Skip to main content

Advertisement

Log in

Marine Natural Products — a Vital Source of Novel Biotherapeutics

  • Naturopathy, Nanotechnology, Nutraceuticals, and Immunotherapy in Cancer Research (H Latha, Section Editors)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The ocean is a complex environment, encompassing 75% of living organisms from 36 phyla. The marine natural products (MNPs) are entirely different in their specificity and structure. Hence, the MNPs could be potential candidates for the discovery of novel drugs and lead molecules. The current article is focused to review and discuss the MNPs and their utilization as lead molecules and in drug discovery.

Recent Findings

The utilization of marine organisms has widened in the recent years which has caused the isolation of 28,000 MNPs. The timeline of MNPs entering the pharma market started with the commercialization of kainic acid in 1900 for use as anthelmintic and as insecticide followed by spongothymidine and spongouridine in 1950. FDA and EU have approved MNps including cytrabine (1969), vidrabine (1976), ziconitide (2004), omega 3 fatty acid ethyl ester, trabectidin (2007), EribulinMesylate (2010), Brentunimabvedotin (2011), and iota-carrageenan.

Summary

MNPs have been isolated from various resources have demonstrated a wide range of pharmacological properties including antibacterial, antiviral, analgesic, anticancer, apoptotic, angiogenic, and antioxidant properties. Some MNPs are approved for the treatment of various diseases and still some are in the pipeline for utilization. With the advent of novel technologies and recent scientific advancements, more new entities are expected to be discovered from the marine origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rangel M, Falkenberg M. An overview of the marine natural products in clinical trials and on the market. J Coast Life Med. 2015;3(6):421–8.

    CAS  Google Scholar 

  2. Harvey A, Edrada-Ebel R, Quinn R. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015. https://doi.org/10.1038/nrd4510.

    Article  PubMed  Google Scholar 

  3. Ruiz-Torres V, Encinar JA, Herranz-López M, et al. An updated review on marine anticancer compounds: the use of virtual screening for the discovery of small-molecule cancer drugs. Molecules. 2017;22(7):1037.

    Article  Google Scholar 

  4. Ramsey UP, Bird CJ, Shacklock PF, Laycock MV, Wright JL. Kainic acid and 1’-hydroxykainic acid from Palmariales. Nat Toxins. 1994;2(5):286–92.

    Article  CAS  Google Scholar 

  5. Landowne RA, Bergmann W. Contributions to the study of marine products. L. Phospholipids of Sponges. J Org Chem. 1961. https://doi.org/10.1021/jo01063a066.

    Article  Google Scholar 

  6. Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod. 2007;70(3):461–77.

    Article  CAS  Google Scholar 

  7. Erwin P, Lopez-Legentil, Susanna P. The pharmaceutical value of marine biodiversity for anti-cancer drug discovery. Ecol Econ. 2010;70(2):445–51.

    Article  Google Scholar 

  8. Hamed I, Ozogul F, Özogul Y, Regenstein J. Marine bioactive compounds and their health benefits: a review. Compr Rev Food Sci Food Saf. 2015;14(4). https://doi.org/10.1111/1541-4337.12136.

  9. Liang X, Luo D, Luesch H. Advances in exploring the therapeutic potential of marine natural products. Pharmacol Res. 2019;147:104373. https://doi.org/10.1016/j.phrs.2019.104373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mudit M, El Sayed KA. Cancer control potential of marine natural product scaffolds through inhibition of tumor cell migration and invasion. Drug Discov Today. 2016;21:1745–60.

    Article  CAS  Google Scholar 

  11. Galmarini CM, D’Incalci M, Allavena P. Trabectedin and plitidepsin: drugs from the sea that strike the tumor microenvironment. Mar Drugs. 2014;12(2):719–33.

    Article  CAS  Google Scholar 

  12. Dyshlovoy SA, Honecker F. Marine compounds and cancer: 2017 updates. Mar Drugs. 2018;16(2):41. https://doi.org/10.3390/md16020041.

  13. McGivern JG. Ziconotide: a review of its pharmacology and use in the treatment of pain. Neuropsychiatr Dis Treat. 2007;3(1):69–85. https://doi.org/10.2147/nedt.2007.3.1.69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Romano G, Costantini M, Sansone C, Lauritano C, Ruocco N, Ianora A. Marine microorganisms as a promising and sustainable source of bioactive molecules. Mar Environ Res. 2017;128:58–69.

    Article  CAS  Google Scholar 

  15. Abdelmohsen UR, Balasubramanian S, Oelschlaeger TA, Grkovic T, Pham NB, Quinn RJ, Hentschel U. Potential of marine natural products against drug-resistant fungal, viral, andparasitic infections. Lancet Infect Dis. 2017;17:e30–41.

    Article  CAS  Google Scholar 

  16. Carter NJ, Keam SJ. Trabectedin : a review of its use in the management of soft tissue sarcoma and ovarian cancer. Drugs. 2007;67(15):2257–76.

    Article  CAS  Google Scholar 

  17. McBride A, Butler SK. Eribulinmesylate: a novel halichondrin B analogue for the treatment of metastatic breast cancer. Am J Health Syst Pharm. 2012;69(9):745–55. https://doi.org/10.2146/ajhp110237.

    Article  CAS  PubMed  Google Scholar 

  18. Alonso-Álvarez S, Pardal E, Sánchez-Nieto D, et al. Plitidepsin: design, development, and potential place in therapy. Drug Des Devel Ther. 2017;11:253–264. Published 2017 Jan 19. https://doi.org/10.2147/DDDT.S94165

  19. Krege S, Rexer H, vomDorp F, et al. Prospective randomized double-blind multicentre phase II study comparing gemcitabine and cisplatin plus sorafenib chemotherapy with gemcitabine and cisplatin plus placebo in locally advanced and/or metastasized urothelial cancer: SUSE (AUO-AB 31/05). BJU Int. 2014;113(3):429–36.

    Article  CAS  Google Scholar 

  20. Bendell J, Saleh M, Rose AA, et al. Phase I/II study of the antibody-drug conjugate glembatumumabvedotin in patients with locally advanced or metastatic breast cancer. J Clin Oncol. 2014;32(32):3619–25.

    Article  CAS  Google Scholar 

  21. Molina-Guijarro JM, García C, Macías Á, et al. Elisidepsin interacts directly with glycosylceramides in the plasma membrane of tumor cells to induce necrotic cell death. PLoS ONE. 2015;10(10):e0140782.

    Article  Google Scholar 

  22. Caplan SL, Zheng B, Dawson-Scully K, White CA, West LM. Pseudopterosin A: protection of synaptic function and potential as a neuromodulatory agent. Mar Drugs. 2016;14(3):55.

    Article  Google Scholar 

  23. Al-Enazi NM, Awaad AS, Zain ME, Alqasoumi SI. Antimicrobial, antioxidant and anticancer activities of Laurenciacatarinensis, Laurenciamajuscula and Padinapavonica extracts. Saudi Pharm J. 2018;26(1):44–52.

    Article  Google Scholar 

  24. Harada H, Yamashita U, Kurihara H, Fukushi E, Kawabata J, Kamei Y. Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer Res. 2002;22:2587–90.

    CAS  PubMed  Google Scholar 

  25. Han L, Xu N, Shi J, Yan X, Zheng C. Isolation and pharmacological activities of bromophenols from Rhodomelaconfervoides. Chin J Oceanol Limnol. 2005;23(2):226–9. https://doi.org/10.1007/bf02894243.

    Article  CAS  Google Scholar 

  26. Costa LS, Telles CB, Oliveira RM, et al. Heterofucan from Sargassumfilipendula induces apoptosis in HeLa cells. Mar Drugs. 2011;9(4):603–14.

    Article  CAS  Google Scholar 

  27. Yeh CC, Yang JI, Lee JC, et al. Anti-proliferative effect of methanolic extract of Gracilariatenuistipitata on oral cancer cells involves apoptosis, DNA damage, and oxidative stress. BMC Complement Altern Med. 2012. https://doi.org/10.1186/1472-6882-12-142.

    Article  PubMed  PubMed Central  Google Scholar 

  28. de la Mare JA, Lawson JC, Chiwakata MT, Beukes DR, Edkins AL, Blatch GL. Quinones and halogenated monoterpenes of algal origin show anti-proliferative effects against breast cancer cells in vitro. Invest New Drugs. 2012;30(6):2187–200.

    Article  CAS  Google Scholar 

  29. Thinh PD, Menshova RV, Ermakova SP, Anastyuk SD, Ly BM, Zvyagintseva TN. Structural characteristics and anticancer activity of fucoidan from the brown alga Sargassummcclurei. Mar Drugs. 2013;11(5):1456–76.

    Article  CAS  Google Scholar 

  30. Manojkumar K. In vitro cancer chemopreventive properties of polysaccharide extract from the brown alga, sargassumwightii. IOSR J Pharm Biol Sci. 2013;8(2):06–11.

    Google Scholar 

  31. Kazłowska K, Lin H-TV, Chang S-H, Tsai G-J. In vitro and in vivo anticancer effects of sterol fraction from red algae Porphyra dentate. Evid Based Complement Alternat Med. 2013. https://doi.org/10.1155/2013/493869.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Guedes ÉAC, da Silva TG, Aguiar JS, de Barros LD, Pinotti LM, Sant’Ana AEG. Cytotoxic activity of marine algae against cancerous cells. Rev Bras Farmacogn. 2013. https://doi.org/10.1590/S0102-695X2013005000060.

    Article  Google Scholar 

  33. Gambato G, Baroni ÉG, Garcia CSC, Frassini R, Frozza COS, Moura S, Pereira CMP, Fujii MT, Colepicolo P, Lambert APF, Henriques JAP, Roesch-Ely M, Botanical Institute, SMA, São Paulo, Brazil. Brown algae Himantothallusgrandifolius (Desmarestiales, Phaeophyceae) suppresses proliferation and promotes apoptosis-mediated cell death in tumor cells. J Biol Chem. 2014;4:98–108.

    Google Scholar 

  34. El Gamal AA. Biological importance of marine algae. Saudi Pharm J. 2010;18(1):1–25.

    Article  Google Scholar 

  35. Tan LT. Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry. 2007;68:954–79.

    Article  CAS  Google Scholar 

  36. Rickards RW, Rothschild JM, Willis AC, de Chazal NM, Kirk J, Kirk K, Saliba KJ, Smith GD. Calothrixins A and B, novel pentacyclic metabolites from Calothrix cyanobacteria with potent activity against malaria parasites and human cancer cells. Tetrahedron. 1999;55:13513–20.

    Article  CAS  Google Scholar 

  37. Chen X, Smith GD, Waring P. Human cancer cell (Jurkat) killing by the cyanobacterial metabolite calothrixin A. J Appl Phycol. 2003;15:269–77. https://doi.org/10.1023/A:1025134106985.

    Article  CAS  Google Scholar 

  38. Davidson BS. New dimensions in natural products research: Cultured marine microorganisms. Curr Opin Biotechnol. 1995;6:284–91.

    Article  CAS  Google Scholar 

  39. Carte BK. Biomedical potential of marine natural products. Bioscience. 1996;46:271–86.

    Article  Google Scholar 

  40. Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH. Isolation of dolastatin 10 from the marine cyanobacteriumSymploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod. 2001;64:907–10.

    Article  CAS  Google Scholar 

  41. Stevenson CS, Capper EA, Roshak AK, Marquez B, Grace K, Gerwick WH, Jacobs RS, Marshall LA. Scytonemin-a marine natural product inhibitor of kinases key in hyperproliferative inflammatory diseases. Inflamm Res. 2002;51:112–4.

    Article  CAS  Google Scholar 

  42. Eggen M, Georg G. The cryptophycins: their synthesis and anticancer activity. Med Res Rev. 2002;2:85–101.

    Article  Google Scholar 

  43. Sagar S, Esau L, Holtermann K, Hikmawan T, Zhang G, Stingl U, Bajic VB, Kaur M. Induction of apoptosis in cancer cell lines by the Red Sea brine pool bacterial extracts. BMC Complement Altern Med. 2013;13:344.

    Article  Google Scholar 

  44. Ruiz-Ruiz C, Srivastava GK, Carranza D, Mata JA, Llamas I, Santamaría M, Quesada E, Molina IJ. An exopolysaccharide produced by the novel halophilic bacterium Halomonasstenophila strain B100 selectivelyinduces apoptosis in human T leukaemia cells. Appl Microbiol Biotechnol. 2011;89:345–55.

    Article  CAS  Google Scholar 

  45. Cho JY, Williams PG, Kwon HC, Jensen PR, Fenical W. Lucentamycins A-D, cytotoxic peptides from the marine-derived actinomycete Nocardiopsislucentensis. J Nat Prod. 2007;70:1321–8.

    Article  CAS  Google Scholar 

  46. Erba E, Bergamaschi D, Ronzoni S, Faretta M, Taverna S, Bonfanti M, Catapano CV, Faircloth G, Jimeno J, D’incalci M. Mode of action of thiocoraline, a natural marine compound with anti-tumor activity. Br J Cancer. 1999;80:971.

    Article  CAS  Google Scholar 

  47. Maskey RP, Helmke E, Kayser O, Fiebig HH, Maier A, Busche A, Laatsch H. Anti-cancer and antibacterialtrioxacarcins with high anti-malaria activity from a marine streptomycete and their absolute stereochemistry. J Antibiot. 2004;57:771–9.

    Article  CAS  Google Scholar 

  48. Pérez M, Crespo C, Schleissner C, Rodríguez P, Zúñiga P, Reyes F. Tartrolon D, a cytotoxic macrodiolide from the marine-derived actinomycete Streptomyces sp. MDG-04–17–069. J Nat Prod. 2009;72:2192–4.

    Article  Google Scholar 

  49. Abdel-Late A, König GM, Fisch KM, Höller U, Jones PG, Wright AD. New antioxidant hydroquinone derivatives from the algicolous marine fungus Acremonium sp. J Nat Prod. 2002;65:1605–11.

    Article  Google Scholar 

  50. Du L, Zhu T, Fang Y, Liu H, Gu Q, Zhu W, Aspergiolide A. a novel anthraquinone derivative with naphtho [1, 2, 3-de] chromene-2, 7-dione skeleton isolated from a marine-derived fungus Aspergillusglaucus. Tetrahedron. 2007;63:1085–8.

    Article  CAS  Google Scholar 

  51. Du L, Feng T, Zhao B, Li D, Cai S, Zhu T, Wang F, Xiao X, Gu Q. Alkaloids from a deep ocean sediment-derived fungus Penicillium sp. and their antitumor activities. J Antibiot. 2010;63:165.

    Article  CAS  Google Scholar 

  52. Zovko A, Novak M, Hååg P, Kovalerchick D, Holmlund T, Färnegårdh K, Ilan M, Carmeli S, Lewensohn R, Viktorsson K. Compounds from the marine sponge Cribrochalina vasculum offer a way to target IGF-1R mediated signaling in tumor cells. Oncotarget. 2016;7:50258.

    Article  Google Scholar 

  53. Shetty N, Gupta S. Eribulin drug review. South Asian J Cancer. 2014;3:57–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hemalatha.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Naturopathy, Nanotechnology, Nutraceuticals, and Immunotherapy in Cancer Research

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Begum, S.M.F.M., Hemalatha, S. Marine Natural Products — a Vital Source of Novel Biotherapeutics. Curr Pharmacol Rep 8, 339–349 (2022). https://doi.org/10.1007/s40495-022-00295-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-022-00295-8

Keywords

Navigation