Murdaugh L. Adverse drug reaction reporting. Competence Tools for Health-Systems Pharmacists. p. 545–56.
Chalret du Rieu Q, Fouliard S, White-Koning M, Kloos I, Chatelut E, Chenel M. Pharmacokinetic/pharmacodynamic modeling of abexinostat-induced thrombocytopenia across different patient populations: application for the determination of the maximum tolerated doses in both lymphoma and solid tumour patients. Investig New Drugs. 2014;32(5):985–94. https://doi.org/10.1007/s10637-014-0118-1.
CAS
Article
Google Scholar
Mayo PR, Ling SY, Huizinga RB, Freitag DG, Aspeslet LJ, Foster RT. Population PKPD of voclosporin in renal allograft patients. J Clin Pharmacol. 2014;54(5):537–45. https://doi.org/10.1002/jcph.237.
CAS
Article
PubMed
Google Scholar
Narayanan R, Hoffmann M, Kumar G, Surapaneni S. Application of a “fit for purpose” PBPK model to investigate the CYP3A4 induction potential of enzalutamide. Drug Metab Lett. 2016;10(3):172–9. https://doi.org/10.2174/1872312810666160729124745.
CAS
Article
PubMed
Google Scholar
Sager JE, Yu J, Ragueneau-Majlessi I, Isoherranen N. Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: a systematic review of published models, applications, and model verification. Drug Metab Dispos. 2015;43(11):1823–37. https://doi.org/10.1124/dmd.115.065920.
CAS
Article
PubMed
PubMed Central
Google Scholar
Walsh C, Bonner JJ, Johnson TN, Neuhoff S, Ghazaly EA, Gribben JG, et al. Development of a physiologically based pharmacokinetic model of actinomycin D in children with cancer. Br J Clin Pharmacol. 2016;81(5):989–98. https://doi.org/10.1111/bcp.12878.
CAS
Article
PubMed
PubMed Central
Google Scholar
Diestelhorst C, Boos J, McCune JS, Russell J, Kangarloo SB, Hempel G. Predictive performance of a physiologically based pharmacokinetic model of busulfan in children. Pediatr Hematol Oncol. 2014;31(8):731–42. https://doi.org/10.3109/08880018.2014.927945.
CAS
Article
PubMed
Google Scholar
FDA. Physiologically based pharmacokinetic analyses — format and content guidance for industry. US Food and Drug Administration. 2019.
EMA. Reporting of physiologically based pharmacokinetic (PBPK) modelling and simulation. European Medicines Agency. 2018.
Jamei M. Recent advances in development and application of physiologically-based pharmacokinetic (PBPK) models: a transition from academic curiosity to regulatory acceptance. Curr Pharmacol Rep. 2016;2(3):161–9. https://doi.org/10.1007/s40495-016-0059-9.
Teorell T, STUDIES ON. The diffusion effect upon ionic distribution : ii. Experiments on ionic accumulation. J Gen Physiol. 1937;21(1):107–22.
CAS
Article
PubMed
PubMed Central
Google Scholar
Teorell T. Kinetics of distribution of substances administered to the body, I: the extravascular modes of administration. Archives Internationales de Pharmacodynamie et de Therapie. 1937;57:205–25.
CAS
Google Scholar
Roberts O, Khoo S, Owen A, Siccardi M. Interaction of rifampin and darunavir-ritonavir or darunavir-cobicistat in vitro. Antimicrob Agents Chemother. 2017;61(5). doi:https://doi.org/10.1128/AAC.01776-16.
Kersting G, Willmann S, Wurthwein G, Lippert J, Boos J, Hempel G. Physiologically based pharmacokinetic modelling of high- and low-dose etoposide: from adults to children. Cancer Chemother Pharmacol. 2012;69(2):397–405. https://doi.org/10.1007/s00280-011-1706-9.
CAS
Article
PubMed
Google Scholar
Rizk ML, Zou L, Savic RM, Dooley KE. Importance of drug pharmacokinetics at the site of action. Clin Transl Sci. 2017;10(3):133–42. https://doi.org/10.1111/cts.12448.
CAS
Article
PubMed
PubMed Central
Google Scholar
de Lange EC, Hammarlund-Udenaes M. Translational aspects of blood-brain barrier transport and central nervous system effects of drugs: from discovery to patients. Clin Pharmacol Ther. 2015;97(4):380–94. https://doi.org/10.1002/cpt.76.
Article
PubMed
Google Scholar
Henderson JT, Piquette-Miller M. Blood-brain barrier: an impediment to neuropharmaceuticals. Clin Pharmacol Ther. 2015;97(4):308–13. https://doi.org/10.1002/cpt.77.
CAS
Article
PubMed
Google Scholar
Almond LM, Yang J, Jamei M, Tucker GT, Rostami-Hodjegan A. Towards a quantitative framework for the prediction of DDIs arising from cytochrome P450 induction. Curr Drug Metab. 2009;10(4):420–32. https://doi.org/10.2174/138920009788498978.
CAS
Article
PubMed
Google Scholar
Rostami-Hodjegan A, Tucker GT. Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nat Rev Drug Discov. 2007;6(2):140–8. https://doi.org/10.1038/nrd2173.
CAS
Article
PubMed
Google Scholar
Rowland M, Peck C, Tucker G. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol. 2011;51:45–73. https://doi.org/10.1146/annurev-pharmtox-010510-100540.
CAS
Article
PubMed
Google Scholar
Schlender JF, Teutonico D, Coboeken K, Schnizler K, Eissing T, Willmann S, et al. A physiologically-based pharmacokinetic model to describe ciprofloxacin pharmacokinetics over the entire span of life. Clin Pharmacokinet. 2018;57(12):1613–34. https://doi.org/10.1007/s40262-018-0661-6.
CAS
Article
PubMed
PubMed Central
Google Scholar
Claassen K, Thelen K, Coboeken K, Gaub T, Lippert J, Allegaert K, et al. Development of a physiologically-based pharmacokinetic model for preterm neonates: evaluation with in vivo data. Curr Pharm Des. 2015;21(39):5688–98. https://doi.org/10.2174/1381612821666150901110533.
CAS
Article
PubMed
Google Scholar
Hornik CP, Wu H, Edginton AN, Watt K, Cohen-Wolkowiez M, Gonzalez D. Development of a pediatric physiologically-based pharmacokinetic model of clindamycin using opportunistic pharmacokinetic data. Clin Pharmacokinet. 2017;56(11):1343–53. https://doi.org/10.1007/s40262-017-0525-5.
CAS
Article
PubMed
PubMed Central
Google Scholar
Marzolini C, Rajoli R, Battegay M, Elzi L, Back D, Siccardi M. Physiologically based pharmacokinetic modeling to predict drug-drug interactions with efavirenz involving simultaneous inducing and inhibitory effects on cytochromes. Clin Pharmacokinet. 2017;56(4):409–20. https://doi.org/10.1007/s40262-016-0447-7.
CAS
Article
PubMed
Google Scholar
Roberts O, Rajoli RKR, Back DJ, Owen A, Darin KM, Fletcher CV, et al. Physiologically based pharmacokinetic modelling prediction of the effects of dose adjustment in drug-drug interactions between levonorgestrel contraceptive implants and efavirenz-based ART. J Antimicrob Chemother. 2018;73(4):1004–12. https://doi.org/10.1093/jac/dkx515.
CAS
Article
PubMed
PubMed Central
Google Scholar
Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa237.
Thompson MD, Beard DA. Physiologically based pharmacokinetic tissue compartment model selection in drug development and risk assessment. J Pharm Sci. 2012;101(1):424–35. https://doi.org/10.1002/jps.22768.
CAS
Article
PubMed
Google Scholar
Einolf HJ, Zhou J, Won C, Wang L, Rebello S. A physiologically-based pharmacokinetic modeling approach to predict drug-drug interactions of sonidegib (LDE225) with perpetrators of CYP3A in cancer patients. Drug Metab Dispos. 2017;45(4):361–74. https://doi.org/10.1124/dmd.116.073585.
CAS
Article
PubMed
Google Scholar
Budha NR, Ji T, Musib L, Eppler S, Dresser M, Chen Y, et al. Evaluation of cytochrome P450 3A4-mediated drug-drug interaction potential for cobimetinib using physiologically based pharmacokinetic modeling and simulation. Clin Pharmacokinet. 2016;55(11):1435–45. https://doi.org/10.1007/s40262-016-0412-5.
CAS
Article
PubMed
Google Scholar
Yamazaki S, Johnson TR, Smith BJ. Prediction of drug-drug interactions with crizotinib as the CYP3A substrate using a physiologically based pharmacokinetic model. Drug Metab Dispos. 2015;43(10):1417–29. https://doi.org/10.1124/dmd.115.064618.
CAS
Article
PubMed
Google Scholar
Posada MM, Bacon JA, Schneck KB, Tirona RG, Kim RB, Higgins JW, et al. Prediction of renal transporter mediated drug-drug interactions for pemetrexed using physiologically based pharmacokinetic modeling. Drug Metab Dispos. 2015;43(3):325–34. https://doi.org/10.1124/dmd.114.059618.
CAS
Article
PubMed
Google Scholar
Toshimoto K, Tomaru A, Hosokawa M, Sugiyama Y. Virtual clinical studies to examine the probability distribution of the AUC at target tissues using physiologically-based pharmacokinetic modeling: application to analyses of the effect of genetic polymorphism of enzymes and transporters on irinotecan induced side effects. Pharm Res. 2017;34(8):1584–600. https://doi.org/10.1007/s11095-017-2153-z.
CAS
Article
PubMed
PubMed Central
Google Scholar
Dickschen KJ, Willmann S, Hempel G, Block M. Addressing adherence using genotype-specific PBPK modeling-impact of drug holidays on tamoxifen and endoxifen plasma levels. Front Pharmacol. 2017;8:67. https://doi.org/10.3389/fphar.2017.00067.
CAS
Article
PubMed
PubMed Central
Google Scholar
Fujita K, Masuo Y, Okumura H, Watanabe Y, Suzuki H, Sunakawa Y, et al. Increased plasma concentrations of unbound SN-38, the active metabolite of irinotecan, in cancer patients with severe renal failure. Pharm Res. 2016;33(2):269–82. https://doi.org/10.1007/s11095-015-1785-0.
CAS
Article
PubMed
Google Scholar
Yoshida K, Maeda K, Kusuhara H, Konagaya A. Estimation of feasible solution space using cluster Newton method: application to pharmacokinetic analysis of irinotecan with physiologically-based pharmacokinetic models. BMC Syst Biol. 2013;7 Suppl 3:S3. https://doi.org/10.1186/1752-0509-7-S3-S3.
Article
PubMed
Google Scholar
Thai HT, Mazuir F, Cartot-Cotton S, Veyrat-Follet C. Optimizing pharmacokinetic bridging studies in paediatric oncology using physiologically-based pharmacokinetic modelling: application to docetaxel. Br J Clin Pharmacol. 2015;80(3):534–47. https://doi.org/10.1111/bcp.12702.
CAS
Article
PubMed
PubMed Central
Google Scholar
Tsamandouras N, Dickinson G, Guo Y, Hall S, Rostami-Hodjegan A, Galetin A, et al. Identification of the effect of multiple polymorphisms on the pharmacokinetics of simvastatin and simvastatin acid using a population-modeling approach. Clin Pharmacol Ther. 2014;96(1):90–100. https://doi.org/10.1038/clpt.2014.55.
CAS
Article
PubMed
Google Scholar
Li R, Ghosh A, Maurer TS, Kimoto E, Barton HA. Physiologically based pharmacokinetic prediction of telmisartan in human. Drug Metab Dispos. 2014;42(10):1646–55. https://doi.org/10.1124/dmd.114.058461.
CAS
Article
PubMed
Google Scholar
Burt HJ, Neuhoff S, Almond L, Gaohua L, Harwood MD, Jamei M, et al. Metformin and cimetidine: physiologically based pharmacokinetic modelling to investigate transporter mediated drug-drug interactions. Eur J Pharm Sci. 2016;88:70–82. https://doi.org/10.1016/j.ejps.2016.03.020.
CAS
Article
PubMed
Google Scholar
Fan J, Zhang X, Zhao L. Utility of physiologically based pharmacokinetic absorption modeling to predict the impact of aalt-To-base conversion on prasugrel HCl product bioequivalence in the presence of proton pump inhibitors. AAPS J. 2017;19(5):1479–86. https://doi.org/10.1208/s12248-017-0116-2.
CAS
Article
PubMed
Google Scholar
Ohtani H, Hakoda R, Imaoka A, Akiyoshi T. In silico evaluation of warfarin-bucolome therapy. Biopharm Drug Dispos. 2016;37(4):233–42. https://doi.org/10.1002/bdd.2008.
CAS
Article
PubMed
Google Scholar
Ismail M, Lee VH, Chow CR, Rubino CM. Minimal physiologically based pharmacokinetic and drug-drug-disease interaction model of rivaroxaban and verapamil in healthy and renally impaired subjects. J Clin Pharmacol. 2018;58(4):541–8. https://doi.org/10.1002/jcph.1044.
CAS
Article
PubMed
Google Scholar
Rasool MF, Khalil F, Laer S. Optimizing the clinical use of carvedilol in liver cirrhosis using a physiologically based pharmacokinetic modeling approach. Eur J Drug Metab Pharmacokinet. 2017;42(3):383–96. https://doi.org/10.1007/s13318-016-0353-2.
CAS
Article
PubMed
Google Scholar
Vogt W. Evaluation and optimisation of current milrinone prescribing for the treatment and prevention of low cardiac output syndrome in paediatric patients after open heart surgery using a physiology-based pharmacokinetic drug-disease model. Clin Pharmacokinet. 2014;53(1):51–72. https://doi.org/10.1007/s40262-013-0096-z.
CAS
Article
PubMed
Google Scholar
Yoon M, Campbell JL, Andersen ME, Clewell HJ. Quantitative in vitro to in vivo extrapolation of cell-based toxicity assay results. Crit Rev Toxicol. 2012;42(8):633–52. https://doi.org/10.3109/10408444.2012.692115.
CAS
Article
PubMed
Google Scholar
Marsousi N, Samer CF, Fontana P, Reny JL, Rudaz S, Desmeules JA, et al. Coadministration of ticagrelor and ritonavir: toward prospective dose adjustment to maintain an optimal platelet inhibition using the PBPK approach. Clin Pharmacol Ther. 2016;100(3):295–304. https://doi.org/10.1002/cpt.407.
CAS
Article
PubMed
Google Scholar
Zhou D, Andersson TB, Grimm SW. In vitro evaluation of potential drug-drug interactions with ticagrelor: cytochrome P450 reaction phenotyping, inhibition, induction, and differential kinetics. Drug Metab Dispos. 2011;39(4):703–10. https://doi.org/10.1124/dmd.110.037143.
CAS
Article
PubMed
Google Scholar
Patsalos PN. Drug interactions with the newer antiepileptic drugs (AEDs)--part 1: pharmacokinetic and pharmacodynamic interactions between AEDs. Clin Pharmacokinet. 2013;52(11):927–66. https://doi.org/10.1007/s40262-013-0087-0.
CAS
Article
PubMed
Google Scholar
Patsalos PN. Drug interactions with the newer antiepileptic drugs (AEDs)--part 2: pharmacokinetic and pharmacodynamic interactions between AEDs and drugs used to treat non-epilepsy disorders. Clin Pharmacokinet. 2013;52(12):1045–61. https://doi.org/10.1007/s40262-013-0088-z.
CAS
Article
PubMed
Google Scholar
Patsalos PN, Froscher W, Pisani F, van Rijn CM. The importance of drug interactions in epilepsy therapy. Epilepsia. 2002;43(4):365–85. https://doi.org/10.1046/j.1528-1157.2002.13001.x.
CAS
Article
PubMed
Google Scholar
Brodie MJ, Mintzer S, Pack AM, Gidal BE, Vecht CJ, Schmidt D. Enzyme induction with antiepileptic drugs: cause for concern? Epilepsia. 2013;54(1):11–27. https://doi.org/10.1111/j.1528-1167.2012.03671.x.
CAS
Article
PubMed
Google Scholar
Kwan P, Brodie MJ. Epilepsy after the first drug fails: substitution or add-on? Seizure. 2000;9(7):464–8. https://doi.org/10.1053/seiz.2000.0442.
CAS
Article
PubMed
Google Scholar
Conner TM, Nikolian VC, Georgoff PE, Pai MP, Alam HB, Sun D, et al. Physiologically based pharmacokinetic modeling of disposition and drug-drug interactions for valproic acid and divalproex. Eur J Pharm Sci. 2018;111:465–81. https://doi.org/10.1016/j.ejps.2017.10.009.
CAS
Article
PubMed
Google Scholar
Conner TM, Reed RC, Zhang T. A physiologically based pharmacokinetic model for optimally profiling lamotrigine disposition and drug-drug interactions. Eur J Drug Metab Pharmacokinet. 2019;44(3):389–408. https://doi.org/10.1007/s13318-018-0532-4.
CAS
Article
PubMed
Google Scholar
Jones HM, Gardner IB, Watson KJ. Modelling and PBPK simulation in drug discovery. AAPS J. 2009;11(1):155–66. https://doi.org/10.1208/s12248-009-9088-1.
CAS
Article
PubMed
PubMed Central
Google Scholar
Jamei M, Turner D, Yang J, Neuhoff S, Polak S, Rostami-Hodjegan A, et al. Population-based mechanistic prediction of oral drug absorption. AAPS J. 2009;11(2):225–37. https://doi.org/10.1208/s12248-009-9099-y.
CAS
Article
PubMed
PubMed Central
Google Scholar
Huang X-F, Tang J-F, Ji J-L, Wang X-L, Ruan B-F. Synthesis, characterization and antitumor activity of novel amide derivatives containing ferrocenyl pyrazol-moiety. Journal of Organometallic Chemistry. 2012;706–707:113–23.
Article
Google Scholar
Zhou W, Johnson TN, Bui KH, Cheung SYA, Li J, Xu H, et al. Predictive performance of physiologically based pharmacokinetic (PBPK) modeling of drugs extensively metabolized by major cytochrome P450s in children. Clin Pharmacol Ther. 2018;104(1):188–200. https://doi.org/10.1002/cpt.905.
CAS
Article
PubMed
Google Scholar
Kalluri HV, Zhang H, Caritis SN, Venkataramanan R. A physiologically based pharmacokinetic modelling approach to predict buprenorphine pharmacokinetics following intravenous and sublingual administration. Br J Clin Pharmacol. 2017;83(11):2458–73. https://doi.org/10.1111/bcp.13368.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang H, Kalluri HV, Bastian JR, Chen H, Alshabi A, Caritis SN, et al. Gestational changes in buprenorphine exposure: a physiologically-based pharmacokinetic analysis. Br J Clin Pharmacol. 2018;84(9):2075–87. https://doi.org/10.1111/bcp.13642.
CAS
Article
PubMed
PubMed Central
Google Scholar
Huang W, Nakano M, Sager J, Ragueneau-Majlessi I, Isoherranen N. Physiologically based pharmacokinetic model of the CYP2D6 probe atomoxetine: extrapolation to special populations and drug-drug interactions. Drug Metab Dispos. 2017;45(11):1156–65. https://doi.org/10.1124/dmd.117.076455.
CAS
Article
PubMed
PubMed Central
Google Scholar
Duan P, Wu F, Moore JN, Fisher J, Crentsil V, Gonzalez D, et al. Assessing CYP2C19 ontogeny in neonates and infants using physiologically based pharmacokinetic models: impact of enzyme maturation versus inhibition. CPT Pharmacometrics Syst Pharmacol. 2019;8(3):158–66. https://doi.org/10.1002/psp4.12350.
CAS
Article
PubMed
Google Scholar
Xiao Q, Tang L, Xu R, Qian W, Yang J. Physiologically based pharmacokinetics model predicts the lack of inhibition by repaglinide on the metabolism of pioglitazone. Biopharm Drug Dispos. 2015;36(9):603–12. https://doi.org/10.1002/bdd.1987.
CAS
Article
PubMed
Google Scholar
Bi YA, Mathialagan S, Tylaska L, Fu M, Keefer J, Vildhede A, et al. Organic anion transporter 2 mediates hepatic uptake of tolbutamide, a CYP2C9 probe drug. J Pharmacol Exp Ther. 2018;364(3):390–8. https://doi.org/10.1124/jpet.117.245951.
CAS
Article
PubMed
Google Scholar
Nakada T, Kudo T, Kume T, Kusuhara H, Ito K. Quantitative analysis of elevation of serum creatinine via renal transporter inhibition by trimethoprim in healthy subjects using physiologically-based pharmacokinetic model. Drug Metab Pharmacokinet. 2018;33(1):103–10. https://doi.org/10.1016/j.dmpk.2017.11.314.
CAS
Article
PubMed
Google Scholar
Tan ML, Zhao P, Zhang L, Ho YF, Varma MVS, Neuhoff S, et al. Use of physiologically based pharmacokinetic modeling to evaluate the effect of chronic kidney disease on the disposition of hepatic CYP2C8 and OATP1B drug substrates. Clin Pharmacol Ther. 2019;105(3):719–29. https://doi.org/10.1002/cpt.1205.
CAS
Article
PubMed
Google Scholar
Arya V, Zhao P, Reynolds KS, Mishra P, Younis IR. Utilizing PBPK modeling to evaluate the potential of a significant drug-drug interaction between clopidogrel and dasabuvir: a scientific perspective. Clin Pharmacol Ther. 2017;102(4):578–80. https://doi.org/10.1002/cpt.699.
CAS
Article
PubMed
Google Scholar
Shebley M, Fu W, Badri P, Bow D, Fischer V. Physiologically based pharmacokinetic modeling suggests limited drug-drug interaction between clopidogrel and dasabuvir. Clin Pharmacol Ther. 2017;102(4):679–87. https://doi.org/10.1002/cpt.689.
CAS
Article
PubMed
PubMed Central
Google Scholar