Skip to main content

Advertisement

Log in

Understanding the Clinical Link Between Fasting and Response to Cancer Therapy

  • Naturopathy, Nanotechnology, Nutraceuticals, and Immunotherapy in Cancer Research (H Latha, Section Editors)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Fasting can be defined as stress on the cell due to nutrient deprivation which modulates metabolic regulation and influences several gene expressions. During fasting, nutrient (majorly glucose) limitation forces different organs to shift their energy sources. Ketosis starts at a faster rate in absence of glucose. The cancer cells have higher dependence on glucose for their fast cell division rate. Fasting limits the adaptability of the cancer cells and increases the therapeutic efficacy of the chemotherapeutics. The main purpose of this review is to focus on the clinical result and plausible mechanism of fasting or caloric restriction on the prevention, suppression, treatment of cancer, and chemotherapy-induced toxicity reduction.

Recent Findings

Fasting has been implicated as it promotes autophagy and plays a key role as tumor inhibitory action during fasting. In addition, transcription factor p53 also gets upregulated during fasting and regulates pro-apoptotic function in tumor cells. Also, p53 transactivates different genes for ketogenesis process. Earlier reports have suggested that prolonged fasting in some of the cancer patients is considered to be safe and more capable of minimizing chemotherapy-mediated tumor growth and toxicity.

Summary

Fasting has established a critical link between minimal level of glucose and elevated ketosis, thereby possess challenging environment for cancer cell survival. Cross talk between p53 gene and ketosis shows considerable episodes of energy metabolism pathway and upregulates the tumor suppression. The level of glucose drops during fasting stage which sensitizes the cancer cells due to energy deprivation and increases the efficacy of chemotherapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

ATP:

Adenosine triphosphate

PI3K:

Phosphotidyl inositol 3 kinase

Akt:

Protein kinase B

mTOR:

Mammalian target of rapamycin

HIF1α:

Hypoxia-inducible factor 1α

c-Myc:

Cellular Myc

FIS-1:

Mitochondrial fission protein 1

DRP-1:

Dynamin-related protein 1

SOD:

Superoxide dismutase

AMP:

Adenosine monophosphate

AMPK:

AMP-activated protein kinase

PTEN:

Phosphatase and tensin homolog

TSC-2:

Tuberin

Rev-1:

DNA repair protein

Sirt-6:

Sirtuin 6

Ddit-4:

DNA damage–inducible transcript 4

LPIN-1:

Lipin-1

Cdkn1a:

Cyclin-dependent kinase inhibitor 1a

Sesn-1 and 2:

Sestrin 1 and 2

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of majorimportance

  1. Campbell KL, Foster-Schubert KE, Alfano CM, Wang CC, Wang CY, Duggan CR, et al. Reduced-calorie dietary weight loss, exercise, and sex hormones in postmenopausal women: randomized controlled trial. J Clin Oncol. 2012;30(19):2314–26. https://doi.org/10.1200/JCO.2011.37.9792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Reilly JJ, Kelly J. Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review. Int J Obes (Lond). 2011;35(7):891–8. https://doi.org/10.1038/ijo.2010.222.

    Article  CAS  Google Scholar 

  3. Thomson CA, Stopeck AT, Bea JW, Cussler E, Nardi E, Frey G, et al. Changes in body weight and metabolic indexes in overweight breast cancer survivors enrolled in a randomized trial of low-fat vs. reduced carbohydrate diets. Nutr Cancer. 2010;62(8):1142–52. https://doi.org/10.1080/01635581.2010.513803.

    Article  CAS  PubMed  Google Scholar 

  4. Yang P, Zhou Y, Chen B, Wan HW, Jia GQ, Bai HL, et al. Overweight, obesity and gastric cancer risk: results from a meta-analysis of cohort studies. Eur J Cancer. 2009;45(16):2867–73. https://doi.org/10.1016/j.ejca.2009.04.019.

    Article  PubMed  Google Scholar 

  5. Ligibel JA, Strickler HD. Obesity and its impact on breast cancer: tumor incidence, recurrence, survival, and possible interventions. Am Soc Clin Oncol Educ Book. 2013:52–9. https://doi.org/10.1200/EdBook_AM.2013.33.52https://doi.org/10.14694/EdBook_AM.2013.33.52

  6. Bianchini F, Kaaks R, Vainio H. Overweight, obesity, and cancer risk. Lancet Oncol. 2002;3(9):565–74. https://doi.org/10.1016/s1470-2045(02)00849-5.

    Article  PubMed  Google Scholar 

  7. Garfinkel L. Overweight and cancer. Ann Intern Med. 1985;103(6_Part_2):1034–6. https://doi.org/10.7326/0003-4819-103-6-1034.

    Article  CAS  PubMed  Google Scholar 

  8. Murphy N, Moreno V, Hughes DJ, Vodicka L, Vodicka P, Aglago EK, et al. Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Mol Aspects Med. 2019;69:2–9. https://doi.org/10.1016/j.mam.2019.06.005.

    Article  PubMed  Google Scholar 

  9. Brandhorst S, Longo VD. Fasting and caloric restriction in cancer prevention and treatment. Recent results in cancer research Fortschritte der Krebsforschung Progres dans les recherches sur le cancer. 2016;207:241–66. https://doi.org/10.1007/978-3-319-42118-6_12It covers the possible effect of fasting and chemoprevention.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cifu G, Arem H. Adherence to lifestyle-related cancer prevention guidelines and breast cancer incidence and mortality. Ann Epidemiol. 2018;28(11):767-73 e1. https://doi.org/10.1016/j.annepidem.2018.09.002.

    Article  PubMed  Google Scholar 

  11. Nencioni A, Caffa I, Cortellino S, Longo VD. Fasting and cancer: molecular mechanisms and clinical application. Nat Rev Cancer. 2018;18(11):707–19. https://doi.org/10.1038/s41568-018-0061-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang J, Deng Y, Khoo BL. Fasting to enhance cancer treatment in models: the next steps. J Biomed Sci. 2020;27(1):58. https://doi.org/10.1186/s12929-020-00651-0.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tan-Shalaby J. Ketogenic diets and cancer: emerging evidence. Federal practitioner : for the health care professionals of the VA, DoD, and PHS. 2017;34(Suppl 1):37S-42S.

    Google Scholar 

  14. Smyl C. Ketogenic Diet and Cancer-a Perspective. Recent results in cancer research Fortschritte der Krebsforschung Progres dans les recherches sur le cancer. 2016;207:233–40. https://doi.org/10.1007/978-3-319-42118-6_11.

    Article  CAS  PubMed  Google Scholar 

  15. Branco AF, Ferreira A, Simoes RF, Magalhaes-Novais S, Zehowski C, Cope E, et al. Ketogenic diets: from cancer to mitochondrial diseases and beyond. Eur J Clin Invest. 2016;46(3):285–98. https://doi.org/10.1111/eci.12591.

    Article  PubMed  Google Scholar 

  16. Lv M, Zhu X, Wang H, Wang F, Guan W. Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: a systematic review and meta-analysis. PLoS ONE. 2014;9(12): e115147. https://doi.org/10.1371/journal.pone.0115147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guo JY, White E. Autophagy, Metabolism, and Cancer. Cold Spring Harb Symp Quant Biol. 2016;81:73–8. https://doi.org/10.1101/sqb.2016.81.030981This article has reported the connection between mechanism of autophagy and its role in cancer.

    Article  PubMed  Google Scholar 

  18. Deretic V. Autophagosome and phagosome. Methods Mol Biol. 2008;445:1–10. https://doi.org/10.1007/978-1-59745-157-4_1.

    Article  CAS  PubMed  Google Scholar 

  19. Buono R, Longo VD. Starvation, stress resistance, and cancer. Trends Endocrinol Metab. 2018;29(4):271–80. https://doi.org/10.1016/j.tem.2018.01.008This article has great importance to study the relationship between stages of fasting  and its role in the different stages of cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Antunes F, Erustes AG, Costa AJ, Nascimento AC, Bincoletto C, Ureshino RP, et al. Autophagy and intermittent fasting: the connection for cancer therapy? Clinics. 2018;73(suppl 1):e814s. https://doi.org/10.6061/clinics/2018/e814sThis article explains the promising role of intermittent fasting in cancer therapy.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Berrigan D, Perkins SN, Haines DC, Hursting SD. Adult-onset calorie restriction and fasting delay spontaneous tumorigenesis in p53-deficient mice. Carcinogenesis. 2002;23(5):817–22. https://doi.org/10.1093/carcin/23.5.817.

    Article  CAS  PubMed  Google Scholar 

  22. Ma D, Chen X, Zhang PY, Zhang H, Wei LJ, Hu S, et al. Upregulation of the ALDOA/DNA-PK/p53 pathway by dietary restriction suppresses tumor growth. Oncogene. 2018;37(8):1041–8. https://doi.org/10.1038/onc.2017.398.

    Article  CAS  PubMed  Google Scholar 

  23. Schupp M, Chen F, Briggs ER, Rao S, Pelzmann HJ, Pessentheiner AR, et al. Metabolite and transcriptome analysis during fasting suggest a role for the p53-Ddit4 axis in major metabolic tissues. BMC Genomics. 2013;14:758. https://doi.org/10.1186/1471-2164-14-758The article suggests the probable role of p53 on fasting stages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Prokesch A, Graef FA, Madl T, Kahlhofer J, Heidenreich S, Schumann A, et al. Liver p53 is stabilized upon starvation and required for amino acid catabolism and gluconeogenesis. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2017;31(2):732–42. https://doi.org/10.1096/fj.201600845R.

    Article  CAS  Google Scholar 

  25. Byun S, Seok S, Kim YC, Zhang Y, Yau P, Iwamori N, et al. Fasting-induced FGF21 signaling activates hepatic autophagy and lipid degradation via JMJD3 histone demethylase. Nat Commun. 2020;11(1):807. https://doi.org/10.1038/s41467-020-14384-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee C, Raffaghello L, Brandhorst S, Safdie FM, Bianchi G, Martin-Montalvo A, et al. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Science translational medicine. 2012;4(124):124ra27. https://doi.org/10.1126/scitranslmed.3003293.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bauersfeld SP, Kessler CS, Wischnewsky M, Jaensch A, Steckhan N, Stange R, et al. The effects of short-term fasting on quality of life and tolerance to chemotherapy in patients with breast and ovarian cancer: a randomized cross-over pilot study. BMC Cancer. 2018;18(1):476. https://doi.org/10.1186/s12885-018-4353-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Di Biase S, Shim HS, Kim KH, Vinciguerra M, Rappa F, Wei M, et al. Fasting regulates EGR1 and protects from glucose- and dexamethasone-dependent sensitization to chemotherapy. PLoS Biol. 2017;15(3): e2001951. https://doi.org/10.1371/journal.pbio.2001951This article discusses the probable role of fasting on cancer patients undergoing chemotherapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang L, Shang Z, Zhou Y, Hu X, Chen Y, Fan Y, et al. Autophagy mediates glucose starvation-induced glioblastoma cell quiescence and chemoresistance through coordinating cell metabolism, cell cycle, and survival. Cell Death Dis. 2018;9(2):213. https://doi.org/10.1038/s41419-017-0242-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 2016;41(3):211–8. https://doi.org/10.1016/j.tibs.2015.12.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hsu CC, Tseng LM, Lee HC. Role of mitochondrial dysfunction in cancer progression. Exp Biol Med. 2016;241(12):1281–95. https://doi.org/10.1177/1535370216641787.

    Article  CAS  Google Scholar 

  32. Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, et al. Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Front Physiol. 2020;11:694. https://doi.org/10.3389/fphys.2020.00694.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radical Biol Med. 2010;49(11):1603–16. https://doi.org/10.1016/j.freeradbiomed.2010.09.006.

    Article  CAS  Google Scholar 

  34. Peake J, Suzuki K. Neutrophil activation, antioxidant supplements and exercise-induced oxidative stress. Exerc Immunol Rev. 2004;10:129–41.

    PubMed  Google Scholar 

  35. Bi Y, Lei X, Chai N, Linghu E. NOX4: a potential therapeutic target for pancreatic cancer and its mechanism. J Transl Med. 2021;19(1):515. https://doi.org/10.1186/s12967-021-03182-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Han M, Zhang T, Yang L, Wang Z, Ruan J, Chang X. Association between NADPH oxidase (NOX) and lung cancer: a systematic review and meta-analysis. J Thorac Dis. 2016;8(7):1704–11. https://doi.org/10.21037/jtd.2016.06.31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Aseervatham J. Cytoskeletal remodeling in cancer. Biology. 2020;9(11). https://doi.org/10.3390/biology9110385.

  38. Liou GY, Storz P. Reactive oxygen species in cancer. Free Radical Res. 2010;44(5):479–96. https://doi.org/10.3109/10715761003667554.

    Article  CAS  Google Scholar 

  39. Mori K, Uchida T, Yoshie T, Mizote Y, Ishikawa F, Katsuyama M, et al. A mitochondrial ROS pathway controls matrix metalloproteinase 9 levels and invasive properties in RAS-activated cancer cells. FEBS J. 2019;286(3):459–78. https://doi.org/10.1111/febs.14671.

    Article  CAS  PubMed  Google Scholar 

  40. Lee SY, Ju MK, Jeon HM, Lee YJ, Kim CH, Park HG, et al. Reactive oxygen species induce epithelialmesenchymal transition, glycolytic switch, and mitochondrial repression through the Dlx2/Snail signaling pathways in MCF7 cells. Mol Med Rep. 2019;20(3):2339–46. https://doi.org/10.3892/mmr.2019.10466.

    Article  CAS  PubMed  Google Scholar 

  41. Sharsher S, Ahmed A, Metwally M, Arisha A, Ahmed K. Intermittent fasting decreases oxidative stress parameters and increases total antioxidant capacity. Biointerface Research in Applied Chemistry. 2022;12:6763–75. https://doi.org/10.33263/BRIAC125.67636775.

    Article  CAS  Google Scholar 

  42. Longo VD, Mattson MP. Fasting: molecular mechanisms and clinical applications. Cell Metab. 2014;19(2):181–92. https://doi.org/10.1016/j.cmet.2013.12.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Savencu CE, Linta A, Farcas G, Bina AM, Cretu OM, Malita DC, et al. Impact of dietary restriction regimens on mitochondria, heart, and endothelial function: a brief overview. Front Physiol. 2021;12: 768383. https://doi.org/10.3389/fphys.2021.768383.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Khraiwesh H, Lopez-Dominguez JA, Lopez-Lluch G, Navas P, de Cabo R, Ramsey JJ, et al. Alterations of ultrastructural and fission/fusion markers in hepatocyte mitochondria from mice following calorie restriction with different dietary fats. J Gerontol A Biol Sci Med Sci. 2013;68(9):1023–34. https://doi.org/10.1093/gerona/glt006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kobara M, Furumori-Yukiya A, Kitamura M, Matsumura M, Ohigashi M, Toba H, et al. Short-term caloric restriction suppresses cardiac oxidative stress and hypertrophy caused by chronic pressure overload. J Cardiac Fail. 2015;21(8):656–66. https://doi.org/10.1016/j.cardfail.2015.04.016.

    Article  CAS  Google Scholar 

  46. Iffiu-Soltesz Z, Prevot D, Carpene C. Influence of prolonged fasting on monoamine oxidase and semicarbazide-sensitive amine oxidase activities in rat white adipose tissue. J Physiol Biochem. 2009;65(1):11–23. https://doi.org/10.1007/BF03165965.

    Article  CAS  PubMed  Google Scholar 

  47. Gross DN, van den Heuvel AP, Birnbaum MJ. The role of FoxO in the regulation of metabolism. Oncogene. 2008;27(16):2320–36. https://doi.org/10.1038/onc.2008.25.

    Article  CAS  PubMed  Google Scholar 

  48. Yamada E, Singh R. Mapping autophagy on to your metabolic radar. Diabetes. 2012;61(2):272–80. https://doi.org/10.2337/db11-1199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bagherniya M, Butler AE, Barreto GE, Sahebkar A. The effect of fasting or calorie restriction on autophagy induction: a review of the literature. Ageing Res Rev. 2018;47:183–97. https://doi.org/10.1016/j.arr.2018.08.004.

    Article  PubMed  Google Scholar 

  50. Maes H, Rubio N, Garg AD, Agostinis P. Autophagy: shaping the tumor microenvironment and therapeutic response. Trends Mol Med. 2013;19(7):428–46. https://doi.org/10.1016/j.molmed.2013.04.005.

    Article  CAS  PubMed  Google Scholar 

  51. van Niekerk G, Hattingh SM, Engelbrecht AM. Enhanced therapeutic efficacy in cancer patients by short-term fasting: the autophagy connection. Front Oncol. 2016;6:242. https://doi.org/10.3389/fonc.2016.00242The article has discussed the mechanistic action of fasting in autophagy mediated cancer machinery.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhao YG, Zhang H. Core autophagy genes and human diseases. Curr Opin Cell Biol. 2019;61:117–25. https://doi.org/10.1016/j.ceb.2019.08.003.

    Article  CAS  PubMed  Google Scholar 

  53. Goldstein I, Hager GL. Transcriptional and chromatin regulation during fasting - the genomic era. Trends Endocrinol Metab. 2015;26(12):699–710. https://doi.org/10.1016/j.tem.2015.09.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Safdie F, Brandhorst S, Wei M, Wang W, Lee C, Hwang S, et al. Fasting enhances the response of glioma to chemo- and radiotherapy. PLoS ONE. 2012;7(9): e44603. https://doi.org/10.1371/journal.pone.0044603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Saleh AD, Simone BA, Palazzo J, Savage JE, Sano Y, Dan T, et al. Caloric restriction augments radiation efficacy in breast cancer. Cell Cycle. 2013;12(12):1955–63. https://doi.org/10.4161/cc.25016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Goldhamer AC, Klaper M, Foorohar A, Myers TR. Water-only fasting and an exclusively plant foods diet in the management of stage IIIa, low-grade follicular lymphoma. BMJ case reports. 2015;2015. https://doi.org/10.1136/bcr-2015-211582.

  57. Lee C, Safdie FM, Raffaghello L, Wei M, Madia F, Parrella E, et al. Reduced levels of IGF-I mediate differential protection of normal and cancer cells in response to fasting and improve chemotherapeutic index. Can Res. 2010;70(4):1564–72. https://doi.org/10.1158/0008-5472.CAN-09-3228.

    Article  CAS  Google Scholar 

  58. Pietrocola F, Pol J, Vacchelli E, Rao S, Enot DP, Baracco EE, et al. Caloric restriction mimetics enhance anticancer immunosurveillance. Cancer Cell. 2016;30(1):147–60. https://doi.org/10.1016/j.ccell.2016.05.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sun P, Wang H, He Z, Chen X, Wu Q, Chen W, et al. Fasting inhibits colorectal cancer growth by reducing M2 polarization of tumor-associated macrophages. Oncotarget. 2017;8(43):74649–60. https://doi.org/10.18632/oncotarget.20301.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Longo VD, Fontana L. Calorie restriction and cancer prevention: metabolic and molecular mechanisms. Trends Pharmacol Sci. 2010;31(2):89–98. https://doi.org/10.1016/j.tips.2009.11.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. de Groot S, Lugtenberg RT, Cohen D, Welters MJP, Ehsan I, Vreeswijk MPG, et al. Fasting mimicking diet as an adjunct to neoadjuvant chemotherapy for breast cancer in the multicentre randomized phase 2 DIRECT trial. Nat Commun. 2020;11(1):3083. https://doi.org/10.1038/s41467-020-16138-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Weber DD, Aminzadeh-Gohari S, Tulipan J, Catalano L, Feichtinger RG, Kofler B. Ketogenic diet in the treatment of cancer - where do we stand? Molecular metabolism. 2020;33:102–21. https://doi.org/10.1016/j.molmet.2019.06.026.

    Article  CAS  PubMed  Google Scholar 

  63. de Gruil N, Pijl H, van der Burg SH, Kroep JR. Short-term fasting synergizes with solid cancer therapy by boosting antitumor immunity. Cancers. 2022;14(6). https://doi.org/10.3390/cancers14061390.

  64. Nussinov R, Tsai CJ, Jang H. Anticancer drug resistance: an update and perspective. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy. 2021;59: 100796. https://doi.org/10.1016/j.drup.2021.100796.

    Article  Google Scholar 

  65. Nurgali K, Jagoe RT, Abalo R. Editorial: Adverse effects of cancer chemotherapy: anything new to improve tolerance and reduce sequelae? Front Pharmacol. 2018;9:245. https://doi.org/10.3389/fphar.2018.00245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sahoo AK, Goswami U, Dutta D, Banerjee S, Chattopadhyay A, Ghosh SS. Silver nanocluster embedded composite nanoparticles for targeted prodrug delivery in cancer theranostics. ACS Biomater Sci Eng. 2016;2(8):1395–402. https://doi.org/10.1021/acsbiomaterials.6b00334.

    Article  CAS  PubMed  Google Scholar 

  67. Banerjee S, Sahoo AK, Chattopadhyay A, Ghosh SS. Hydrogel nanocarrier encapsulated recombinant IκBα as a novel anticancer protein therapeutics. RSC Adv. 2013;3(33):14123–31. https://doi.org/10.1039/C3RA23181J.

    Article  CAS  Google Scholar 

  68. Banerjee S, Sahoo AK, Chattopadhyay A, Ghosh SS. Recombinant IkappaBalpha-loaded curcumin nanoparticles for improved cancer therapeutics. Nanotechnology. 2014;25(34): 345102. https://doi.org/10.1088/0957-4484/25/34/345102.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang J, Yin Y, Zhang J, Zhang J, Su W, Ma H, et al. Suppression of energy metabolism in cancer cells with nutrient-sensing nanodrugs. Nano Lett. 2022;22(6):2514–20. https://doi.org/10.1021/acs.nanolett.2c00356.

    Article  CAS  PubMed  Google Scholar 

  70. Hafeez U, Gan HK, Scott AM. Monoclonal antibodies as immunomodulatory therapy against cancer and autoimmune diseases. Curr Opin Pharmacol. 2018;41:114–21. https://doi.org/10.1016/j.coph.2018.05.010.

    Article  CAS  PubMed  Google Scholar 

  71. Peng Z, Wangmu T, Li L, Han G, Huang D, Yi P. Combination of berberine and low glucose inhibits gastric cancer through the PP2A/GSK3beta/MCL-1 signaling pathway. Eur J Pharmacol. 2022;922: 174918. https://doi.org/10.1016/j.ejphar.2022.174918.

    Article  CAS  PubMed  Google Scholar 

  72. Vidoni C, Ferraresi A, Esposito A, Maheshwari C, Dhanasekaran DN, Mollace V, et al. Calorie restriction for cancer prevention and therapy: mechanisms, expectations, and efficacy. Journal of cancer prevention. 2021;26(4):224–36. https://doi.org/10.15430/JCP.2021.26.4.224.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to School of Life Sciences for providing the necessary facilities for writing the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhamoy Banerjee.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All the authors have given the consent to publish.

Conflict of Interest

The authors declare no competing of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Naturopathy, Nanotechnology, Nutraceuticals, and Immunotherapy in Cancer Research

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishthiaq, I.B., Waseem, M. & Banerjee, S. Understanding the Clinical Link Between Fasting and Response to Cancer Therapy. Curr Pharmacol Rep 8, 290–299 (2022). https://doi.org/10.1007/s40495-022-00293-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-022-00293-w

Keywords

Navigation