  10. 10.
    Poosti M, Ramazanzadeh B, Zebarjad M, Javadzadeh P, Naderinasab M, Shakeri MT. Shear bond strength and antibacterial effects of orthodontic composite containing TiO2 nanoparticles. Eur J Orthod. 2013;35(5):676–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Wilson AD, Kent BE. A new translucent cement for dentistry. The glass ionomer cement. Br Dent J. 1972;132(4):133–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Mhaville RJ, van Amerongen WE, Mandari GJ. Residual caries and marginal integrity in relation to Class II glass ionomer restorations in primary molars. Eur Arch Paediatr Dent. 2006;7(2):81–4.CrossRefPubMedGoogle Scholar
  13. 13.
    Turkun LS, Turkun M, Ertugrul F, Ates M, Brugger S. Long-term antibacterial effects and physical properties of a chlorhexidine-containing glass ionomer cement. J Esthet Restor Dent. 2008;20(1):29–44.CrossRefPubMedGoogle Scholar
  14. 14.
    Takahashi Y, Imazato S, Kaneshiro AV, Ebisu S, Frencken JE, Tay FR. Antibacterial effects and physical properties of glass-ionomer cements containing chlorhexidine for the ART approach. Dent Mater. 2006;22(7):647–52.CrossRefPubMedGoogle Scholar
  15. 15.
    Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA. Bactericidal activity of photocatalytic TiO(2) reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol. 1999;65(9):4094–8.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52(4):662–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Cocco AR, Rosa WL, Silva AF, Lund RG, Piva E. A systematic review about antibacterial monomers used in dental adhesive systems: current status and further prospects. Dent Mater. 2015;31(11):1345–62.CrossRefPubMedGoogle Scholar
  18. 18.
    Priyanka KP, Sukirtha TH, Balakrishna KM, Varghese T. Microbicidal activity of TiO2 nanoparticles synthesised by sol-gel method. IET Nanobiotechnol. 2016;10(2):81–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Garcia-Contreras R, Scougall-Vilchis RJ, Contreras-Bulnes R, Sakagami H, Morales-Luckie RA, Nakajima H. Mechanical, antibacterial and bond strength properties of nano-titanium-enriched glass ionomer cement. J Appl Oral Sci. 2015;23(3):321–8.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhang N, Chen C, Weir MD, Bai Y, Xu HH. Antibacterial and protein-repellent orthodontic cement to combat biofilms and white spot lesions. J Dent. 2015;43(12):1529–38.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–53.CrossRefPubMedGoogle Scholar
  22. 22.
    Damm CC, Münstedt H, Rösch A. Long-term antimicrobial polyamide 6/silver nanocomposites. J Mater Sci. 2007;42:6067–73.CrossRefGoogle Scholar
  23. 23.
    Freire PL, Albuquerque AJ, Farias IA, da Silva TG, Aguiar JS, Galembeck A, Flores MA, Sampaio FC, Stamford TC, Rosenblatt A. Antimicrobial and cytotoxicity evaluation of colloidal chitosan-silver nanoparticles-fluoride nanocomposites. Int J Biol Macromol. 2016;93:896–903.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang XF, Shen W, Gurunathan S. Silver nanoparticle-mediated cellular responses in various cell lines: an in vitro model. Int J Mol Sci. 2016;17(10):1603.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Hench LL, Paschall HA. Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res. 1973;7(3):25–42.CrossRefPubMedGoogle Scholar
  26. 26.
    Chandrasekar RS, Lavu V, Kumar K, Rao SR. Evaluation of antimicrobial properties of bioactive glass used in regenerative periodontal therapy. J Indian Soc Periodontol. 2015;19(5):516–9.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Valanezhad A, Odatsu T, Udoh K, Shiraishi T, Sawase T, Watanabe I. Modification of resin modified glass ionomer cement by addition of bioactive glass nanoparticles. J Mater Sci Mater Med. 2016;27(1):3.CrossRefPubMedGoogle Scholar
  28. 28.
    Chatzistavrou X, Velamakanni S, DiRenzo K, Lefkelidou A, Fenno JC, Kasuga T, et al. Designing dental composites with bioactive and bactericidal properties. Mater Sci Eng C Mater Biol Appl. 2015;52:267–72.CrossRefPubMedGoogle Scholar
  29. 29.
    Buonocore MG. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res. 1955;34(6):849–53.CrossRefPubMedGoogle Scholar
  30. 30.
    Shafiei F, Memarpour M. Antibacterial activity in adhesive dentistry: a literature review. Gen Dent. 2012;60(6):e346–56. quiz p e57-8.PubMedGoogle Scholar
  31. 31.
    Sakaguchi RL. Review of the current status and challenges for dental posterior restorative composites: clinical, chemistry, and physical behavior considerations. Summary of discussion from the Portland Composites Symposium (POCOS) June 17–19, 2004, Oregon Health and Science University, Portland, Oregon. Dent Mater. 2005;21(1):3–6.CrossRefPubMedGoogle Scholar
  32. 32.
    de Almeida NA, Coutinho E, Cardoso MV, Lambrechts P, Van Meerbeek B. Current concepts and techniques for caries excavation and adhesion to residual dentin. J Adhes Dent. 2011;13(1):7–22.Google Scholar
  33. 33.
    Kopperud SE, Tveit AB, Gaarden T, Sandvik L, Espelid I. Longevity of posterior dental restorations and reasons for failure. Eur J Oral Sci. 2012;120(6):539–48.CrossRefPubMedGoogle Scholar
  34. 34.
    Cheng L, Zhang K, Weir MD, Melo MA, Zhou X, Xu HH. Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries. Nanomedicine (Lond). 2015;10(4):627–41.CrossRefGoogle Scholar
  35. 35.
    Zhang K, Cheng L, Imazato S, Antonucci JM, Lin NJ, Lin-Gibson S, et al. Effects of dual antibacterial agents MDPB and nano-silver in primer on microcosm biofilm, cytotoxicity and dentine bond properties. J Dent. 2013;41(5):464–74.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zhang K, Li F, Imazato S, Cheng L, Liu H, Arola DD, et al. Dual antibacterial agents of nano-silver and 12-methacryloyloxydodecylpyridinium bromide in dental adhesive to inhibit caries. J Biomed Mater Res B Appl Biomater. 2013;101(6):929–38.CrossRefPubMedGoogle Scholar
  37. 37.
    Kim SR, Shin DH. Antibacterial effect of self-etching adhesive systems on Streptococcus mutans. Restor Dent Endod. 2014;39(1):32–8.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Polydorou O, Rogatti P, Bolek R, Wolkewitz M, Kummerer K, Hellwig E. Elution of monomers from three different bonding systems and their antibacterial effect. Odontology. 2013;101(2):170–6.CrossRefPubMedGoogle Scholar
  39. 39.
    Zhang N, Melo MA, Chen C, Liu J, Weir MD, Bai Y, et al. Development of a multifunctional adhesive system for prevention of root caries and secondary caries. Dent Mater. 2015;31(9):1119–31.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Li F, Weir MD, Fouad AF, Xu HH. Effect of salivary pellicle on antibacterial activity of novel antibacterial dental adhesives using a dental plaque microcosm biofilm model. Dent Mater. 2014;30(2):182–91.CrossRefPubMedGoogle Scholar
  41. 41.
    Cha HS, Shin DH. Antibacterial capacity of cavity disinfectants against Streptococcus mutans and their effects on shear bond strength of a self-etch adhesive. Dent Mater J. 2016;35(1):147–52.CrossRefPubMedGoogle Scholar
  42. 42.
    Kramer N, Mohwald M, Lucker S, Domann E, Zorzin JI, Rosentritt M, et al. Effect of microparticulate silver addition in dental adhesives on secondary caries in vitro. Clin Oral Investig. 2015;19(7):1673–81.CrossRefPubMedGoogle Scholar
  43. 43.
    Cai Y, Stromme M, Melhus A, Engqvist H, Welch K. Photocatalytic inactivation of biofilms on bioactive dental adhesives. J Biomed Mater Res B Appl Biomater. 2014;102(1):62–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hércules Bezerra Dias
    • 1
  • Victor Trassi Fernandes da Silva Souza
    • 1
  • Rafael Amorim Martins
    • 2
  • Ana Carolina Bosco Mendes
    • 2
  • Monica Irma Aparecida Valdeci de Souza
    • 2
  • Ângela Cristina Cilense Zuanon
    • 2
  • Alessandra Nara de Souza Rastelli
    • 1
    Email author
  1. 1.Department of Restorative Dentistry, Araraquara School of DentistryUniversity of São Paulo State – UNESPAraraquaraBrazil
  2. 2.Department of Pediatric Dentistry, Araraquara School of DentistryUniversity of São Paulo State – UNESPAraraquaraBrazil

Personalised recommendations