Skip to main content

Advertisement

Log in

Opioid Effects on the Central Nervous System and the Peripheral Immune System: Implications for Opioid Tolerance

  • Pharmacometrics and Quantitative System Pharmacology (S Woo, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Opioids exert differential effects in the central nervous system (CNS) and the peripheral immune system. Both systems may play a role in the development of opioid tolerance. This review provides a brief overview of the opioid effects on the CNS and peripheral immune system and discusses the potential roles of the connections between the two systems in opioid tolerance.

Recent Findings

Opioids induced pro-inflammatory response of the CNS immune cells through several mechanisms that involve mu-opioid receptor and Toll-like receptor 4. This neuroinflammation leads to enhanced neuron excitability and opioid tolerance and/or hyperalgesia. Opioid-exposed neuronal cells also contributed to CNS stress and inflammatory responses, further resulted in neuroinflammation. On the contrary, most studies have shown that opioids exert immunosuppressive effects in the peripheral immune system. There are, however, some evidence suggested that opioids may induce dose-, time-, and opioid agent-dependent pro-inflammatory responses. Though opioids have the opposite effects in the CNS and the peripheral immune system, newer evidence have suggested that the peripheral immune system plays a significant role in neuroinflammation and opioid tolerance.

Summary

Opioid effects on the CNS and the peripheral immune system have been studied extensively; however, the integrated effects of opioids on tolerance development are yet to be explored. Further understanding of the integrated/interactive effects of opioids on peripheral immune cells and the CNS is required so that their interactions may be exploited for the identification of new therapeutics and biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Devlin JW, Skrobik Y, Gélinas C, Needham DM, Slooter AJC, Pandharipande PP, et al. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med. 2018;46(9):e825–e73. https://doi.org/10.1097/ccm.0000000000003299.

    Article  PubMed  Google Scholar 

  2. Robert AS, Judith AP, Doralina LA, Madhuri A, Justine Yang B, Sorin B, et al. Adult cancer pain, version 3.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2019;17(8):977–1007. https://doi.org/10.6004/jnccn.2019.0038.

    Article  CAS  Google Scholar 

  3. Chou R, Gordon DB, de Leon-Casasola OA, Rosenberg JM, Bickler S, Brennan T, et al. Management of postoperative pain: a clinical practice guideline from the American Pain Society, the American Society of Regional Anesthesia and Pain Medicine, and the American Society of Anesthesiologists’ Committee on Regional Anesthesia, Executive Committee, and Administrative Council. J Pain. 2016;17(2):131–57. https://doi.org/10.1016/j.jpain.2015.12.008.

    Article  PubMed  Google Scholar 

  4. Bates D, Schultheis BC, Hanes MC, Jolly SM, Chakravarthy KV, Deer TR, et al. A comprehensive algorithm for management of neuropathic pain. Pain medicine (Malden, Mass). 2019;20(Suppl 1):S2–S12. https://doi.org/10.1093/pm/pnz075.

    Article  Google Scholar 

  5. Dowell D, Haegerich TM, Chou R. CDC guideline for prescribing opioids for chronic pain — United States, 2016. MMWR Recomm Rep. 2016;65(No. RR-1):1–49. https://doi.org/10.15585/mmwr.rr6501e1.

    Article  PubMed  Google Scholar 

  6. Hedegaard H, Miniño AM, Warner M. Drug overdose deaths in the United States, 1999–2018. NCHS Data Brief, no 356. Hyattsville, MD: National Center for Health Statistics; 2020.

  7. Christie MJ. Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction. Br J Pharmacol. 2008;154(2):384–96. https://doi.org/10.1038/bjp.2008.100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mercadante S, Arcuri E, Santoni A. Opioid-induced tolerance and hyperalgesia. CNS Drugs. 2019;33(10):943–55. https://doi.org/10.1007/s40263-019-00660-0.

    Article  CAS  PubMed  Google Scholar 

  9. •• Hutchinson MR, Shavit Y, Grace PM, Rice KC, Maier SF, Watkins LR. Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev. 2011;63(3):772–810. https://doi.org/10.1124/pr.110.004135This article provides a comprehensive review of the mechanisms of opioid-induced central immune signaling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hutchinson MR, Watkins LR. Why is neuroimmunopharmacology crucial for the future of addiction research? Neuropharmacology. 2014;76 Pt B(0 0):218–27. https://doi.org/10.1016/j.neuropharm.2013.05.039.

    Article  CAS  PubMed  Google Scholar 

  11. •• Eisenstein TK. The role of opioid receptors in immune system function. Front Immunol. 2019;10:2904. https://doi.org/10.3389/fimmu.2019.02904This article provides a comprehensive review of the opioid-induced immunosuppressive effects on the immune system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ruhela D, Bhopale VM, Yang M, Yu K, Weintraub E, Greenblatt A, et al. Blood-borne and brain-derived microparticles in morphine-induced anti-nociceptive tolerance. Brain Behav Immun. 2020;87:465–72. https://doi.org/10.1016/j.bbi.2020.01.017.

    Article  CAS  PubMed  Google Scholar 

  13. Dionisio-Santos DA, Olschowka JA, O’Banion MK. Exploiting microglial and peripheral immune cell crosstalk to treat Alzheimer’s disease. J Neuroinflammation. 2019;16(1):74. https://doi.org/10.1186/s12974-019-1453-0.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Feng Y, He X, Yang Y, Chao D, Lazarus LH, Xia Y. Current research on opioid receptor function. Curr Drug Targets. 2012;13(2):230–46. https://doi.org/10.2174/138945012799201612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Standifer KM, Pasternak GW. G proteins and opioid receptor-mediated signalling. Cell Signal. 1997;9(3):237–48. https://doi.org/10.1016/S0898-6568(96)00174-X.

    Article  CAS  PubMed  Google Scholar 

  16. •• JAJ M, Mao J, Bittner EA. Opioid tolerance in critical illness. N Engl J Med. 2019;380(4):365–78. https://doi.org/10.1056/NEJMra1800222This article provides a comprehensive review of opioid analgesic effects and the development of opioid tolerance and hyperalgesia.

    Article  Google Scholar 

  17. Bermudez M, Nguyen TN, Omieczynski C, Wolber G. Strategies for the discovery of biased GPCR ligands. Drug Discov Today. 2019;24(4):1031–7. https://doi.org/10.1016/j.drudis.2019.02.010.

    Article  CAS  PubMed  Google Scholar 

  18. Siuda ER, Carr R 3rd, Rominger DH, Violin JD. Biased mu-opioid receptor ligands: a promising new generation of pain therapeutics. Curr Opin Pharmacol. 2017;32:77–84. https://doi.org/10.1016/j.coph.2016.11.007.

    Article  CAS  PubMed  Google Scholar 

  19. Ransohoff RM, Brown MA. Innate immunity in the central nervous system. J Clin Invest. 2012;122(4):1164–71. https://doi.org/10.1172/jci58644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Machelska H, Celik M. Opioid receptors in immune and glial cells-implications for pain control. Front Immunol. 2020;11:300. https://doi.org/10.3389/fimmu.2020.00300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ferrini F, Trang T, Mattioli T-AM, Laffray S, Del'Guidice T, Lorenzo L-E, et al. Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl- homeostasis. Nat Neurosci. 2013;16(2):183–92. https://doi.org/10.1038/nn.3295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Takayama N, Ueda H. Morphine-induced chemotaxis and brain-derived neurotrophic factor expression in microglia. J Neurosci. 2005;25(2):430–5. https://doi.org/10.1523/JNEUROSCI.3170-04.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hayashi Y, Morinaga S, Zhang J, Satoh Y, Meredith AL, Nakata T, et al. BK channels in microglia are required for morphine-induced hyperalgesia. Nat Commun. 2016;7(1):11697. https://doi.org/10.1038/ncomms11697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Merighi S, Gessi S, Varani K, Fazzi D, Stefanelli A, Borea PA. Morphine mediates a proinflammatory phenotype via μ-opioid receptor–PKCɛ–Akt–ERK1/2 signaling pathway in activated microglial cells. Biochem Pharmacol. 2013;86(4):487–96. https://doi.org/10.1016/j.bcp.2013.05.027.

    Article  CAS  PubMed  Google Scholar 

  25. Chao CC, Hu S, Shark KB, Sheng WS, Gekker G, Peterson PK. Activation of mu opioid receptors inhibits microglial cell chemotaxis. J Pharmacol Exp Ther. 1997;281(2):998–1004.

    CAS  PubMed  Google Scholar 

  26. Hu S, Sheng WS, Lokensgard JR, Peterson PK. Morphine induces apoptosis of human microglia and neurons. Neuropharmacology. 2002;42(6):829–36. https://doi.org/10.1016/s0028-3908(02)00030-8.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou L, Fan L, Kong C, Miao F, Wu Y, Wang T. Oxycodone suppresses the lipopolysaccharide-induced neuroinflammation by downregulating nuclear factor-κB in hippocampal astrocytes of Sprague–Dawley rats. Neuroreport. 2020;31(2):99–108. https://doi.org/10.1097/wnr.0000000000001376.

    Article  CAS  PubMed  Google Scholar 

  28. Cianciulli A, Porro C, Calvello R, Trotta T, Lofrumento DD, Panaro MA. Microglia mediated neuroinflammation: focus on PI3K modulation. Biomolecules. 2020;10(1):137. https://doi.org/10.3390/biom10010137.

    Article  CAS  PubMed Central  Google Scholar 

  29. • Zhang P, Yang M, Chen C, Liu L, Wei X, Zeng S. Toll-like receptor 4 (TLR4)/Opioid receptor pathway crosstalk and impact on opioid analgesia, immune function, and gastrointestinal motility. Front Immunol. 2020;11:1455. https://doi.org/10.3389/fimmu.2020.01455This article provides the mechanisms of MOR/TLR4 crosstalk that contribute to opioid tolerance and/or hyperalgesia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. 2019;20(13):3328. https://doi.org/10.3390/ijms20133328.

    Article  CAS  PubMed Central  Google Scholar 

  31. Qian J, Zhu Y, Bai L, Gao Y, Jiang M, Xing F, et al. Chronic morphine-mediated upregulation of high mobility group box 1 in the spinal cord contributes to analgesic tolerance and hyperalgesia in rats. Neurotherapeutics. 2020;17(2):722–42. https://doi.org/10.1007/s13311-019-00800-w.

    Article  CAS  PubMed  Google Scholar 

  32. Grace PM, Strand KA, Galer EL, Rice KC, Maier SF, Watkins LR. Protraction of neuropathic pain by morphine is mediated by spinal damage associated molecular patterns (DAMPs) in male rats. Brain Behav Immun. 2018;72:45–50. https://doi.org/10.1016/j.bbi.2017.08.018.

    Article  CAS  PubMed  Google Scholar 

  33. • Rogers TJ. Bidirectional regulation of opioid and chemokine function. Front Immunol. 2020;11:94. https://doi.org/10.3389/fimmu.2020.00094This article highlights the bidirectional relationships between opioid and chemokine, and their impacts on opioid analgesia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wybran J, Appelboom T, Famaey JP, Govaerts A. Suggestive evidence for receptors for morphine and methionine-enkephalin on normal human blood T lymphocytes. J Immunol. 1979;123(3):1068–70.

    CAS  PubMed  Google Scholar 

  35. Boland JW, Pockley AG. Influence of opioids on immune function in patients with cancer pain: from bench to bedside. Br J Pharmacol. 2018;175(14):2726–36. https://doi.org/10.1111/bph.13903.

    Article  CAS  PubMed  Google Scholar 

  36. Lisowska B, Jakubiak J, Siewruk K, Sady M, Kosson D. Which idea is better with regard to immune response? Opioid anesthesia or opioid free anesthesia. J Inflamm Res. 2020;13:859–69. https://doi.org/10.2147/jir.S275986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Innate immunity. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002.

    Google Scholar 

  38. Franchi S, Moretti S, Castelli M, Lattuada D, Scavullo C, Panerai AE, et al. Mu opioid receptor activation modulates Toll like receptor 4 in murine macrophages. Brain Behav Immun. 2012;26(3):480–8. https://doi.org/10.1016/j.bbi.2011.12.010.

    Article  CAS  PubMed  Google Scholar 

  39. Plein LM, Rittner HL. Opioids and the immune system — friend or foe. Br J Pharmacol. 2018;175(14):2717–25. https://doi.org/10.1111/bph.13750.

    Article  CAS  PubMed  Google Scholar 

  40. Martucci C, Franchi S, Lattuada D, Panerai AE, Sacerdote P. Differential involvement of RelB in morphine-induced modulation of chemotaxis, NO, and cytokine production in murine macrophages and lymphocytes. J Leukoc Biol. 2007;81(1):344–54. https://doi.org/10.1189/jlb.0406237.

    Article  CAS  PubMed  Google Scholar 

  41. Filipczak-Bryniarska I, Nazimek K, Nowak B, Kozlowski M, Wąsik M, Bryniarski K. In contrast to morphine, buprenorphine enhances macrophage-induced humoral immunity and, as oxycodone, slightly suppresses the effector phase of cell-mediated immune response in mice. Int Immunopharmacol. 2018;54:344–53. https://doi.org/10.1016/j.intimp.2017.11.039.

    Article  CAS  PubMed  Google Scholar 

  42. Peng X, Mosser DM, Adler MW, Rogers TJ, Meissler JJ Jr, Eisenstein TK. Morphine enhances interleukin-12 and the production of other pro-inflammatory cytokines in mouse peritoneal macrophages. J Leukoc Biol. 2000;68(5):723–8. https://doi.org/10.1189/jlb.68.5.723.

    Article  CAS  PubMed  Google Scholar 

  43. Roy S, Cain KJ, Chapin RB, Charboneau RG, Barke RA. Morphine modulates NFκB activation in macrophages. Biochem Biophys Res Commun. 1998;245(2):392–6. https://doi.org/10.1006/bbrc.1998.8415.

    Article  CAS  PubMed  Google Scholar 

  44. Ma J, Wang J, Wan J, Charboneau R, Chang Y, Barke RA, et al. Morphine disrupts interleukin-23 (IL-23)/IL-17-mediated pulmonary mucosal host defense against Streptococcus pneumoniae infection. Infect Immun. 2010;78(2):830–7. https://doi.org/10.1128/iai.00914-09.

    Article  CAS  PubMed  Google Scholar 

  45. Wang J, Ma J, Charboneau R, Barke R, Roy S. Morphine inhibits murine dendritic cell IL-23 production by modulating Toll-like receptor 2 and Nod2 signaling. J Biol Chem. 2011;286(12):10225–32. https://doi.org/10.1074/jbc.M110.188680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Madera-Salcedo IK, Cruz SL, Gonzalez-Espinosa C. Morphine prevents lipopolysaccharide-induced TNF secretion in mast cells blocking IκB kinase activation and SNAP-23 phosphorylation: correlation with the formation of a β-arrestin/TRAF6 complex. J Immunol. 2013;191(6):3400–9. https://doi.org/10.4049/jimmunol.1202658.

    Article  CAS  PubMed  Google Scholar 

  47. Molina-Martínez LM, González-Espinosa C, Cruz SL. Dissociation of immunosuppressive and nociceptive effects of fentanyl, but not morphine, after repeated administration in mice: fentanyl-induced sensitization to LPS. Brain Behav Immun. 2014;42:60–4. https://doi.org/10.1016/j.bbi.2014.06.011.

    Article  CAS  PubMed  Google Scholar 

  48. Meng J, Yu H, Ma J, Wang J, Banerjee S, Charboneau R, et al. Morphine induces bacterial translocation in mice by compromising intestinal barrier function in a TLR-dependent manner. PLoS One. 2013;8(1):e54040. https://doi.org/10.1371/journal.pone.0054040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miyagi T, Chuang LF, Lam KM, Kung H-f, Wang JM, Osburn BI, et al. Opioids suppress chemokine-mediated migration of monkey neutrophils and monocytes — an instant response. Immunopharmacology. 2000;47(1):53–62. https://doi.org/10.1016/S0162-3109(99)00188-5.

    Article  CAS  PubMed  Google Scholar 

  50. Wang J, Barke RA, Charboneau R, Roy S. Morphine impairs host innate immune response and increases susceptibility to Streptococcus pneumoniae lung infection. J Immunol. 2005;174(1):426–34. https://doi.org/10.4049/jimmunol.174.1.426.

    Article  CAS  PubMed  Google Scholar 

  51. Welters ID, Menzebach A, Goumon Y, Cadet P, Menges T, Hughes TK, et al. Morphine inhibits NF-kappaB nuclear binding in human neutrophils and monocytes by a nitric oxide-dependent mechanism. Anesthesiology. 2000;92(6):1677–84. https://doi.org/10.1097/00000542-200006000-00027.

    Article  CAS  PubMed  Google Scholar 

  52. Male D, Peebles RS, Male V. Mononuclear phagocytes in immune defence. Immunology 9th edition. Elsevier, 2020.

  53. Long X, Li Y, Qiu S, Liu J, He L, Peng Y. MiR-582-5p/miR-590-5p targeted CREB1/CREB5-NF-κB signaling and caused opioid-induced immunosuppression in human monocytes. Transl Psychiatry 2016;6(3):e757-e. https://doi.org/10.1038/tp.2016.4.

  54. Orum MH, Kara MZ, Egilmez OB, Kalenderoglu A. Complete blood count alterations due to the opioid use: what about the lymphocyte-related ratios, especially in monocyte to lymphocyte ratio and platelet to lymphocyte ratio? J Immunoass Immunochem. 2018;39(4):365–76. https://doi.org/10.1080/15321819.2018.1460272.

    Article  CAS  Google Scholar 

  55. Imhof BA, Aurrand-Lions M. Adhesion mechanisms regulating the migration of monocytes. Nat Rev Immunol. 2004;4(6):432–44. https://doi.org/10.1038/nri1375.

    Article  CAS  PubMed  Google Scholar 

  56. Grimm MC, Ben-Baruch A, Taub DD, Howard OMZ, Resau JH, Wang JM, et al. Opiates transdeactivate chemokine receptors: δ and μ opiate receptor–mediated heterologous desensitization. J Exp Med. 1998;188(2):317–25. https://doi.org/10.1084/jem.188.2.317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Steele AD, Henderson EE, Rogers TJ. μ-opioid modulation of HIV-1 coreceptor expression and HIV-1 replication. Virology. 2003;309(1):99–107. https://doi.org/10.1016/S0042-6822(03)00015-1.

    Article  CAS  PubMed  Google Scholar 

  58. Happel C, Steele AD, Finley MJ, Kutzler MA, Rogers TJ. DAMGO-induced expression of chemokines and chemokine receptors: the role of TGF-β1. J Leukoc Biol. 2008;83(4):956–63. https://doi.org/10.1189/jlb.1007685.

    Article  CAS  PubMed  Google Scholar 

  59. Jaureguiberry-Bravo M, Lopez L, Berman JW. Frontline science: buprenorphine decreases CCL2-mediated migration of CD14(+) CD16(+) monocytes. J Leukoc Biol. 2018;104(6):1049–59. https://doi.org/10.1002/jlb.3hi0118-015r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Strazza M, Pirrone V, Wigdahl B, Dampier W, Lin W, Feng R, et al. Prolonged morphine exposure induces increased firm adhesion in an in vitro model of the blood-brain barrier. Int J Mol Sci. 2016;17(6). https://doi.org/10.3390/ijms17060916.

  61. Castriconi R, Carrega P, Dondero A, Bellora F, Casu B, Regis S, et al. Molecular mechanisms directing migration and retention of natural killer cells in human tissues. Front Immunol. 2018;9:2324. https://doi.org/10.3389/fimmu.2018.02324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Maher DP, Walia D, Heller NM. Suppression of human natural killer cells by different classes of opioids. Anesth Analg. 2019;128(5):1013–21. https://doi.org/10.1213/ane.0000000000004058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Maher DP, Walia D, Heller NM. Morphine decreases the function of primary human natural killer cells by both TLR4 and opioid receptor signaling. Brain Behav Immun. 2020;83:298–302. https://doi.org/10.1016/j.bbi.2019.10.011.

    Article  CAS  PubMed  Google Scholar 

  64. Wodehouse T, Demopoulos M, Petty R, Miraki-Moud F, Belhaj A, Husband M, et al. A randomized pilot study to investigate the effect of opioids on immunomarkers using gene expression profiling during surgery. Pain. 2019;160(12):2691–8. https://doi.org/10.1097/j.pain.0000000000001677.

    Article  CAS  PubMed  Google Scholar 

  65. Diasso PDK, Birke H, Nielsen SD, Main KM, Højsted J, Sjøgren P, et al. The effects of long-term opioid treatment on the immune system in chronic non-cancer pain patients: a systematic review. Eur J Pain. 2020;24(3):481–96. https://doi.org/10.1002/ejp.1506.

    Article  PubMed  Google Scholar 

  66. Borman A, Ciepielewski Z, Wrona D, Stojek W, Glac W, Leszkowicz E, et al. Small doses of morphine can enhance NK cell cytotoxicity in pigs. Int Immunopharmacol. 2009;9(3):277–83. https://doi.org/10.1016/j.intimp.2008.11.006.

    Article  CAS  PubMed  Google Scholar 

  67. Male D, Peebles RS, Male V. Introduction to the immune system. Immunology 9th edition. Elsevier; 2020.

  68. Male D, Peebles RS, Male V. T-cell receptors and major histocompatibility complex molecules. Immunology 9th edition. Elsevier; 2020.

  69. Mazahery C, Valadkhan S, Levine AD. Transcriptomic analysis reveals receptor subclass–specific immune regulation of CD8+ T cells by opioids. ImmunoHorizons. 2020;4(7):420–9. https://doi.org/10.4049/immunohorizons.2000019.

    Article  CAS  PubMed  Google Scholar 

  70. Mazahery C, Benson BL, Cruz-Lebrón A, Levine AD. Chronic methadone use alters the CD8(+) T cell phenotype in vivo and modulates its responsiveness ex vivo to opioid receptor and TCR stimuli. J Immunol. 2020;204(5):1188–200. https://doi.org/10.4049/jimmunol.1900862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Roy S, Ninkovic J, Banerjee S, Charboneau RG, Das S, Dutta R, et al. Opioid drug abuse and modulation of immune function: consequences in the susceptibility to opportunistic infections. J NeuroImmune Pharmacol. 2011;6(4):442–65. https://doi.org/10.1007/s11481-011-9292-5.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Börner C, Warnick B, Smida M, Hartig R, Lindquist JA, Schraven B, et al. Mechanisms of opioid-mediated inhibition of human T cell receptor signaling. J Immunol. 2009;183(2):882–9.

    Article  Google Scholar 

  73. Börner C, Kraus J. Inhibition of NF-κB by opioids in T cells. J Immunol. 2013;191(9):4640–7.

    Article  Google Scholar 

  74. Chen SH, Chen SS, Wang YP, Chen LK. Effects of systemic and neuraxial morphine on the immune system. Medicine (Baltimore). 2019;98(19):e15375. https://doi.org/10.1097/md.0000000000015375.

    Article  CAS  Google Scholar 

  75. Lu XY, Chen M, Chen DH, Li Y, Liu PT, Liu Y. Remifentanil on T lymphocytes, cognitive function and inflammatory cytokines of patients undergoing radical surgery for cervical cancer. Eur Rev Med Pharmacol Sci. 2018;22(9):2854–9. https://doi.org/10.26355/eurrev_201805_14987.

    Article  PubMed  Google Scholar 

  76. Thomas PT, Bhargava HN, House RV. Immunomodulatory effects of in vitro exposure to morphine and its metabolites. Pharmacology. 1995;50(1):51–62. https://doi.org/10.1159/000139266.

    Article  CAS  PubMed  Google Scholar 

  77. Beagles K, Wellstein A, Bayer B. Systemic morphine administration suppresses genes involved in antigen presentation. Mol Pharmacol. 2004;65(2):437–42. https://doi.org/10.1124/mol.65.2.437.

    Article  CAS  PubMed  Google Scholar 

  78. Nugent AL, Houghtling RA, Bayer BM. Morphine suppresses MHC-II expression on circulating B lymphocytes via activation of the HPA. J NeuroImmune Pharmacol. 2011;6(1):130–41. https://doi.org/10.1007/s11481-010-9218-7.

    Article  PubMed  Google Scholar 

  79. Franchi S, Amodeo G, Gandolla M, Moschetti G, Panerai AE, Sacerdote P. Effect of tapentadol on splenic cytokine production in mice. Anesth Analg. 2017;124(3):986–95. https://doi.org/10.1213/ane.0000000000001669.

    Article  CAS  PubMed  Google Scholar 

  80. Paniccia JE, Weckstein TN, Lebonville CL, Lysle DT. Female rats express heroin-induced and -conditioned suppression of peripheral nitric oxide production in response to endotoxin challenge. Brain Behav Immun. 2020;91:315–23. https://doi.org/10.1016/j.bbi.2020.10.009.

    Article  CAS  PubMed  Google Scholar 

  81. Allen AA, Kendall LV. Immunomodulation associated with sustained-release buprenorphine in female CD1 mice challenged with ovalbumin. J Am Assoc Lab Anim Sci. 2019;58(5):577–82. https://doi.org/10.30802/aalas-jaalas-18-000135.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lopez-Castejon G, Brough D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev. 2011;22(4):189–95. https://doi.org/10.1016/j.cytogfr.2011.10.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lebonville CL, Jones ME, Hutson LW, Cooper LB, Fuchs RA, Lysle DT. Acquisition of heroin conditioned immunosuppression requires IL-1 signaling in the dorsal hippocampus. Brain Behav Immun. 2016;56:325–34. https://doi.org/10.1016/j.bbi.2016.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hutson LW, Lebonville CL, Jones ME, Fuchs RA, Lysle DT. Interleukin-1 signaling in the basolateral amygdala is necessary for heroin-conditioned immunosuppression. Brain Behav Immun. 2017;62:171–9. https://doi.org/10.1016/j.bbi.2017.01.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Roeckel LA, Le Coz GM, Gavériaux-Ruff C, Simonin F. Opioid-induced hyperalgesia: cellular and molecular mechanisms. Neuroscience. 2016;338:160–82. https://doi.org/10.1016/j.neuroscience.2016.06.029.

    Article  CAS  PubMed  Google Scholar 

  86. Kyzer JL, McGuire M, Park H, Belz TF, Bonakdar R, Janda KD, et al. Anti-opioid antibodies in individuals using chronic opioid therapy for lower back pain. ACS Pharmacol Transl Sci. 2020;3(5):896–906. https://doi.org/10.1021/acsptsci.0c00057.

    Article  CAS  PubMed  Google Scholar 

  87. Bellomo R. The cytokine network in the critically ill. Anaesth Intensive Care. 1992;20(3):288–302. https://doi.org/10.1177/0310057x9202000303.

    Article  CAS  PubMed  Google Scholar 

  88. Fazzari J, Sidhu J, Motkur S, Inman M, Buckley N, Clemons M, et al. Applying serum cytokine levels to predict pain severity in cancer patients. J Pain Res. 2020;13:313–21. https://doi.org/10.2147/JPR.S227175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267–84. https://doi.org/10.1016/j.cell.2009.09.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Goulooze SC, Krekels EHJ, van Dijk M, Tibboel D, van der Graaf PH, Hankemeier T, et al. Towards personalized treatment of pain using a quantitative systems pharmacology approach. Eur J Pharm Sci. 2017;109:S32–S8. https://doi.org/10.1016/j.ejps.2017.05.027.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sin Yin Lim.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

The author received no financial support in the writing of this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topical Collection on Pharmacometrics and Quantitative System Pharmacology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, S.Y. Opioid Effects on the Central Nervous System and the Peripheral Immune System: Implications for Opioid Tolerance. Curr Pharmacol Rep 7, 81–95 (2021). https://doi.org/10.1007/s40495-021-00258-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-021-00258-5

Keywords

Navigation