Skip to main content

Advertisement

Log in

Guillain Barre Syndrome as a Complication of Infections Including COVID-19: a Review

  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose was to analyze scientific findings on Guillain Barre Syndrome (GBS) related to COVID-19 and emphasize its relationship with GBS. In this article, besides COVID-19, we explained various causative agents associated with GBS, their mechanism of action, diagnosis, and treatment.

Recent Findings

GBS is an acute inflammatory immune-mediated polyradiculoneuropathy. Patients with infections linked to GBS frequently produce antibodies against the gangliosides of the human peripheral nerves. This results in the entry of viruses or bacteria, like COVID-19 and Zika, into the body, generating antibodies against viruses or bacteria. Due to molecular mimicry, these antibodies target various lipo-oligosaccharides in microbes and structurally similar gangliosides in the brain. Target on gangliosides by the antibodies leads to demyelination of neurons, leading to loss of neurons that leads to GBS. Even though the relationship between GBS and COVID-19 has recently been the subject of numerous case reports, the degree of this relationship and the characteristics of GBS in this instance remain largely unknown. Guillain–Barre syndrome connected with COVID-19 has shown more severe symptoms.

Summary

We establish a significant correlation between the two diseases (COVID-19 and GBS) and the mechanism of action of other causative agents responsible for GBS, its diagnosis, and treatment. We explained the different types of GBS and the differences in how the disease appears.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

NA.

Code Availability

NA.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. • Liu S, Dong C, Ubogu EE. Immunotherapy of Guillain-Barré syndrome. Hum Vaccin Immunother. 2018:2568–79. https://doi.org/10.1080/21645515.2018.1493415. The paper gives us general information about GBS.

  2. Jacobs BC, Rothbarth PH, van der Meche FGA, Herbrink P, Schmitz M, de Klerk MA, et al. The spectrum of antecedent infections in Guillain-Barr6 syndrome A case-control study. Neurology. 1998;51(4):1110–5. https://doi.org/10.1212/wnl.51.4.1110.

    Article  PubMed  CAS  Google Scholar 

  3. Rodríguez Y, Rojas M, Pacheco Y, Acosta-Ampudia Y, Ramírez-Santana C, Monsalve DM, et al. Guillain–Barré syndrome, transverse myelitis and infectious diseases. Cell Mol Immunol. Chinese Soc Immunology. 2018:547–62.

  4. Masajtis-Zagajewska A, Muras K, Mochecka-Thoelke A, Kurnatowska I, Nowicki M. Guillain-Barré syndrome in the course of EBV infection after kidney transplantation-a case report. Ann Transplant [Internet]. 17(3):133–7. Available from: http://www.annalsoftransplantation.com/fulltxt.php?https://doi.org/10.12659/aot.883468. Accessed 31 Aug 2022.

  5. Sharma SR, Sharma N, Masaraf H, Singh SA. Guillain-Barré syndrome complicating pregnancy and correlation with maternal and fetal outcome in North Eastern India: A retrospective study. Ann Indian Acad Neurol [Internet]. 2015 [cited 2023 Jun 16];18(2):215–8. https://doi.org/10.4103/0972-2327.150608.

    Article  PubMed  Google Scholar 

  6. Pacheco LD, Saad AF, Hankins GDV, Chiosi G, Saade G. Guillain-Barré Syndrome in Pregnancy. Obstet Gynecol. 2016;128:1105–10.

    Article  PubMed  CAS  Google Scholar 

  7. Kennedy M, Apostolova M. A rare case of infectious mononucleosis complicated by Guillain-Barre syndrome. Neurol Int. 2013;5:20–2.

    Article  PubMed  Google Scholar 

  8. Yiu AC, Hussain A, Okonkwo UA, Villacorta-Lyew R, McMahon MJ, Blattner M. Guillain–Barre Syndrome associated with COVID-19 pneumonia—The first documented case in a U.S. Military Intensive Care Unit. Mil Med. 2021;00:1–5.

    CAS  Google Scholar 

  9. Shahrizaila N, Lehmann HC, Kuwabara S. Guillain-Barré syndrome. Lancet [Internet]. 2021;397:1214–28. Available from: https://pubmed.ncbi.nlm.nih.gov/33647239/. Accessed 31 Aug 2022.

  10. Meppiel E, Peiffer-Smadja N, Maury A, Bekri I, Ecile Delorme C, Desestret V, et al. Neurologic manifestations associated with COVID-19: a multicentre registry. Clin Microbiol Infect [Internet]. 2021 [cited 2023 Jun 18];27:458. Available from: https://doi.org/10.1016/j.cmi.2020.11.005.

  11. Andalib S, Biller J, Di Napoli M, Moghimi N, McCullough LD, Rubinos CA, et al. Peripheral nervous system manifestations associated with COVID-19. Curr Neurol Neurosci Rep [Internet]. 2021;21(3):9. https://doi.org/10.1007/s11910-021-01102-5. [cited 2023 Jun 18].

    Article  PubMed  CAS  Google Scholar 

  12. Zheng X, Fang Y, Song Y, Liu S, Liu K, Zhu J, et al. Is there a causal nexus between COVID-19 infection, COVID-19 vaccination, and Guillain-Barré syndrome? Eur J Med Res [Internet]. [cited 2023 Jun 16] 2023;28:1–12. Available from: https://eurjmedres.biomedcentral.com/articles/10.1186/s40001-023-01055-0.

  13. Palaiodimou L, Stefanou M-I, Aristeidis KH, Fragkou PC, Papadopoulou M, et al. Prevalence, clinical characteristics and outcomes of Guillain−Barré syndrome spectrum associated with COVID-19: A systematic review and meta-analysis. Eur J Neurol. 2021;28(10):3517–29. https://doi.org/10.1111/ene.14860.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Filosto M, Cotti Piccinelli S, Gazzina S, Foresti C, Frigeni B, Servalli MC, et al. Guillain-Barré syndrome and COVID-19: an observational multicentre study from two Italian hotspot regions. J Neurol Neurosurg Psychiatry [Internet]. 2021 [cited 2023 Jun 18];92:751–6. Available from: https://pubmed.ncbi.nlm.nih.gov/33158914/.

    Article  PubMed  Google Scholar 

  15. Finsterer J, Scorza FA. Guillain-Barre syndrome in 220 patients with COVID-19. Egypt J Neurol Psychiatr Neurosurg [Internet]. 2021;57. Available from: https://pubmed.ncbi.nlm.nih.gov/33967575/. Accessed 18 June 2023.

  16. Zuberbühler P, Conti ME, León-Cejas L, Maximiliano-González F, Bonardo P, Miquelini A, et al. Guillain-Barré syndrome associated to COVID-19 infection: A review of published case reports. Rev Neurol. 2021;72:203–12.

    PubMed  Google Scholar 

  17. Abu-Rumeileh S, Abdelhak A, Foschi M, Tumani H, Otto M. Guillain-Barré syndrome spectrum associated with COVID-19: an up-to-date systematic review of 73 cases. J Neurol [Internet]. 2021 [cited 2023 Jun 18];268:1133–70. Available from: https://pubmed.ncbi.nlm.nih.gov/32840686/.

    Article  PubMed  CAS  Google Scholar 

  18. Hussain FS, Eldeeb MA, Blackmore D, Siddiqi ZA. Guillain Barré syndrome and COVID-19: Possible role of the cytokine storm. Autoimmun Rev [Internet]. 2020;19(12):102681. https://doi.org/10.1016/j.autrev.2020.102681.

  19. Duggal AK. Guillain-Barré syndrome and its variants. JIACM. 2018;19(4).

  20. Scheidl E, Canseco DD, Hadji-Naumov A, Bereznai B. Guillain-Barré syndrome during SARS-CoV-2 pandemic: A case report and review of recent literature. J Peripher Nerv Syst [Internet]. 2020 [cited 2022 Oct 25];25:204–7. Available from: https://pubmed.ncbi.nlm.nih.gov/32388880/.

    Article  PubMed  CAS  Google Scholar 

  21. Willison HJ, Jacobs BC, van Doorn PA. Guillain-Barré syndrome. Lancet [Internet]. 2016 [cited 2022 Oct 25];388:717–27. Available from: https://pubmed.ncbi.nlm.nih.gov/26948435/.

    Article  PubMed  Google Scholar 

  22. Kutleša M, Santini M, Krajinović V, Raffanelli D. Baršić B. Acute motor axonal neuropathy associated with pandemic H1N1 influenza A infection. Neurocrit Care [Internet]. 2010 [cited 2022 Oct 25];13:98–100. Available from: https://pubmed.ncbi.nlm.nih.gov/20428968/.

    Article  PubMed  Google Scholar 

  23. Thakolwiboon S, Karukote A, Sohn G. Acute motor-sensory axonal neuropathy associated with systemic lupus erythematosus. Proc (Bayl Univ Med Cent) [Internet]. 2019 [cited 2022 Oct 25];32:610–3. Available from: https://pubmed.ncbi.nlm.nih.gov/31656439/.

    Article  Google Scholar 

  24. Li Z, Li X, Shen J, MTV C, WKK W. Miller Fisher syndrome associated with COVID-19: an up-to-date systematic review. Environ Sci Pollut Res Int [Internet]. 2021 [cited 2022 Oct 25];28:20939–44. Available from: https://pubmed.ncbi.nlm.nih.gov/33677662/.

    Article  PubMed  CAS  Google Scholar 

  25. Ooi ST, Ahmad A, Yaakub A. Recurrent Miller Fisher Syndrome. Cureus [Internet]. 2022 [cited 2022 Oct 25];14 Available from: https://pubmed.ncbi.nlm.nih.gov/35891880/.

  26. Roch-Cabrero F, Morrison EH. Miller Fisher Syndrome. StatPearls Publishing; 2022.

    Google Scholar 

  27. Willison HJ, Jacobs BC, van Doorn PA. Guillain-Barré syndrome. The Lancet [Internet]. 2016 [cited 2022 Sep 10];388:717–27. Available from: http://www.thelancet.com/article/S0140673616003391/fulltext.

    Article  Google Scholar 

  28. • Heikema AP, Strepis N, Horst-Kreft D, Huynh S, Zomer A, Kelly DJ, et al. Biomolecule sulphation and novel methylations related to Guillain-Barré syndrome-associated Campylobacter jejuni serotype HS:19. Microb Genom [Internet]. [cited 2022 Sep 10];2021;7(11):000660. https://doi.org/10.1099/mgen.0.000660. The paper gives us information on molecular mimicry in the case of C. jejuni.

  29. St Charles JL, Bell JA, Gadsden BJ, Malik A, Cooke H, van de Grift LK, et al. Guillain Barré Syndrome is induced in Non-Obese Diabetic (NOD) mice following Campylobacter jejuni infection and is exacerbated by antibiotics. J Autoimmun. 2017;77:11–38.

    Article  PubMed  CAS  Google Scholar 

  30. Ramos AP, Leonhard SE, Halstead SK, Cuba MA, Castañeda CC, Dioses JA, et al. Guillain-Barré Syndrome outbreak in Peru 2019 associated with campylobacter jejuni infection. Neurol Neuroimmunol Neuroinflamm [Internet]. 2021 [cited 2022 Sep 10];8(2):e952. https://doi.org/10.1212/NXI.0000000000000952.

  31. Kuwabara S. Guillain-Barré Syndrome. Drugs [Internet]. 2004;64(6):597–610. https://doi.org/10.2165/00003495-200464060-00003.

  32. • Israeli E, Agmon-Levin N, Blank M, Chapman J, Shoenfeld Y. Guillain-Barré syndrome-a classical autoimmune disease triggered by infection or vaccination. Clin Rev Allergy Immunol [Internet]. 2012 [cited 2022 Sep 10];42:121–30. https://doi.org/10.1007/s12016-010-8213-3. The paper gives us information about the gene responsible for GBS.

    Article  PubMed  CAS  Google Scholar 

  33. Wouk J, Rechenchoski DZ, Rodrigues BCD, Ribelato EV, Faccin-Galhardi LC. Viral infections and their relationship to neurological disorders. Arch Virol [Internet]. 2021;166:3, 733–753. https://doi.org/10.1007/s00705-021-04959-6.

  34. • Yamana M, Kuwahara M, Fukumoto Y, Yoshikawa K, Takada K, Kusunoki S. Guillain-Barré syndrome and related diseases after influenza virus infection. Neurol Neuroimmunol Neuroinflammation [Internet]. 2019 [cited 2022 Aug 31]:6. Available from: https://nn.neurology.org/content/6/4/e575. The paper gives us information about GBS caused by the influenza virus.

  35. Wouk J, Rechenchoski DZ, Rodrigues BCD, Ribelato EV, Faccin-Galhardi LC. Viral infections and their relationship to neurological disorders. Arch Virol [Internet]. 2021 [cited 2022 Aug 31];166:733. https://doi.org/10.1007/s00705-021-04959-6.

    Article  PubMed  CAS  Google Scholar 

  36. Pielnaa P, Al-Saadawe M, Saro A, Dama MF, Zhou M, Huang Y, et al. Zika virus-spread, epidemiology, genome, transmission cycle, clinical manifestation, associated challenges, vaccine and antiviral drug development. Virology [Internet]. 2020 [cited 2022 Aug 31];543:34–42. Available from: https://pubmed.ncbi.nlm.nih.gov/32056845/.

    Article  PubMed  CAS  Google Scholar 

  37. Acosta-Ampudia Y, Monsalve DM, Castillo-Medina LF, Rodríguez Y, Pacheco Y, Halstead S, et al. Autoimmune neurological conditions associated with Zika virus infection. Front Mol Neurosci [Internet]. 2018 [cited 2022 Aug 31];11 Available from: https://pubmed.ncbi.nlm.nih.gov/29695953/.

  38. Christian KM, Song H, Ming GL. Pathophysiology and mechanisms of Zika virus infection in the nervous system. Annu Rev Neurosci [Internet]. 2019 [cited 2022 Aug 31];42:249–69. Available from: https://pubmed.ncbi.nlm.nih.gov/31283901/.

    Article  PubMed  CAS  Google Scholar 

  39. • Agrelli A, de Moura RR, Crovella S, Brandão LAC. ZIKA virus entry mechanisms in human cells. Infect Genet Evol [Internet]. 2019 [cited 2022 Aug 31];69:22–9. Available from: https://pubmed.ncbi.nlm.nih.gov/30658214/. The paper gives us information about the ZIKV virus and how it gets affected in the human body.

    Article  PubMed  CAS  Google Scholar 

  40. Beck S, Zhu Z, Oliveira MF, Smith DM, Rich JN, Bernatchez JA, et al. Mechanism of action of methotrexate against Zika virus. Viruses [Internet]. 2019 [cited 2022 Aug 31];11. Available from: https://pubmed.ncbi.nlm.nih.gov/30974762/.

  41. Limaye AP, Kirby KA, Rubenfeld GD, Leisenring WM, Bulger EM, Neff MJ, et al. Cytomegalovirus reactivation in critically ill immunocompetent patients. JAMA. 2008;300:413–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Klemola E, Weckman N, Haltia K, Kääriäinen L. The Guillain-Barré Syndrome associated with acquired cytomegalovirus infection. Acta Med Scand [Internet]. 1967 [cited 2022 Sep 10];181:603–7. https://doi.org/10.1111/j.0954-6820.1967.tb07283.x.

    Article  PubMed  CAS  Google Scholar 

  43. Irie S, Saito T, Nakamura K, Kanazawa N, Ogino M, Nukazawa T, et al. Association of anti-GM2 antibodies in Guillain-Barré syndrome with acute cytomegalovirus infection. J Neuroimmunol [Internet]. 1996 [cited 2022 Sep 10];68:19–26. Available from: https://pubmed.ncbi.nlm.nih.gov/8784256/.

    Article  PubMed  CAS  Google Scholar 

  44. Lunn M, Hughes R. The relationship between cytomegalovirus infection and Guillain–Barré Syndrome. Clin Infect Dis [Internet]. 2011 [cited 2022 Sep 10];52:845–7. Available from: https://academic.oup.com/cid/article/52/7/845/301585.

  45. • Visser LH, van der Meché FGA, Meulstee J, Rothbarth PP, Jacobs BC, Schmitz PIM, et al. Cytomegalovirus infection and Guillain-Barré syndrome: the clinical, electrophysiologic, and prognostic features. Dutch Guillain-Barré Study Group. Neurology [Internet]. 1996 [cited 2022 Sep 10];47:668–673. Available from: https://pubmed.ncbi.nlm.nih.gov/8797462/. This paper describes the difference between the CMV infection associate GBS and c jejuni infection associate GBS.

  46. Yuki N, Tagawa Y. Acute cytomegalovirus infection and IgM anti-GM2 antibody. J Neurol Sci [Internet]. 1998 [cited 2022 Sep 10];154:14–7. Available from: https://pubmed.ncbi.nlm.nih.gov/9543317/.

    Article  PubMed  CAS  Google Scholar 

  47. Haase CG, Schmidt S. Detection of brain-specific autoantibodies to myelin oligodendrocyte glycoprotein, S100beta and myelin basic protein in patients with Devic’s neuromyelitis optica. Neurosci Lett [Internet]. 2001 [cited 2022 Sep 10];307:131–3. Available from: https://pubmed.ncbi.nlm.nih.gov/11427318/.

    Article  PubMed  CAS  Google Scholar 

  48. Scherer SS, Xu T, Crino P, Arroyo EJ, Gutmann DH. Ezrin, radixin, and moesin are components of Schwann cell microvilli. J Neurosci Res [Internet]. 2001 [cited 2022 Sep 10];65:150–64. Available from: https://europepmc.org/article/MED/11438984.

    Article  PubMed  CAS  Google Scholar 

  49. Miyaji K, Devaux J, Yuki N. Moesin is a possible target molecule for cytomegalovirus-related Guillain-Barré syndrome. Neurology [Internet]. 2014 [cited 2022 Sep 10];83:2314. Available from: https://pubmed.ncbi.nlm.nih.gov/25488994/.

    Article  PubMed  Google Scholar 

  50. Iontcheva I, Amar S, Zawawi KH, Kantarci A, van Dyke TE. Role for moesin in lipopolysaccharide-stimulated signal transduction. Infect Immun [Internet]. 2004 [cited 2022 Sep 10];72:2312–20. Available from: https://pubmed.ncbi.nlm.nih.gov/15039356/.

    Article  PubMed  CAS  Google Scholar 

  51. Willison H, Scherer SS. Ranvier revisited: novel nodal antigens stimulate interest in GBS pathogenesis. Neurology [Internet]. 2014 [cited 2022 Sep 10];83:106–8. Available from: https://pubmed.ncbi.nlm.nih.gov/24920859/.

    Article  PubMed  Google Scholar 

  52. Caress JB, Castoro RJ, Simmons Z, Scelsa SN, Lewis RA, Ahlawat A, et al. COVID-19–associated Guillain-Barré syndrome: The early pandemic experience. Muscle Nerve. 2020;62:485–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Fauci AS, Lane HC, Redfield RR. Covid-19 - navigating the uncharted. N Engl J Med [Internet]. 2020 [cited 2023 Jun 16];382:1268–9. Available from: https://pubmed.ncbi.nlm.nih.gov/32109011/.

    Article  PubMed  CAS  Google Scholar 

  54. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. J Adv Res. 2020;24:91–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. • Patnaik UJ. Review article on COVID-19 and Guillain-Barré syndrome. Frontiers in Bioscience - Scholar. Front Biosci. 2021;:97–104. This article gives general information about COVID-19.

  56. Webb S, Wallace VC, Martin-Lopez D, Yogarajah M. Guillain-Barré syndrome following COVID-19: a newly emerging post-infectious complication. BMJ Case Rep [Internet]. [cited 2023 Jun 16];13:236182. Available from: http://casereports.bmj.com/.

  57. Kermali M, Khalsa RK, Pillai K, Ismail Z, Harky A. The role of biomarkers in diagnosis of COVID-19 – A systematic review. Life Sci [Internet]. 2020 [cited 2023 Jun 16];254:117788. https://doi.org/10.1016/j.lfs.2020.117788.

    Article  PubMed  CAS  Google Scholar 

  58. Okrzeja J, Garkowski A, Kubas B, Moniuszko-Malinowska A. Imaging and neuropathological findings in patients with Post COVID-19 Neurological Syndrome—A review. Front Neurol. 2023;14.

  59. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. J Infect [Internet]. 2020 [cited 2023 Jun 19];80:–607. https://doi.org/10.1016/j.jinf.2020.03.037.

  60. Hu B, Huang S, Yin L. The cytokine storm and COVID-19. J Med Virol [Internet]. 2021 [cited 2023 Jun 19];93(1):250–6. https://doi.org/10.1002/jmv.26232.

    Article  PubMed  CAS  Google Scholar 

  61. • Hussain FS, Eldeeb MA, Blackmore D, Siddiqi ZA. Guillain Barré syndrome and COVID-19: Possible role of the cytokine storm. Autoimmun Rev [Internet]. 2020 [cited 2023 Jun 19];19(12):102681. https://doi.org/10.1016/j.autrev.2020.102681. The paper gives us information on cytokine storm in GBS.

    Article  PubMed  CAS  Google Scholar 

  62. Jha NK, Ojha S, Jha SK, Dureja H, Singh SK, Shukla SD, et al. Evidence of Coronavirus (CoV) pathogenesis and emerging pathogen SARS-CoV-2 in the nervous system: a review on neurological impairments and manifestations. J Mol Neurosci [Internet]. 2021 [cited 2022 Sep 17];71:2192–209. https://doi.org/10.1007/s12031-020-01767-6.

    Article  PubMed  CAS  Google Scholar 

  63. • Chakraborty U, Hati A, Chandra A. Covid-19 associated Guillain-Barré syndrome: A series of a relatively uncommon neurological complication. Diabetes Metab Syndr Clin Res Rev. 2021;15:102326. The paper gives us information regarding the pathogenesis of GBS caused by COVID-19.

    Article  CAS  Google Scholar 

  64. Khan F, Sharma P, Pandey S, Sharma D, Vijayavarman V, Kumar N, et al. COVID-19-associated Guillain-Barre syndrome: Postinfectious alone or neuroinvasive too? J Med Virol [Internet]. 2021 [cited 2022 Sep 17];93:6045–9. https://doi.org/10.1002/jmv.27159.

    Article  PubMed  CAS  Google Scholar 

  65. Hanganu A-R, Constantin A, Moise E-S, Niculae C-M, Olaru ID, Băicușid C, et al. Peripheral nervous system involvement associated with COVID-19. In: Miron VD, editor. A systematic review of literature, vol. 18. PLoS One [Internet]; 2023 [cited 2023 Apr 13]. p. e0283827. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0283827.

    Google Scholar 

  66. Akçay N, Menentoğlu ME, Bektaş G, Şevketoğlu E. Axonal Guillain-Barre syndrome associated with SARS-CoV-2 infection in a child. J Med Virol [Internet]. 2021 [cited 2022 Oct 8], 2021;93(9):5599–602. https://doi.org/10.1002/jmv.27018.

  67. Agosti E, Giorgianni A, D’amore F, Vinacci G, Balbi S, Locatelli D. Is Guillain-Barrè syndrome triggered by SARS-CoV-2? Case report and literature review. Neurol Sci. 2021;42(2):607–12. https://doi.org/10.1007/s10072-020-04553-9.

    Article  PubMed  Google Scholar 

  68. Brooks JE, Mix FM, Buck JC, Walters RA. COVID-19-induced Guillain-Barré Syndrome. Cureus [Internet]. 2021 [cited 2022 Oct 8];13(11):e19809. https://doi.org/10.7759/cureus.19809.

    Article  PubMed  Google Scholar 

  69. Assini A, Benedetti L, di Maio S, Schirinzi E, del Sette M. New clinical manifestation of COVID-19 related Guillain-Barrè syndrome highly responsive to intravenous immunoglobulins: two Italian cases. Neurol Sci [Internet]. 2020 [cited 2023 Feb 16];41:1657–8. Available from: https://pubmed.ncbi.nlm.nih.gov/32468450/.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bueso T, Montalvan V, Lee J, Gomez J, Ball S, Shoustari A, et al. Guillain-Barre Syndrome and COVID-19: A case report. Clin Neurol Neurosurg [Internet]. 2021 [cited 2022 Oct 8];200:106413. https://doi.org/10.1016/j.clineuro.2020.106413.

    Article  PubMed  CAS  Google Scholar 

  71. Tham SL, Prasad K, Umapathi T. Guillain–Barré syndrome mimics. Brain Behav. 2018;.

  72. Rasera A, Romito S, Segatti A, Concon E, Alessandrini L, Basaldella F, et al. Very early and early neurophysiological abnormalities in Guillain–Barré syndrome: A 4-year retrospective study. Eur J Neurol. 2021;28:3768–73.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Shahrizaila N, Lehmann HC, Kuwabara S. Guillain-Barré syndrome. The Lancet. 2021:1214–28.

  74. • Van Den Berg B, Walgaard C, Drenthen J, Fokke C, Jacobs BC, Van Doorn PA. Guillain-Barré syndrome: Pathogenesis, diagnosis, treatment and prognosis. Nat Rev Neurol. 2014:469–82. The paper explains about case definitions of GBS.

  75. Jasti AK, Selmi C, Sarmiento-Monroy JC, Vega DA, Anaya JM, Gershwin ME. Guillain-Barré syndrome: causes, immunopathogenic mechanisms and treatment. Expert Rev Clin Immunol. 2016:1175–89.

  76. Willison HJ, Jacobs BC, van Doorn PA. Guillain-Barré syndrome. The Lancet. 2016:717–27.

  77. • Wakerley BR, Uncini A, Yuki N. Guillain–Barré and Miller Fisher syndromes—new diagnostic classification. Nature Rev Neurol [Internet]. 2014;10:9, 537–544. Available from: https://www.nature.com/articles/nrneurol.2014.138. The paper tells us about GBS and differential diagnosis, diagnostic types.

  78. Wakerley BR, Yuki N. Guillain-Barré syndrome. Expert Rev Neurother. 2015:847–9.

  79. Wakerley BR, Yuki N. Pharyngeal-cervical-brachial variant of Guillain-Barré syndrome. J Neurol Neurosurg Psychiatry. 2014:339–44.

  80. Ashrafi MR, Mohammadalipoor A, Naeini AR, Amanat M, Tavasoli AR, Heidari M, et al. Clinical characteristics and electrodiagnostic features of Guillain-Barré Syndrome among the pediatric population. J Child Neurol [Internet]. 2020 [cited 2022 Oct 30];35:448–55. Available from: https://pubmed.ncbi.nlm.nih.gov/32156188/.

  81. Hughes RAC, Wijdicks EFM, Barohn R, Benson E, Cornblath DR, Hahn AF, et al. Practice parameter: immunotherapy for Guillain-Barré Syndrome: report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology [Internet]. 2003 [cited 2022 Oct 25];61:736–40. Available from: https://pubmed.ncbi.nlm.nih.gov/14504313/.

    Article  PubMed  CAS  Google Scholar 

  82. Walgaard C, Lingsma HF, Ruts L, Drenthen J, van Koningsveld R, Garssen MJP, et al. Prediction of respiratory insufficiency in Guillain-Barré syndrome. Ann Neurol [Internet]. 2010 [cited 2022 Oct 25];67:781–7. Available from: https://pubmed.ncbi.nlm.nih.gov/20517939/.

    Article  PubMed  Google Scholar 

  83. Maheshwari A, Sharma RR, Prinja S, Hans R, Modi M, Sharma N, et al. Cost-minimization analysis in the Indian subcontinent for treating Guillain Barre Syndrome patients with therapeutic plasma exchange as compared to intravenous immunoglobulin. J Clin Apher. 2018;33:631–7.

    Article  PubMed  Google Scholar 

  84. Hughes RAC, Swan AV, Raphaël JC, Annane D, Van Koningsveld R, Van Doorn PA. Immunotherapy for Guillain-Barré syndrome: a systematic review. Brain [Internet]. 2007 [cited 2022 Oct 25];130:2245–57. Available from: https://pubmed.ncbi.nlm.nih.gov/17337484/.

    Article  PubMed  Google Scholar 

  85. • McKhann GM, Griffin JW, Cornblath DR, Mellits ED, Fisher RS, Quaskey SA. Plasmapheresis and guillain-barré syndrome: Analysis of prognostic factors and the effect of plasmapheresis. Ann Neurol. 1988;23:347–53. The paper gives us information about how plasma exchange treatment is beneficial in GBS.

  86. Efficiency of plasma exchange in Guillain-Barré syndrome: role of replacement fluids. French Cooperative Group on Plasma Exchange in Guillain-Barré syndrome. Ann Neurol [Internet]. 1987 [cited 2022 Dec 19];22:753–61. Available from: https://pubmed.ncbi.nlm.nih.gov/2893583/.

    Article  Google Scholar 

  87. Raphaël JC, Chevret S, Chastang C, Jars-Guincestre MC. Appropriate number of plasma exchanges in Guillain-Barré syndrome. The French Cooperative Group on plasma exchange in Guillain-Barré Syndrome. Ann Neurol [Internet]. 1997 [cited 2022 Dec 19];41:298–306. Available from: https://pubmed.ncbi.nlm.nih.gov/9066350/.

    Article  Google Scholar 

  88. Dimachkie MM, Barohn RJ. Guillain-Barré syndrome and variants. Neurol Clin [Internet]. 2013 [cited 2022 Dec 19];31:491–510. Available from: https://pubmed.ncbi.nlm.nih.gov/23642721/.

    Article  PubMed  Google Scholar 

  89. Hughes RA, Swan AV, van Doorn PA. Intravenous immunoglobulin for Guillain-Barré syndrome. Cochrane Database Syst Rev [Internet]. 2012; [cited 2022 Oct 25]; Available from: https://pubmed.ncbi.nlm.nih.gov/22786476/.

  90. van der Meché FGA, PIM S. A randomized trial comparing intravenous immune globulin and plasma exchange in Guillain-Barré syndrome. Dutch Guillain-Barré Study Group. N Engl J Med [Internet]. 1992 [cited 2022 Oct 25];326:1123–9. Available from: https://pubmed.ncbi.nlm.nih.gov/1552913/.

    Article  PubMed  Google Scholar 

  91. • Korinthenberg R, Schessl J, Kirschner J, Mönting JS. Intravenously administered immunoglobulin in the treatment of childhood Guillain-Barré syndrome: a randomized trial. Pediatrics [Internet]. 2005 [cited 2022 Oct 25];116:8–14. Available from: https://pubmed.ncbi.nlm.nih.gov/15995024/. The paper gives us information regarding IVIg treatment use in GBS.

  92. Goudarzi S, Esmaeeli S, Valencia JD, Lu ME, Hales RR, Fehnel CR, et al. Treatment options for COVID-19-related Guillain-Barré Syndrome: A systematic review of literature. Neurologist [Internet]. 2021 [cited 2022 Dec 22];26:196–224. Available from: https://pubmed.ncbi.nlm.nih.gov/34491938/.

    Article  PubMed  Google Scholar 

  93. Hughes R, Raphaël J, Swan A, van Doorn P. Intravenous immunoglobulin for Guillain-Barré syndrome. Cochrane Database Syst Rev [Internet]. 2001; [cited 2022 Oct 25]; Available from: https://pubmed.ncbi.nlm.nih.gov/11406030/.

  94. Taga A, Lauria G. COVID-19 and the peripheral nervous system. A 2-year review from the pandemic to the vaccine era. J Peripher Nerv Syst [Internet]. 2022 [cited 2023 Apr 13];27:4–30. Available from: https://pubmed.ncbi.nlm.nih.gov/35137496/.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank KGRDCP and Karjat, University of Mumbai, for their support.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: BT; data collection and writing—original draft preparation: PP, SK, SA, and SD; editing: PP; diagrams: SK; revised the draft: BT; supervision: BT and MK; all others read and approved the final manuscript.

Corresponding author

Correspondence to Baban S. Thawkar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Approval

NA.

Content to Participate

NA.

Consent for Publication

NA.

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurup, S.V., Patil, P.M., Atkari, S.S. et al. Guillain Barre Syndrome as a Complication of Infections Including COVID-19: a Review. Curr. Pharmacol. Rep. 9, 563–579 (2023). https://doi.org/10.1007/s40495-023-00334-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-023-00334-y

Keywords

Navigation