Skip to main content
Log in

Organotin Complexes with Promising Therapeutic Potential

  • Natural Products: From Chemistry to Pharmacology (C Ho, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The diversity in co-ordination number, geometries, redox states, thermodynamics, and kinetic and intrinsic properties of the metal ion are some special characteristic of organometallic complexes. Organotin (IV) complexes have been the subject of interest because of their biomedical and commercial applications. Nowadays, the need of novel biological active compounds is growing as there is tremendous increase in antibiotic resistance.

Recent Findings

Metals are known as essential cellular components to function in a number of vital enzymatic and biochemical activities of the cells. Ongoing recent investigations have reported that metal complexes with organic compounds can not only increase the potency of organic compounds but can also lower down the required dosages of action as complexation increases the lipophilic character.

Summary

This review summarizes the synthesis, and structural and biological application of organotin compounds. Furthermore, the crossing points between organic compounds and their metal ion interactions can help the scientific community to design novel therapeutic molecules.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Duaa G, Zahraa R, Emad Y. A review of organotin compounds: chemistry and applications. Arc Org Inorg Chem Sci. 2018;3(3):344–52. AOICS. MS.ID.000161. https://doi.org/10.32474/AOICS.2018.03.000161.

    Article  Google Scholar 

  2. Sirajuddin M, Ali S, Tahir MN. Pharmacological investigation of mono, di-and tri-organotin (IV) derivatives of carbodithioates: design, spectroscopic characterization, interaction with SS-DNA and POM analyses. Inorg Chim Acta. 2016;439:145–58.

    CAS  Google Scholar 

  3. Tian L, Yu H, Zheng X, Liu X. Synthesis, crystal structure and cytotoxic activity of tricyclohexyltin complexes of benzenedioxyacetic acids. Appl Organomet Chem. 2015;29(11):725–9.

    CAS  Google Scholar 

  4. Chaudhary A, Agarwal M, Singh RV. Organotin (IV) and organolead (IV) complexes as biocides and fertility regulators: synthetic, spectroscopic and biological studies. Appl Organomet Chem. 2006;20:295–303.

    CAS  Google Scholar 

  5. Shang X, Meng X, Alegria EC, Li Q, Guedes da Silva MF, Kuznetsov ML, et al. Syntheses, molecular structures, electrochemical behavior, theoretical study, and antitumor activities of organotin (IV) complexes containing 1-(4-chlorophenyl)-1-cyclopentanecarboxylato ligands. Inorg Chem. 2011;50:8158–67.

  6. Ali M, Yousif E. Chemistry and applications of organotin (IV) complexes: a review. Res J Pharm, Biol Chem Sci. 2016;7(5):2611–9.

    CAS  Google Scholar 

  7. Tabassum S, Afzal M, Arjmand F. New heterobimetallic CuII–Sn2IV complex as potential topoisomerase I inhibitor: in vitro DNA binding, cleavage and cytotoxicity against human cancer cell lines. J Photochem Photobiol B Biol. 2012;115:63–72.

    CAS  Google Scholar 

  8. Sirajuddin M, Ali S, Haider A, Shah NA, Shah A, Khan MR. Synthesis, characterization, biological screenings and interaction with calf thymus DNA as well as electrochemical studies of adducts formed by azomethine [2-((3, 5-dimethylphenylimino) methyl) phenol] and organotin (IV) chlorides. Polyhedron. 2012;40:19–31.

    CAS  Google Scholar 

  9. Giaccone G. Clinical perspectives on platinum resistance. Drugs59 Suppl. 2000;4:9–17.

    Google Scholar 

  10. Ott I, Gust R. Non platinum metal complexes as anti-cancer drugs. Arch Pharm. 2007;340:117–26.

    CAS  Google Scholar 

  11. Hussain S, Ali S, Shahzadi S, Sharma SK, Qanungo K, Shahid M. Synthesis, characterization, semiempirical and biological activities of organotin (IV) carboxylates with 4-piperidinecarboxylic acid. Bioinorg Chem Appl. 2014:959203. https://doi.org/10.1155/2014/959203.

  12. Joshi R, Kumari A, Singh K, Mishra H, Pokharia S. New diorganotin (IV) complexes of Schiff base derived from 4-amino-3-hydrazino-5-mercapto-4H-1, 2, 4-triazole: synthesis, structural characterization, density functional theory studies, atoms-in-molecules analysis and antifungal activity. Appl Organomet Chem. 2019;33(5):e4894.

    Google Scholar 

  13. Vinayak R, Nayek HP. Organotin metalloligands for selective sensing of metal ions. New J Chem. 2019;43(19):7259–68.

    CAS  Google Scholar 

  14. Hadi AG, Yousif E, El-Hiti GA, Ahmed DS, Jawad K, Alotaibi MH, et al. Long-term effect of ultraviolet irradiation on poly (vinyl chloride) films containing naproxen diorganotin (IV) complexes. Molecules. 2019;24(13):2396.

  15. Tian L, Sun Y, Li H, Zheng X, Cheng Y, Liu X, et al. Synthesis, characterization and biological activity of triorganotin 2-phenyl-1, 2, 3-triazole-4-carboxylates. J Inorg Biochem. 2005;99(8):1646–52.

  16. Prasad KS, Kumar LS, Prasad M, Revanasiddappa HD. Novel organotin (IV)-Schiff base complexes: synthesis, characterization, antimicrobial activity, and DNA interaction studies. Bioinorg Chem Appl. 2010:854514. https://doi.org/10.1155/2010/854514.

  17. Zhang ZJ, Zeng HT, Liu Y, Kuang DZ, Zhang FX, Tan YX, et al. Synthesis, crystal structure and anticancer activity of the dibutyltin (IV) oxide complexes containing substituted salicylaldehyde-o-aminophenol Schiff base with appended donor functionality. Inorg Nano Metal Chem. 2018;48(10):486–94.

  18. Piskunov AV, Trofimova OY, Maleeva AV, Cherkasov AV. Template synthesis of tin (IV) complexes with tridentate iminopyridine ligands. Russ J Coord Chem. 2019;45(3):188–99.

    CAS  Google Scholar 

  19. Yin H, Yue C, Hong M, Cui J, Wu Q, Zhang X. Synthesis, structural characterization and in vitro cytotoxicity of diorganotin (IV) diimido complexes. Eur J Med Chem. 2012;58:533–42.

    CAS  PubMed  Google Scholar 

  20. Javed F, Sirajuddin M, Ali S, Khalid N, Tahir MN, Shah NA, et al. Organotin (IV) derivatives of o-isobutyl carbonodithioate: synthesis, spectroscopic characterization, X-ray structure, HOMO/LUMO and in vitro biological activities. Polyhedron. 2016;104:80–90.

  21. Esmaielzadeh S, Mohammadi MS. Tin (IV) Schiff base complexes: synthesis, thermodynamic and anti bacterial investigation, experimental and theoretical studies. Bull Chem Soc Ethiop. 2019;33(1):77–90.

    CAS  Google Scholar 

  22. Arjmand F, Jamsheera A. DNA binding studies of new valine derived chiral complexes of tin (IV) and zirconium (IV). Spectrochim Acta A Mol Biomol Spectrosc. 2011;78(1):45–51.

    PubMed  Google Scholar 

  23. Baul TS, Masharing C, Willem R, Biesemans M, Holčapek M, Jirásko R, et al. Self-assembly of diorganotin (IV) 2-{[(E)-1-(2-oxyaryl) alkylidene] amino} acetates: an investigation of structures by X-ray diffraction, solution and solid-state tin NMR, and electrospray ionization MS. J Organomet Chem. 2005;690(12):3080–94.

  24. Baul TS, Basu S, de Vos D, Linden A. Amino acetate functionalized Schiff base organotin (IV) complexes as anticancer drugs: synthesis, structural characterization, and in vitro cytotoxicity studies. Investig New Drugs. 2009;27(5):419–31.

    Google Scholar 

  25. Ndoye C, Diallo W, Diouf O, Barry AH, Gaye M, Gautier R. Crystal structure of (μ-trans-1, 2-bis {2-[(2-oxidophenyl) methylidene] hydrazin-1-ylidene} ethane-1, 2-diolato-κ3O, O′, N) bis [di-tert-butyltin (IV)]. Acta Crystallogr Sect E Crystallogr Commun. 2018;74:799–802.

    CAS  Google Scholar 

  26. Pettinari C, Santini C. Comprehensive coordination chemistry II (chapter 1.10) 2003.

  27. Atassi G. Antitumor and toxic effects of silicon, germanium, tin and lead compounds. Rev Silicon Germanium Tin Lead Compd. 1985;8:219–35.

    CAS  Google Scholar 

  28. Arjmand F, Parveen S, Tabassum S, Pettinari C. Organo-tin antitumor compounds: their present status in drug development and future perspectives. Inorg Chim Acta. 2014;423:26–37.

    CAS  Google Scholar 

  29. Aman R, Matela G. Tin (IV) complexes of Schiff base derived from amino acid: synthesis and characteristic spectral studies. J Chem.2013;2013:1–4.

  30. Nath M, Jairath R, Eng G, Song X, Kumar A. Synthesis, spectral characterization and biological studies of some organotin (IV) complexes of L-proline, trans-hydroxy-L-proline and L-glutamine. Spectrochim Acta A Mol Biomol Spectrosc. 2005;62(4–5):1179–87.

    PubMed  Google Scholar 

  31. Joshi R, Ahmad N, Ahmad Khan S, Adil HA. Antimicrobial studies of newly synthesized organotin (IV) complexes of dihydrobis (2-mercaptothiazolinyl) borate. J Coord Chem. 2010;63(5):906–15.

    CAS  Google Scholar 

  32. Arora R, Issar U, Kakkar R. Theoretical investigation of organotin (IV) complexes of substituted benzohydroxamic acids. Comput Theor Chem. 2018;1138:57–65.

    CAS  Google Scholar 

  33. Chandrasekar S, Krishnamoorthy BS, Sridevi VS, Panchanatheswaran K. Ligation to tin (IV) organometallics: crystal structure of tribenzyl (chloro)(4-N, N′-dimethylaminopyridine) tin (IV). J Coord Chem. 2005;58(4):295–300.

    CAS  Google Scholar 

  34. Costantino AR, Neudörfl JM, Ocampo RA, Svetaz LA, Zacchino SA, Koll LC, et al. Synthesis, characterization and antifungal assessment of optically active bis-organotin compounds derived from (S)-BINOL diesters. Open Chem J. 2019;6(1).

  35. Arjmand F, Yousuf I. Synthesis, characterization and in vitro DNA binding of chromone Schiff base organotin (IV) complexes. J Organomet Chem. 2013;743:55–62.

    CAS  Google Scholar 

  36. Garza-Ortiz A, Camacho-Camacho C, Sainz-Espuñes T, Rojas-Oviedo I, Gutiérrez-Lucas LR, Gutierrez Carrillo A, et al. Novel organotin (IV) schiff base complexes with histidine derivatives: synthesis, characterization, and biological activity. Bioinorg Chem Appl. 2013;2013:1–12.

  37. Devi J, Devi S, Yadav J, Kumar A. Synthesis, biological activity and QSAR studies of organotin (IV) and organosilicon (IV) complexes. ChemistrySelect. 2019;4(15):4512–20.

    CAS  Google Scholar 

  38. Irshad A, Khan N, Farina Y, Baloch N, Ali A, Mun LK, et al. Synthesis, spectroscopic characterization, X-ray diffraction studies and in-vitro antibacterial activities of diorganotin (IV) derivatives with N-methyl-4-bromobenzohydroxamic acid. Inorg Chim Acta. 2018;469:280–7.

  39. Singh K, Puri P, Kumar Y, Sharma C, Aneja KR. Biological and spectral studies of newly synthesized triazole Schiff bases and their Si (IV), Sn (IV) complexes. Bioinorg Chem Appl. 2011;2011:1–10.

    Google Scholar 

  40. Matela G, Aman R, Sharma C, Chaudhary S. Reactions of tin-and triorganotin (IV) isopropoxides with thymol derivative: synthesis, characterization and in vitro antimicrobial screening. J Serbian Chem Soc. 2013;78:1323–33.

    CAS  Google Scholar 

  41. Barbosa AS, de Siqueira GJ, da Silva DR, Meneghetti SM, Meneghetti MR, da Silva AE, et al. Synthesis and evaluation of the antibiotic and adjuvant antibiotic potential of organotin (IV) derivatives. J Inorg Biochem. 2018;180:80–8.

  42. Sedaghat T, Naseh M, Khavasi HR, Motamedi H. Synthesis, spectroscopic investigations, crystal structures and antibacterial activity of 3-(3-hydroxypyridin-2-ylamino)-1-phenylbut-2-en-1-one and its diorganotin (IV) complexes. Polyhedron. 2012;33:435–40.

    CAS  Google Scholar 

  43. Tang YW, Stratton CW. Staphylococcus aureus: an old pathogen with new weapons. Clin Lab Med. 2010;30:179–208.

    PubMed  Google Scholar 

  44. Ohlsen K, Lorenz U. Novel targets for antibiotics in Staphylococcus aureus. Future Microbial. 2007;2(6):655–66.

    CAS  Google Scholar 

  45. Girasolo MA, Canfora L, Sabatino P, Schillaci D, Foresti E, Rubino S, et al. Synthesis, characterization, crystal structures and in vitro antistaphylococcal activity of organotin (IV) derivatives with 5, 7-disubstituted-1, 2, 4-triazolo [1, 5-a] pyrimidine. J Inorg Biochem. 2012;106:156–63.

  46. Jain M, Gaur S, Singh VP, Singh RV. Organosilicon (IV) and organotin (IV) complexes as biocides and nematicides: synthetic, spectroscopic and biological studies of N∩ N donor sulfonamide imine and its chelates. Appl Organomet Chem. 2004;18:73–82.

    CAS  Google Scholar 

  47. Rukh L. Synthesis, characterization and biological activities of tricyclohexyltin (IV) complexes with various oxygen donor ligands. Discovery. 2016;52:2141–223.

    Google Scholar 

  48. Iornumbe EN, Yiase SG, Sha’Ato R. Studies on the synthetic and biological activity of some organotin (IV) derivatives of hexanedioic acid. IOSR J Appl Chem. 2016;9(7):23–32.

    CAS  Google Scholar 

  49. Sainorudin MH, Sidek NM, Ismail N, Rozaini MZ, Harun NA, Sabiqah Tuan Anuar TN, et al. Synthesis, characterization and biological activity of organotin (IV) complexes featuring di-2-ethylhexyldithiocarbamate and N-methylbutyldithiocarbamate as ligands. GSTF J. Chem Sci. 2015;2:10–8.

  50. Muhammad N, Ali S, Meetsma A, Shaheen F. Organotin (IV) 4-methoxyphenylethanoates: synthesis, spectroscopic characterization, X-ray structures and in vitro anticancer activity against human prostate cell lines (PC-3). Inorg Chim Acta. 2009;362(8):2842–8.

    CAS  Google Scholar 

  51. Awang N, Baba I, Yamin BM, Othman MS, Farahana KN. Synthesis, characterization and biological activities of organotin (IV) methylcyclohexyldithiocarbamate compounds. Am J Appl Sci. 2011;8:310–7.

    CAS  Google Scholar 

  52. Choudhary P, Dhaka S, Bargotya S. Synthesis, characterization and antimicrobial activity of Schiff base complexes of Sn (IV). J Appl Chem. 2018;7:234–8.

    CAS  Google Scholar 

  53. Rehman W, Badshah A, Khan S. Synthesis, characterization, antimicrobial and antitumor screening of some diorganotin (IV) complexes of 2-[(9H-Purin-6-ylimino)]-phenol. Eur J Med Chem. 2009;44:3981–5.

    CAS  PubMed  Google Scholar 

  54. Shah FA, Fatima K, Sabir S, Ali S, Qadri I. Design, synthesis, structure information and biochemical activity of new floro substituted organotin (IV) carboxylates. J Photochem Photobiol B Biol. 2016;154:99–107.

    CAS  Google Scholar 

  55. Joshi R, Yadav SK, Mishra H, Pandey N, Tilak R, Pokharia S. Interaction of triorganotin (IV) moiety with quinolone antibacterial drug ciprofloxacin: synthesis, spectroscopic investigation, electronic structure calculation, and biological evaluation. Heteroat Chem. 2018;29(4):e21433.

    Google Scholar 

  56. Hu L, Wang H, Xia T, Fang B, Shen Y, Zhang Q, et al. Two-photon-active organotin (IV) complexes for antibacterial function and superresolution bacteria imaging. Inorg Chem. 2018;57(11):6340–8.

  57. Akhtar S, Khan MA, Shahid K, Akhtar H. Metal complexes of ribavirin; synthesis, characterization and in-vitro biological screening. Int J Pharm Sci Res. 2018;9(4):1666–72.

    CAS  Google Scholar 

  58. Abd-El-Aziz AS, Carraher Jr CE, Pittman Jr CU, Zeldin M. Inorganic and organometallic macromolecules: design and applications. Springer Science & Business Media. 2017:34–46.

  59. Poole R. Advances in microbial physiology: Academic Press; 2017:34–46.

  60. Omura S. Macrolide antibiotics: chemistry, biology, and practice: Academic Press; 2002.

  61. Hill A, Fink MJ. Advances in organometallic chemistry: Academic Press; 2011;2:1–635.

  62. Pathak P, Jolly VS, Sharma KP. Synthesis and biological activities of some new substituted arylazo Schiff bases. Orient J Chem. 2000;16(1):161–2.

    CAS  Google Scholar 

  63. Yin DD, Jiang YL, Shan L. Synthesis, characterization of diorganotin (IV) schiff base complexes and their in vitro antitumor activity. Chin J Chem. 2001;19(11):1136–40.

    CAS  Google Scholar 

  64. Xue LW, Li XW, Zhao GQ, Yang WC. Synthesis, structures, and antimicrobial activity of nickel (II) and zinc (II) complexes with Schiff bases derived from 3-bromosalicylaldehyde. Russ J Coord Chem. 2013;39(12):872–6.

    CAS  Google Scholar 

  65. Noel JP. Synthetic metabolism goes green: an extension of synthetic biology to a medicinal plant involves the transfer of chlorination equipment from bacteria. This exercise adds implements to the enzymatic toolbox for generating natural products. Nature. 2010;468:380–1.

    CAS  PubMed  Google Scholar 

  66. Momeni BZ, Noroozi V. Synthesis, characterization, crystal structure, and DNA interaction of tin complexes containing pyridyl ligands. Monatsh Chem Chem Mon. 2017;148(5):893–900.

    CAS  Google Scholar 

  67. Sirajuddin M, McKee V, Tariq M, Ali S. Newly designed organotin (IV) carboxylates with peptide linkage: synthesis, structural elucidation, physicochemical characterizations and pharmacological investigations. Eur J Med Chem. 2018;143:1903–18.

    CAS  PubMed  Google Scholar 

  68. Arshad N, Bhatti MH, Farooqi SI, Saleem S, Mirza B. Synthesis, photochemical and electrochemical studies on triphenyltin (IV) derivative of (Z)-4-(4-cyanophenylamino)-4-oxobut-2-enoic acid for its binding with DNA: biological interpretation. Arab J Chem. 2016;9(3):451–62.

    CAS  Google Scholar 

  69. Khan N, Farina Y, Mun LK, Rajab NF, Awang N. Triorganotin (IV) complexes with o-substituted arylhydroxamates: synthesis, spectroscopic characterization, X-ray structures and in vitro cytotoxic activities. J Organomet Chem. 2014;763:26–33.

    Google Scholar 

  70. Shi PF, Jiang Q, Duan HC, Wang DQ. Synthesis, characterization and cytotoxicity of fluorescent organotin complexes of terpyridine derivatives. Chin Chem Lett. 2014;25(4):586–8.

    CAS  Google Scholar 

  71. Gleeson B, Claffey J, Ertler D, Hogan M, Müller-Bunz H, Paradisi F, et al. Novel organotin antibacterial and anticancer drugs. Polyhedron. 2008;27(18):3619–24.

  72. Gómez-Ruiz S, Prashar S, Walther T, Fajardo M, Steinborn D, Paschke R, et al. Cyclopentadienyltin (IV) derivatives: synthesis, characterization and study of their cytotoxic activities. Polyhedron. 2010;29(1):16–23.

  73. Antonenko TA, Shpakovsky DB, Vorobyov MA, Gracheva YA, Kharitonashvili EV, Dubova LG, et al. Antioxidative vs cytotoxic activities of organotin complexes bearing 2, 6-di-tert-butylphenol moieties. Appl Organomet Chem. 2018;32(7):e4381.

  74. Tabassum S, Khan RA, Arjmand F, Sen S, Kayal J, Juvekar AS, et al. Synthesis and characterization of glycoconjugate tin (IV) complexes: in vitro DNA binding studies, cytotoxicity, and cell death. J Organomet Chem. 2011;696(8):1600–8.

  75. Gielen M. Tin-based antitumour drugs. Coord Chem Rev. 1996;151:41–51.

    CAS  Google Scholar 

  76. Hong M, Yin H, Zhang X, Li C, Yue C, Cheng S. Di-and tri-organotin (IV) complexes with 2-hydroxy-1-naphthaldehyde 5-chloro-2-hydroxybenzoylhydrazone: synthesis, characterization and in vitro antitumor activities. J Organomet Chem. 2013;724:23–31.

    CAS  Google Scholar 

  77. Nafisi S, Sobhanmanesh A, Esm-Hosseini M, Alimoghaddam K, Tajmir-Riahi HA. Interaction of antitumor drug Sn (CH3) 2Cl2 with DNA and RNA. J Mol Struct. 2005;750(1–3):22–7.

    CAS  Google Scholar 

  78. Han G, Yang P. Synthesis and characterization of water-insoluble and water-soluble dibutyltin (IV) porphinate complexes based on the tris (pyridinyl) porphyrin moiety, their anti-tumor activity in vitro and interaction with DNA. J Inorg Biochem. 2002;91(1):230–6.

    CAS  PubMed  Google Scholar 

  79. Casini A, Messori L, Orioli P, Gielen M, Kemmer M, Willem R. Interactions of two cytotoxic organotin (IV) compounds with calf thymus DNA. J Inorg Biochem. 2001;85(4):297–300.

    CAS  PubMed  Google Scholar 

  80. Moosavi-Movahedi AA, Golchin AR, Nazari K, Chamani J, Saboury AA, Bathaie SZ, et al. Microcalorimetry, energetics and binding studies of DNA–dimethyltin dichloride complexes. Thermochim Acta. 2004;414(2):233–41.

  81. Zhou Y, Jiang T, Ren S, Yu J, Xia Z. Synthesis, crystal structure and in vitro antitumor activity of di-n-butyltin 4′-(7-oxabicyclo [2, 2, 1]-5-heptane-2, 3-dicarboximide) benzoates. J Organomet Chem. 2005;690(9):2186–90.

    CAS  Google Scholar 

  82. Bonire JJ, Fricker SP. The in vitro antitumour profile of some 1, 2-diaminocyclohexane organotin complexes. J Inorg Biochem. 2001;83(2–3):217–21.

    CAS  PubMed  Google Scholar 

  83. D.Kovala-Demertzi D, Dokorou VN, Jasinski JP, Opolski A, Wiecek J, Zervou M, et al. Organotin flufenamates: synthesis, characterization and antiproliferative activity of organotin flufenamates. J Organomet Chem. 2005;690(7):1800–6.

  84. Shpakovsky DB, Banti CN, Beaulieu-Houle G, Kourkoumelis N, Manoli M, Manos MJ, et al. Synthesis, structural characterization and in vitro inhibitory studies against human breast cancer of the bis-(2, 6-di-tert-butylphenol) tin (IV) dichloride and its complexes. Dalton Trans. 2012;41(48):14568–82.

  85. Ruan B, Tian Y, Zhou H, Wu J, Hu R, Zhu C, et al. Synthesis, characterization and in vitro antitumor activity of three organotin (IV) complexes with carbazole ligand. Inorg Chim Acta. 2011;365(1):302–8.

  86. Balas VI, Verginadis II, Geromichalos GD, Kourkoumelis N, Male L, Hursthouse MB, et al. Synthesis, structural characterization and biological studies of the triphenyltin (IV) complex with 2-thiobarbituric acid. Eur J Med Chem. 2011;46(7):2835–44.

  87. Qiu YR, Zhang RF, Zhang SL, Cheng S, Li QL, Ma CL. Novel organotin (IV) complexes derived from 4-fluorophenyl-selenoacetic acid: synthesis, characterization and in vitro cytostatic activity evaluation. New J Chem. 2017;41(13):5639–50.

    CAS  Google Scholar 

  88. Gennari A, Viviani B, Galli CL, Marinovich M, Pieters R, Corsini E. Organotins induce apoptosis by disturbance of [Ca2+] i and mitochondrial activity, causing oxidative stress and activation of caspases in rat thymocytes. Toxicol Appl Pharmacol. 2000;169(2):185–90.

    CAS  PubMed  Google Scholar 

  89. Li Q, Liu X, Cheng S, Zhang R, Shi Y, Ma C. Novel organotin complexes derived from 2, 2′-selenodiacetic acid: synthesis and biological evaluation. RSC Adv. 2016;6(39):32484–92.

    CAS  Google Scholar 

  90. Shujah S, Muhammad N, Shah A, Ali S, Khalid N, Meetsma A. Bioactive hepta-and penta-coordinated supramolecular diorganotin (IV) Schiff bases. J Organomet Chem. 2013;741:59–66.

    Google Scholar 

  91. Rocha MN, Nogueira PM, Demicheli C, de Oliveira LG, da Silva MM, Frézard F, et al. Cytotoxicity and in vitro antileishmanial activity of antimony (V), bismuth (V), and tin (IV) complexes of lapachol. Bioinorg Chem Appl. 2013;2013:1–7.

  92. Salma U, Mazhar M, Khan KM. Germatranyl substituted organotin (IV) carboxylates: synthesis spectroscopic characterization and biological activities. Med Chem. 2009;5(6):543–8.

    CAS  PubMed  Google Scholar 

  93. Sirajuddin M, Ali S, McKee V, Wadood A, Ghufran M. Exploration of organotin (IV) derivatives for medicinal applications: synthesis, spectroscopic characterization, structural elucidation and molecular docking study. J Mol Struct. 2019;1181:93–108.

    CAS  Google Scholar 

  94. Waseem D, Butt AF, Haq IU, Bhatti MH, Khan GM. Carboxylate derivatives of tributyltin (IV) complexes as anticancer and antileishmanial agents. Daru. 2017;25(1):8.

    PubMed  PubMed Central  Google Scholar 

  95. Raychaudhury B, Banerjee S, Gupta S, Singh RV, Datta SC. Antiparasitic activity of a triphenyl tin complex against Leishmania donovani. Acta Trop. 2005;95(1):1–8.

    CAS  PubMed  Google Scholar 

  96. Sirajuddin M, Ali S, McKee V, Zaib S, Iqbal J. Organotin (IV) carboxylate derivatives as a new addition to anticancer and antileishmanial agents: design, physicochemical characterization and interaction with Salmon sperm DNA. RSC Adv. 2014;4(101):57505–21.

    CAS  Google Scholar 

  97. Shahid K, Shahzadi S, Ali S. Synthesis, coordination and biological aspects of organotin (IV) derivatives of 4-[(2, 4-dinitrophenyl) amino]-4-oxo-2-butenoic acid and 2-{[(2, 4-dinitrophenyl) amino)] carbonyl} benzoic acid. J Serbian Chem Soc. 2009;74(2):141–54.

    CAS  Google Scholar 

  98. Sirajuddin M, Ali S, McKee V, Sohail M, Pasha H. Potentially bioactive organotin (IV) compounds: synthesis, characterization, in vitro bioactivities and interaction with SS-DNA. Eur J Med Chem. 2014;84:343–63.

    CAS  PubMed  Google Scholar 

  99. Husain A, Alam MM, Siddiqui N. Synthesis, reactions and biological activity of 3-arylidene-5-(4-methylphenyl)-2 (3H)-furanones? J Serbian Chem Soc. 2009;74(2):103–15.

    CAS  Google Scholar 

  100. Nath M, Singh H, Kumar P, Kumar A, Song X, Eng G. Organotin (IV) tryptophanylglycinates: potential non-steroidal antiinflammatory agents; crystal structure of dibutyltin (IV) tryptophanylglycinate. Appl Organomet Chem. 2009;23(9):347–58.

    CAS  Google Scholar 

  101. Rehman W, Baloch MK, Badshah A. Synthesis, spectral characterization and bio-analysis of some organotin (IV) complexes. Eur J Med Chem. 2008;43(11):2380–5.

    CAS  PubMed  Google Scholar 

  102. Nath M, Saini PK, Kumar A. New di-and triorganotin (IV) complexes of tripodal Schiff base ligand containing three imidazole arms: synthesis, structural characterization, anti-inflammatory activity and thermal studies. J Organomet Chem. 2010;695(9):1353–62.

    CAS  Google Scholar 

  103. Nath M, Singh H, Eng G, Song X. Interaction of organotin (IV) moieties with nucleic acid constituent: synthesis, structural characterization and anti-inflammatory activity of tri-i-propyltin (IV) and diorganotin (IV) derivatives of guanosine. Inorg Chem Commun. 2011;14(9):1381–5.

    CAS  Google Scholar 

  104. Nath M, Vats M, Roy P. Tri-and diorganotin (IV) complexes of biologically important orotic acid: synthesis, spectroscopic studies, in vitro anti-cancer, DNA fragmentation, enzyme assays and in vivo anti-inflammatory activities. Eur J Med Chem. 2013;59:310–21.

    CAS  PubMed  Google Scholar 

  105. Romero-Chávez MM, Pineda-Urbina K, Pérez DJ, Obledo-Benicio F, Flores-Parra A, Gómez-Sandoval Z, et al. Organotin (IV) compounds derived from ibuprofen and cinnamic acids, an alternative into design of anti-inflammatory by the cyclooxygenases (COX-1 and COX-2) pathway. J Organomet Chem. 2018;862:58–70.

  106. Gonzalez A, Gomez E, Cortes-Lozada A, Hernández S, Ramírez-Apan T, Nieto-Camacho A. Heptacoordinate tin (IV) compounds derived from pyridine Schiff bases: synthesis, characterization, in vitro cytotoxicity, anti-inflammatory and antioxidant activity. Chem Pharm Bull. 2009;57(1):5–15.

    CAS  PubMed  Google Scholar 

  107. Pantelić NĐ, Zmejkovski BB, Žižak Ž, Banjac NR, Božić BĐ, Stanojković TP, et al. Design and in vitro biological evaluation of a novel organotin (IV) complex with 1-(4-carboxyphenyl)-3-ethyl-3-methylpyrrolidine-2, 5-dione. J Chem. 2019;2019:1–8.

  108. Agiorgiti MS, Evangelou A, Vezyraki P, Hadjikakou SK, Kalfakakou V, Tsanaktsidis I, et al. Cytotoxic effect, antitumour activity and toxicity of organotin derivatives with ortho-or para-hydroxy-benzoic acids. Med Chem Res. 2018;27(4):1122–30.

  109. Barbieri F, Viale M, Sparatore F, Schettini G, Favre A, Bruzzo C, et al. Antitumor activity of a new orally active organotin compound: a preliminary study in murine tumor models. Anti-Cancer Drugs. 2002;13(6):599–604.

  110. Ding W, Liu Z, Tian L, Quan X. Synthesis, characterization, and in vitro cytotoxicity of triorganotin 3, 5-di-tert-butyl-4-hydroxybenzoates. Synth Reactivity Inorg Metal Org Nano Metal Chem. 2012;42(1):82–7.

    CAS  Google Scholar 

  111. Dokorou V, Primikiri A, Kovala-Demertzi D. The triphenyltin (VI) complexes of NSAIDs and derivatives. Synthesis, crystal structure and antiproliferative activity. Potent anticancer agents. J Inorg Biochem. 2011;105(2):195–201.

    CAS  PubMed  Google Scholar 

  112. Esmail SA, Shamsi M, Chen T, Al-asbahy WM. Design, synthesis and characterization of tin-based cancer chemotherapy drug entity: in vitro DNA binding, cleavage, induction of cancer cell apoptosis by triggering DNA damage-mediated p53 phosphorylation and molecular docking. Appl Organomet Chem. 2019;33(1):e4651.

    Google Scholar 

  113. Kadu R, Roy H, Singh VK. Diphenyltin (IV) dithiocarbamate macrocyclic scaffolds as potent apoptosis inducers for human cancer HEP 3B and IMR 32 cells: synthesis, spectral characterization, density functional theory study and in vitro cytotoxicity. Appl Organomet Chem. 2015;29(11):746–55.

    CAS  Google Scholar 

  114. Khan MS, Salam MA, Haque RS, Abdul Majid AM, Abdul Majid AS, Asif M, et al. Synthesis, cytotoxicity, and long-term single dose anti-cancer pharmacological evaluation of dimethyltin (IV) complex of N (4)-methylthiosemicarbazone (having ONS donor ligand). Cogent Biol. 2016;2(1):1154282.

  115. Mahmudov KT, da Silva MF, Kopylovich MN, Fernandes AR, Silva A, Mizar A, et al. Di-and tri-organotin (IV) complexes of arylhydrazones of methylene active compounds and their antiproliferative activity. J Organomet Chem. 2014;760:67–73.

  116. Metsios A, Verginadis I, Simos Y, Batistatou A, Peschos D, Ragos V, et al. Cytotoxic and anticancer effects of the triorganotin compound [(C6H5) 3Sn (cmbzt)]: an in vitro, ex vivo and in vivo study. Eur J Pharm Sci. 2012;47(2):490–6.

  117. Verginadis II, Karkabounas S, Simos Y, Kontargiris E, Hadjikakou SK, Batistatou A, et al. Anticancer and cytotoxic effects of a triorganotin compound with 2-mercapto-nicotinic acid in malignant cell lines and tumor bearing Wistar rats. Eur J Pharm Sci. 2011;42(3):253–61.

  118. Abdellah MA, Hadjikakou SK, Hadjiliadis N, Kubicki M, Bakas T, Kourkoumelis N, et al. Synthesis, characterization, and biological studies of organotin (IV) derivatives with o-or p-hydroxybenzoic acids. Bioinorg Chem Appl. 2009;2009:1–12.

  119. Siddiqi ZA, Shahid M, Kumar S, Khalid M, Noor S. Synthesis, crystal structure and in vitro antitumor activity of carboxylate bridged dinuclear organotin (IV) complexes. J Organomet Chem. 2009;694(23):3768–74.

    CAS  Google Scholar 

  120. Xiao X, Li Y, Dong Y, Li W, Xu K, Shi N, et al. “S” shaped organotin (IV) carboxylates based on amide carboxylic acids: syntheses, crystal structures and antitumor activities. J Mol Struct. 2017;1130:901–8.

  121. Baul TS, Kehie P, Duthie A, Guchhait N, Raviprakash N, Mokhamatam RB, et al. Synthesis, photophysical properties and structures of organotin-Schiff bases utilizing aromatic amino acid from the chiral pool and evaluation of the biological perspective of a triphenyltin compound. J Inorg Biochem. 2017;168:76–89.

  122. Nath M, Singh H, Eng G, Song X. Interaction of 5′-guanosine monophosphate with organotin (IV) moieties: synthesis, structural characterization, and anti-inflammatory activity. ISRN Org Chem.2012;2012:1–9.

  123. Khan MI, Baloch MK, Ashf.aq M. Biological aspects of new organotin (IV) compounds of 3-maleimidopropionic acid. J Organomet Chem. 2004;689(21):3370–8.

  124. Rehman W, Rehman S, Muhammad B, Shah ST, Tauseef I, Guo CY. Synthesis, characterization and anti-inflammatory activity of some organotin (IV) complexes. Pol J Chem. 2009;83(12):2043–9.

    CAS  Google Scholar 

  125. Dyląg M, Pruchnik H, Pruchnik F, Majkowska-Skrobek G, Ułaszewski S. Antifungal activity of organotin compounds with functionalized carboxylates evaluated by the microdilution bioassay in vitro. Med Mycol. 2010;48(2):373–83.

    PubMed  Google Scholar 

  126. Roy M, Roy S, Devi NM, Singh CB, Singh KS. Synthesis, structural characterization and antimicrobial activities of diorganotin (IV) complexes with azo-imino carboxylic acid ligand: crystal structure and topological study of a doubly phenoxide-bridged dimeric dimethyltin (IV) complex appended with free carboxylic acid groups. J Mol Struct. 2016;1119:64–70.

    CAS  Google Scholar 

  127. Kovala-Demertzi D. Recent advances on non-steroidal anti-inflammatory drugs, NSAIDs: organotin complexes of NSAIDs. J Organomet Chem. 2006;691(8):1767–74.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar.

Ethics declarations

Conflict of Interest

There authors declare that there is no conflict of interest.

Human and Animal Rights Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Natural Products: From Chemistry to Pharmacology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Abbas, Z., Tuli, H.S. et al. Organotin Complexes with Promising Therapeutic Potential. Curr Pharmacol Rep 6, 167–181 (2020). https://doi.org/10.1007/s40495-020-00222-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-020-00222-9

Keywords

Navigation