Skip to main content

Advertisement

Log in

SGLT2 Inhibitors and the Mechanisms Involved in Weight Loss

Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To study the mechanisms of weight loss with inhibitors of SGLT2 receptors. SGLT2 inhibitors are a new class of drugs used in the treatment of type 2 diabetes mellitus (T2DM). These drugs inhibit the SGLT2 receptor in the proximal tubule, responsible for 90% of renal glucose reabsorption.

Recent Findings

SGLT2 inhibitor treatments can result in an average reduction in body weight between 2 and 4 kg; this reduction is consistent in all studies, for all molecules, either as monotherapy or in combination with other antidiabetic drugs. It is observed that weight loss is maintained for up to 4 years. Among the mechanisms proposed for weight loss are urinary glucose loss, alteration of the insulin/glucagon ratio with increased lipolysis, activation of the AMPK enzyme, inhibition of mTORC1, improvement of mitochondrial function, polarization of macrophages from M1 to M2, browning adipose tissue, leptin inhibition and increased adiponectin expression, and activation of FGF-21 expression.

Summary

Despite the numerous mechanisms proposed for weight loss with SGLT2 inhibitors, lipolysis seems to be the central point of all of them. It is necessary to establish how these mechanisms interact, the chronology of these changes, which one is the most important for weight loss, and how these mechanisms can contribute to the cardiovascular benefits of SLGT2 inhibitor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pandey A, Chawla S, Guchhait P. Type-2 diabetes: current understanding and future perspectives. IUBMB Life. 2015;67(7):506–13. https://doi.org/10.1002/iub.1396.

    Article  CAS  PubMed  Google Scholar 

  2. Leitner DR, Frühbeck G, Yumuk V, Schindler K, Micic D, Woodward E, et al. Obesity and type 2 diabetes: two diseases with a need for combined treatment strategies-EASO can Lead the way. Obes Facts. 2017;10(5):483–92. https://doi.org/10.1159/000480525.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7. https://doi.org/10.1038/nature05485.

    Article  CAS  PubMed  Google Scholar 

  4. •• Pereira MJ, Eriksson JW. Emerging role of SGLT-2 inhibitors for the treatment of obesity. Drugs. 2019;79(3):219–30. https://doi.org/10.1007/s40265-019-1057-0Review of trials with SGLT2 therapy demonstrating weight loss.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. •• Yang Y, Zhao C, Ye Y, Yu M, Qu X. Prospect of sodium-glucose co-transporter 2 inhibitors combined with insulin for the treatment of type 2 diabetes. Front Endocrinol (Lausanne). 2020;11:190. https://doi.org/10.3389/fendo.2020.00190 Published 2020 Apr 15. Review the effects of ISGLT2 plus insulin therapy in T2DM.

    Article  Google Scholar 

  6. •• Brown E, Rajeev SP, Cuthbertson DJ, Wilding JPH. A review of the mechanism of action, metabolic profile and haemodynamic effects of sodium-glucose co-transporter-2 inhibitors. Diabetes Obes Metab. 2019;21(Suppl 2):9–18. https://doi.org/10.1111/dom.13650Review the mechanism of metabolic and weight loss.

    Article  CAS  PubMed  Google Scholar 

  7. Fattah H, Vallon V. The potential role of SGLT2 inhibitors in the treatment of type 1 diabetes mellitus. Drugs. 2018;78(7):717–26. https://doi.org/10.1007/s40265-018-0901-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. •• Xu L, Ota T. Emerging roles of SGLT2 inhibitors in obesity and insulin resistance: focus on fat browning and macrophage polarization. Adipocyte. 2018;7(2):121–8. https://doi.org/10.1080/21623945.2017.1413516Review the mechanism of macrophage polarization and fat browning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tentolouris A, Vlachakis P, Tzeravini E, Eleftheriadou I, Tentolouris N. SGLT2 Inhibitors: a review of their antidiabetic and cardioprotective effects. Int J Environ Res Public Health. 2019;16(16):2965. Published 2019 Aug 17. https://doi.org/10.3390/ijerph16162965.

    Article  CAS  PubMed Central  Google Scholar 

  10. Neal B, Perkovic V, Matthews DR. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(21):2099–9. https://doi.org/10.1056/NEJMc1712572.

  11. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28. https://doi.org/10.1056/NEJMoa1504720.

    Article  CAS  PubMed  Google Scholar 

  12. Verma S, Mazer CD, Fitchett D, Inzucchi SE, Pfarr E, George JT, et al. Empagliflozin reduces cardiovascular events, mortality and renal events in participants with type 2 diabetes after coronary artery bypass graft surgery: subanalysis of the EMPA-REG OUTCOME® randomised trial. Diabetologia. 2018;61(8):1712–23. https://doi.org/10.1007/s00125-018-4644-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wanner C, Lachin JM, Inzucchi SE, Fitchett D, Mattheus M, George J, et al. Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney disease. Circulation. 2018;137(2):119–29. https://doi.org/10.1161/CIRCULATIONAHA.117.028268.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang XL, Zhu QQ, Chen YH, et al. Cardiovascular safety, long-term noncardiovascular safety, and efficacy of sodium-glucose cotransporter 2 inhibitors in patients with type 2 diabetes mellitus: a systemic review and meta-analysis with trial sequential analysis. J Am Heart Assoc. 2018;7(2):e007165. Published 2018 Jan 20. https://doi.org/10.1161/JAHA.117.007165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. •• Bonora BM, Avogaro A, Fadini GP. Extraglycemic effects of SGLT2 inhibitors: a review of the evidence. Diabetes Metab Syndr Obes. 2020;13:161–74. https://doi.org/10.2147/DMSO.S233538 Published 2020 Jan 21. Review the metabolic effects of ISGLT2 therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brown RE, Gupta N, Aronson R. Effect of dapagliflozin on glycemic control, weight, and blood pressure in patients with type 2 diabetes attending a specialist endocrinology practice in Canada: a retrospective cohort analysis. Diabetes Technol Ther. 2017;19(11):685–91. https://doi.org/10.1089/dia.2017.0134.

    Article  CAS  PubMed  Google Scholar 

  17. Neeland IJ, McGuire DK, Chilton R, et al. Empagliflozin reduces body weight and indices of adipose distribution in patients with type 2 diabetes mellitus. Diab Vasc Dis Res. 2016;13(2):119–26. https://doi.org/10.1177/1479164115616901.

    Article  CAS  PubMed  Google Scholar 

  18. Bays HE, Weinstein R, Law G, Canovatchel W. Canagliflozin: effects in overweight and obese subjects without diabetes mellitus. Obesity (Silver Spring). 2014;22(4):1042–9. https://doi.org/10.1002/oby.20663.

    Article  CAS  Google Scholar 

  19. Ramírez-Rodríguez AM, González-Ortiz M, Martínez-Abundis E. Effect of dapagliflozin on insulin secretion and insulin sensitivity in patients with prediabetes [published online ahead of print, 2018 Aug 27]. Exp Clin Endocrinol Diabetes. 2018;https://doi.org/10.1055/a-0664-7583.

  20. Lundkvist P, Pereira MJ, Katsogiannos P, Sjöström CD, Johnsson E, Eriksson JW. Dapagliflozin once daily plus exenatide once weekly in obese adults without diabetes: sustained reductions in body weight, glycaemia and blood pressure over 1 year. Diabetes Obes Metab. 2017;19(9):1276–88. https://doi.org/10.1111/dom.12954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mearns ES, Sobieraj DM, White CM, et al. Comparative efficacy and safety of antidiabetic drug regimens added to metformin monotherapy in patients with type 2 diabetes: a network meta-analysis. PLoS One. 2015;10(4):e0125879. Published 2015 Apr 28. https://doi.org/10.1371/journal.pone.0125879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Milder TY, Stocker SL, Abdel Shaheed C, et al. Combination therapy with an SGLT2 inhibitor as initial treatment for type 2 diabetes: a systematic review and meta-analysis. J Clin Med. 2019;8(1):45. Published 2019 Jan 4. https://doi.org/10.3390/jcm8010045.

    Article  CAS  PubMed Central  Google Scholar 

  23. van Baar MJB, van Ruiten CC, Muskiet MHA, van Bloemendaal L, IJzerman RG, van Raalte DH. SGLT2 inhibitors in combination therapy: from mechanisms to clinical considerations in type 2 diabetes management [published correction appears in Diabetes Care. 2019 Oct;42(10):2015]. Diabetes Care. 2018;41(8):1543–56. https://doi.org/10.2337/dc18-0588.

    Article  CAS  PubMed  Google Scholar 

  24. Cho YK, Kang YM, Lee SE, Lee J, Park JY, Lee WJ, et al. Efficacy and safety of combination therapy with SGLT2 and DPP4 inhibitors in the treatment of type 2 diabetes: a systematic review and meta-analysis. Diabetes Metab. 2018;44(5):393–401. https://doi.org/10.1016/j.diabet.2018.01.011.

    Article  CAS  PubMed  Google Scholar 

  25. Wilding JP, Woo V, Rohwedder K, Sugg J, Parikh S, Dapagliflozin 006 Study Group. Dapagliflozin in patients with type 2 diabetes receiving high doses of insulin: efficacy and safety over 2 years. Diabetes Obes Metab. 2014;16(2):124–36. https://doi.org/10.1111/dom.12187.

    Article  CAS  PubMed  Google Scholar 

  26. Harris SB, Mequanint S, Miller K, Reichert SM, Spaic T. When insulin therapy fails: the impact of SGLT2 inhibitors in patients with type 2 diabetes. Diabetes Care. 2017;40(10):e141–2. https://doi.org/10.2337/dc17-0744.

    Article  PubMed  Google Scholar 

  27. Dandona P, Mathieu C, Phillip M, Hansen L, Griffen SC, Tschöpe D, et al. Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes (DEPICT-1): 24 week results from a multicentre, double-blind, phase 3, randomised controlled trial [published correction appears in Lancet Diabetes Endocrinol. 2017 Dec;5(12 ):e8]. Lancet Diabetes Endocrinol. 2017;5(11):864–76. https://doi.org/10.1016/S2213-8587(17)30308-X.

    Article  CAS  PubMed  Google Scholar 

  28. Rosenstock J, Marquard J, Laffel LM, Neubacher D, Kaspers S, Cherney DZ, et al. Empagliflozin as adjunctive to insulin therapy in type 1 diabetes: the EASE trials. Diabetes Care. 2018;41(12):2560–9. https://doi.org/10.2337/dc18-1749.

    Article  CAS  PubMed  Google Scholar 

  29. • Lee PC, Ganguly S, Goh SY. Weight loss associated with sodium-glucose cotransporter-2 inhibition: a review of evidence and underlying mechanisms. Obes Rev. 2018;19(12):1630–41. https://doi.org/10.1111/obr.12755Review the mechanism of weight loss.

    Article  CAS  PubMed  Google Scholar 

  30. Iemitsu K, Iizuka T, Takihata M, et al. Factors influencing changes in hemoglobin A1c and body weight during treatment of type 2 diabetes with ipragliflozin: interim analysis of the ASSIGN-K study. J Clin Med Res. 2016;8(5):373–8. https://doi.org/10.14740/jocmr2492w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Inagaki N, Goda M, Yokota S, Maruyama N, Iijima H. Safety and efficacy of canagliflozin in Japanese patients with type 2 diabetes mellitus: post hoc subgroup analyses according to body mass index in a 52-week open-label study. Expert Opin Pharmacother. 2015;16(11):1577–91. https://doi.org/10.1517/14656566.2015.1055250.

    Article  CAS  PubMed  Google Scholar 

  32. Sakai S, Kaku K, Seino Y, et al. Efficacy and safety of the SGLT2 inhibitor luseogliflozin in Japanese patients with type 2 diabetes mellitus stratified according to baseline body mass index: pooled analysis of data from 52-week phase III trials. Clin Ther. 2016;38(4):843–862.e9. https://doi.org/10.1016/j.clinthera.2016.01.017.

    Article  CAS  PubMed  Google Scholar 

  33. Schork A, Saynisch J, Vosseler A, et al. Effect of SGLT2 inhibitors on body composition, fluid status and renin-angiotensin-aldosterone system in type 2 diabetes: a prospective study using bioimpedance spectroscopy. Cardiovasc Diabetol. 2019;18(1):46. Published 2019 Apr 5. https://doi.org/10.1186/s12933-019-0852-y.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bolinder J, Ljunggren Ö, Johansson L, Wilding J, Langkilde AM, Sjöström CD, et al. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab. 2014;16(2):159–69. https://doi.org/10.1111/dom.12189.

    Article  CAS  PubMed  Google Scholar 

  35. Akalestou E, Bebi C, Genser L, Villa F, Hunt K, Mingrone G, Williams R, Amiel S, Rubino F. Down-regulation of renal SGLT-2 expression after duodenal jejunal bypass: evidence for a gut-kidney axis in glucose metabolism. Diabetes. 2017;66(supplement1):LB81

  36. Vangoitsenhoven R, Mulya A, Mosinski JD, et al. Effects of gastric bypass surgery on expression of glucose transporters and fibrotic biomarkers in kidney of diabetic fatty rats [published online ahead of print, 2020 Apr 24]. Surg Obes Relat Dis. 2020;S1550–7289(20)30201-X. https://doi.org/10.1016/j.soard.2020.04.017.

  37. Rajeev SP, Cuthbertson DJ, Wilding JP. Energy balance and metabolic changes with sodium-glucose co-transporter 2 inhibition. Diabetes Obes Metab. 2016;18(2):125–34. https://doi.org/10.1111/dom.12578.

    Article  CAS  PubMed  Google Scholar 

  38. Vallon V, Thomson SC. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia. 2017;60(2):215–25. https://doi.org/10.1007/s00125-016-4157-3.

    Article  CAS  PubMed  Google Scholar 

  39. Albertoni Borghese MF, Majowicz MP, Ortiz MC, Passalacqua Mdel R, Sterin Speziale NB, Vidal NA. Expression and activity of SGLT2 in diabetes induced by streptozotocin: relationship with the lipid environment. Nephron Physiol. 2009;112(3):p45–52. https://doi.org/10.1159/000214214.

    Article  CAS  PubMed  Google Scholar 

  40. Adachi T, Yasuda K, Okamoto Y, Shihara N, Oku A, Ueta K, et al. T-1095, a renal Na+-glucose transporter inhibitor, improves hyperglycemia in streptozotocin-induced diabetic rats. Metabolism. 2000;49(8):990–5. https://doi.org/10.1053/meta.2000.7729.

    Article  CAS  PubMed  Google Scholar 

  41. Vestri S, Okamoto MM, de Freitas HS, Aparecida dos Santos R, Nunes MT, Morimatsu M, et al. Changes in sodium or glucose filtration rate modulate expression of glucose transporters in renal proximal tubular cells of rat. J Membr Biol. 2001;182(2):105–12. https://doi.org/10.1007/s00232-001-0036-y.

    Article  CAS  PubMed  Google Scholar 

  42. Han HJ, Lee YJ, Park SH, Lee JH, Taub M. High glucose-induced oxidative stress inhibits Na+/glucose cotransporter activity in renal proximal tubule cells. Am J Physiol Ren Physiol. 2005;288(5):F988–96. https://doi.org/10.1152/ajprenal.00327.2004.

    Article  CAS  Google Scholar 

  43. • Brown E, Wilding JPH, Barber TM, Alam U, Cuthbertson DJ. Weight loss variability with SGLT2 inhibitors and GLP-1 receptor agonists in type 2 diabetes mellitus and obesity: mechanistic possibilities. Obes Rev. 2019;20(6):816–28. https://doi.org/10.1111/obr.12841Review the mechanisms of weight loss.

    Article  CAS  PubMed  Google Scholar 

  44. Devenny JJ, Godonis HE, Harvey SJ, Rooney S, Cullen MJ, Pelleymounter MA. Weight loss induced by chronic dapagliflozin treatment is attenuated by compensatory hyperphagia in diet-induced obese (DIO) rats. Obesity (Silver Spring). 2012;20(8):1645–52. https://doi.org/10.1038/oby.2012.59.

    Article  CAS  Google Scholar 

  45. Horie I, Abiru N, Hongo R, Nakamura T, Ito A, Haraguchi A, et al. Increased sugar intake as a form of compensatory hyperphagia in patients with type 2 diabetes under dapagliflozin treatment. Diabetes Res Clin Pract. 2018;135:178–84. https://doi.org/10.1016/j.diabres.2017.11.016.

    Article  CAS  PubMed  Google Scholar 

  46. Münzberg H, Morrison CD. Structure, production and signaling of leptin. Metabolism. 2015;64(1):13–23. https://doi.org/10.1016/j.metabol.2014.09.010.

    Article  CAS  PubMed  Google Scholar 

  47. Wu P, Wen W, Li J, Xu J, Zhao M, Chen H, et al. Systematic review and meta-analysis of randomized controlled trials on the effect of SGLT2 inhibitor on blood leptin and adiponectin level in patients with type 2 diabetes. Horm Metab Res. 2019;51(8):487–94. https://doi.org/10.1055/a-0958-2441.

    Article  CAS  PubMed  Google Scholar 

  48. Rajeev SP, Sprung VS, Roberts C, et al. Compensatory changes in energy balance during dapagliflozin treatment in type 2 diabetes mellitus: a randomised double-blind, placebo-controlled, cross-over trial (ENERGIZE)-study protocol. BMJ Open. 2017;7(1):e013539. Published 2017 Jan 27. https://doi.org/10.1136/bmjopen-2016-013539.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ferrannini E, Baldi S, Frascerra S, Astiarraga B, Heise T, Bizzotto R, et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes. 2016;65(5):1190–5. https://doi.org/10.2337/db15-1356.

    Article  CAS  PubMed  Google Scholar 

  50. Yokono M, Takasu T, Hayashizaki Y, Mitsuoka K, Kihara R, Muramatsu Y, et al. SGLT2 selective inhibitor ipragliflozin reduces body fat mass by increasing fatty acid oxidation in high-fat diet-induced obese rats. Eur J Pharmacol. 2014;727:66–74. https://doi.org/10.1016/j.ejphar.2014.01.040.

    Article  CAS  PubMed  Google Scholar 

  51. • Esterline RL, Vaag A, Oscarsson J, Vora J. Mechanisms in endocrinology: SGLT2 inhibitors: clinical benefits by restoration of normal diurnal metabolism? Eur J Endocrinol. 2018;178(4):R113–25. https://doi.org/10.1530/EJE-17-0832Review the mechanisms of metabolic changes with ISGLT2 therapy.

    Article  CAS  PubMed  Google Scholar 

  52. Vasilakou D, Karagiannis T, Athanasiadou E, Mainou M, Liakos A, Bekiari E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159(4):262–74. https://doi.org/10.7326/0003-4819-159-4-201308200-00007.

    Article  PubMed  Google Scholar 

  53. Merovci A, Solis-Herrera C, Daniele G, Eldor R, Fiorentino TV, Tripathy D, et al. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production [published correction appears in J Clin Invest. 2014 May 1;124(5):2287]. J Clin Invest. 2014;124(2):509–14. https://doi.org/10.1172/JCI70704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ferrannini E, Muscelli E, Frascerra S, Baldi S, Mari A, Heise T, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients [published correction appears in J Clin Invest. 2014 Apr 1;124(4):1868]. J Clin Invest. 2014;124(2):499–508. https://doi.org/10.1172/JCI72227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. DeFronzo RA, Norton L, Abdul-Ghani M. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat Rev Nephrol. 2017;13(1):11–26. https://doi.org/10.1038/nrneph.2016.170.

    Article  CAS  PubMed  Google Scholar 

  56. Bonner C, Kerr-Conte J, Gmyr V, Queniat G, Moerman E, Thévenet J, et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med. 2015;21(5):512–7. https://doi.org/10.1038/nm.3828.

    Article  CAS  PubMed  Google Scholar 

  57. Pedersen MG, Ahlstedt I, El Hachmane MF, Göpel SO. Dapagliflozin stimulates glucagon secretion at high glucose: experiments and mathematical simulations of human A-cells. Sci Rep. 2016;6:31214. Published 2016 Aug 18. https://doi.org/10.1038/srep31214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kuhre RE, Ghiasi SM, Adriaenssens AE, Wewer Albrechtsen NJ, Andersen DB, Aivazidis A, et al. No direct effect of SGLT2 activity on glucagon secretion. Diabetologia. 2019;62(6):1011–23. https://doi.org/10.1007/s00125-019-4849-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lundkvist P, Pereira MJ, Kamble PG, Katsogiannos P, Langkilde AM, Esterline R, et al. Glucagon levels during short-term SGLT2 inhibition are largely regulated by glucose changes in patients with type 2 diabetes. J Clin Endocrinol Metab. 2019;104(1):193–201. https://doi.org/10.1210/jc.2018-00969.

    Article  PubMed  Google Scholar 

  60. Sawada Y, Izumida Y, Takeuchi Y, Aita Y, Wada N, Li EX, et al. Effect of sodium-glucose cotransporter 2 (SGLT2) inhibition on weight loss is partly mediated by liver-brain-adipose neurocircuitry. Biochem Biophys Res Commun. 2017;493(1):40–5. https://doi.org/10.1016/j.bbrc.2017.09.081.

    Article  CAS  PubMed  Google Scholar 

  61. Hawley SA, Ford RJ, Smith BK, Gowans GJ, Mancini SJ, Pitt RD, et al. The Na+/glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes. 2016;65(9):2784–94. https://doi.org/10.2337/db16-0058.

    Article  CAS  PubMed  Google Scholar 

  62. Xu L, Nagata N, Chen G, et al. Empagliflozin reverses obesity and insulin resistance through fat browning and alternative macrophage activation in mice fed a high-fat diet. BMJ Open Diabetes Res Care. 2019;7(1):e000783. Published 2019 Oct 25. https://doi.org/10.1136/bmjdrc-2019-000783.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Adya R, Tan BK, Randeva HS. Differential effects of leptin and adiponectin in endothelial angiogenesis. J Diabetes Res. 2015;2015:648239–12. https://doi.org/10.1155/2015/648239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. McGarry J, Wright PH, Foster DW. Hormonal control of ketogenesis. Rapid activation of hepatic ketogenic capacity in fed rats by anti-insulin serum and glucagon. J Clin Invest. 1975;55(6):1202–9. https://doi.org/10.1172/JCI108038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee PC, Ganguly S, Goh SY. Weight loss associated with sodium-glucose cotransporter-2 inhibition: a review of evidence and underlying mechanisms. Obes Rev. 2018;19(12):1630–41. https://doi.org/10.1111/obr.12755.

    Article  CAS  PubMed  Google Scholar 

  66. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–93. https://doi.org/10.1016/j.cell.2012.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci. 2009;122(Pt 20):3589–94. https://doi.org/10.1242/jcs.051011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21–35. https://doi.org/10.1038/nrm3025.

    Article  CAS  PubMed  Google Scholar 

  69. Russell RC, Yuan HX, Guan KL. Autophagy regulation by nutrient signaling. Cell Res. 2014;24(1):42–57. https://doi.org/10.1038/cr.2013.166.

    Article  CAS  PubMed  Google Scholar 

  70. Korolchuk VI, Saiki S, Lichtenberg M, Siddiqi FH, Roberts EA, Imarisio S, et al. Lysosomal positioning coordinates cellular nutrient responses. Nat Cell Biol. 2011;13(4):453–60. https://doi.org/10.1038/ncb2204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chouchani ET, Kazak L, Jedrychowski MP, Lu GZ, Erickson BK, Szpyt J, et al. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1 [published correction appears in Nature. 2016 Aug 18;536(7616):360]. Nature. 2016;532(7597):112–6. https://doi.org/10.1038/nature17399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Song W, Owusu-Ansah E, Hu Y, Cheng D, Ni X, Zirin J, et al. Activin signaling mediates muscle-to-adipose communication in a mitochondria dysfunction-associated obesity model. Proc Natl Acad Sci U S A. 2017;114(32):8596–601. https://doi.org/10.1073/pnas.1708037114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee YH, Kim SH, Kang JM, Heo JH, Kim DJ, Park SH, et al. Empagliflozin attenuates diabetic tubulopathy by improving mitochondrial fragmentation and autophagy. Am J Physiol Ren Physiol. 2019;317(4):F767–80. https://doi.org/10.1152/ajprenal.00565.2018.

    Article  CAS  Google Scholar 

  74. Secker PF, Beneke S, Schlichenmaier N, et al. Canagliflozin mediated dual inhibition of mitochondrial glutamate dehydrogenase and complex I: an off-target adverse effect. Cell Death Dis. 2018;9(2):226. Published 2018 Feb 14. https://doi.org/10.1038/s41419-018-0273-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. •• Wei D, Liao L, Wang H, Zhang W, Wang T, Xu Z. Canagliflozin ameliorates obesity by improving mitochondrial function and fatty acid oxidation via PPARα in vivo and in vitro. Life Sci. 2020;247:117414. https://doi.org/10.1016/j.lfs.2020.117414Describes increased mitochondrial function with canaglifozin.

    Article  CAS  PubMed  Google Scholar 

  76. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91. https://doi.org/10.1126/science.7678183.

    Article  CAS  PubMed  Google Scholar 

  77. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature. 1997;389(6651):610–4. https://doi.org/10.1038/39335.

    Article  CAS  PubMed  Google Scholar 

  78. Tahara A, Kurosaki E, Yokono M, Yamajuku D, Kihara R, Hayashizaki Y, et al. Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia, hyperlipidemia, hepatic steatosis, oxidative stress, inflammation, and obesity in type 2 diabetic mice. Eur J Pharmacol. 2013;715(1–3):246–55. https://doi.org/10.1016/j.ejphar.2013.05.014.

    Article  CAS  PubMed  Google Scholar 

  79. Terami N, Ogawa D, Tachibana H, et al. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS One. 2014;9(6):e100777. Published 2014 Jun 24. https://doi.org/10.1371/journal.pone.0100777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lowell BB, Spiegelman BM. Towards a molecular understanding of adaptive thermogenesis. Nature. 2000;404(6778):652–60. https://doi.org/10.1038/35007527.

    Article  CAS  PubMed  Google Scholar 

  81. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature. 2008;454(7207):961–7. https://doi.org/10.1038/nature07182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ, et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell. 2014;156(1–2):304–16. https://doi.org/10.1016/j.cell.2013.12.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu J, Cohen P, Spiegelman BM. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev. 2013;27(3):234–50. https://doi.org/10.1101/gad.211649.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xu L, Nagata N, Nagashimada M, Zhuge F, Ni Y, Chen G, et al. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. EBioMedicine. 2017;20:137–49. https://doi.org/10.1016/j.ebiom.2017.05.028.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Nguyen KD, Qiu Y, Cui X, et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature. 2011;480(7375):104–8. Published 2011 Nov 20. https://doi.org/10.1038/nature10653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hui X, Gu P, Zhang J, Nie T, Pan Y, Wu D, et al. Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metab. 2015;22(2):279–90. https://doi.org/10.1016/j.cmet.2015.06.004.

    Article  CAS  PubMed  Google Scholar 

  87. Zhao Y, Gao P, Sun F, Li Q, Chen J, Yu H, et al. Sodium intake regulates glucose homeostasis through the PPARδ/adiponectin-mediated SGLT2 pathway. Cell Metab. 2016;23(4):699–711. https://doi.org/10.1016/j.cmet.2016.02.019.

    Article  CAS  PubMed  Google Scholar 

  88. Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007;5(6):415–25. https://doi.org/10.1016/j.cmet.2007.05.003.

    Article  CAS  PubMed  Google Scholar 

  89. Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 2007;5(6):426–37. https://doi.org/10.1016/j.cmet.2007.05.002.

    Article  CAS  PubMed  Google Scholar 

  90. Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, et al. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005;115(6):1627–35. https://doi.org/10.1172/JCI23606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fisher FM, Kleiner S, Douris N, et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012;26(3):271–81. https://doi.org/10.1101/gad.177857.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. •• Osataphan S, Macchi C, Singhal G, et al. SGLT2 inhibition reprograms systemic metabolism via FGF21-dependent and -independent mechanisms. JCI Insight. 2019;4(5):e123130. https://doi.org/10.1172/jci.insight.123130 Published 2019 Mar 7. Show the importance of FGF21 expression in weight loss.

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Feder.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Clinical Pharmacology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feder, D., de Fatima Veiga Gouveia, M.R., Govato, T.C.P. et al. SGLT2 Inhibitors and the Mechanisms Involved in Weight Loss. Curr Pharmacol Rep 6, 346–353 (2020). https://doi.org/10.1007/s40495-020-00236-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-020-00236-3

Keywords

Navigation