Skip to main content

Advertisement

Log in

The Diagnostic and Therapeutic Potential of the Epigenetic Modifications of Lung Cancer–Related Genes

  • Epigenetics (ATY Lau, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Lung cancer is characterized as a series of genetic mutations and epigenetic modifications, resulting in the silencing of tumor suppressor genes and activating of tumorigenic genes. In this review, we will explore those lung cancer–related genes that undergo significant epigenetic modifications. These genes include CDKN2A, DAPK, RASSF1A, FHIT, CHD13, DAL1, APC, RUNX3, CDH1, TSLC1, and PTEN. We will discuss the role of epigenetic modifications used as diagnostic biomarkers and therapeutic predictive biomarkers in lung cancer. The epigenetics of lung cancer have been widely studied in recent years. It will improve our understanding about lung cancer early detection and personalized treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    PubMed  Google Scholar 

  2. Langevin SM, Kratzke RA, Kelsey KT. Epigenetics of lung cancer. Transl Res. Mosby Inc. 2015:74–90.

    PubMed  CAS  Google Scholar 

  3. Duruisseaux M, Esteller M. Lung cancer epigenetics: from knowledge to applications. Semin Cancer Biol. Academic Press; 2018;116–128.

  4. Travis WD, Brambilla E, Nicholson AG, et al. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol. 2015;10:1243–60.

    PubMed  Google Scholar 

  5. Brzeziańska E, Dutkowska A, Antczak A. The significance of epigenetic alterations in lung carcinogenesis. Mol Biol Rep. 2013;40:309–25.

    PubMed  Google Scholar 

  6. Belinsky SA, Nikula KJ, Baylin SB, Issa JP. Increased cytosine DNA-methyltransferase activity is target-cell-specific and an early event in lung cancer. Proc Natl Acad Sci U S A. 1996;93:4045–50.

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Chung J-H, Lee HJ, Kim B, Cho NY, Kang GH. DNA methylation profile during multistage progression of pulmonary adenocarcinomas. Virchows Arch. 2011;459:201–11.

    PubMed  CAS  Google Scholar 

  8. Kim H, Kwon YM, Kim JS, Han J, Shim YM, Park J, et al. Elevated mRNA levels of DNA methyltransferase-1 as an independent prognostic factor in primary nonsmall cell lung cancer. Cancer. 2006;107:1042–9.

    PubMed  CAS  Google Scholar 

  9. Vallböhmer D, Brabender J, Yang D, et al. DNA methyltransferases messenger RNA expression and aberrant methylation of CpG island in non-small-cell lung cancer: association and prognostic value. Clin Lung Cancer. 2006;8:39–44.

    PubMed  Google Scholar 

  10. Belinsky SA. Silencing of genes by promoter hypermethylation: key event in rodent and human lung cancer. Carcinogenesis. 2005;1481–1487.

    PubMed  CAS  Google Scholar 

  11. Lukas J, Parry D, Aagaard L, et al. Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature. 1995;375:503–6.

    PubMed  CAS  Google Scholar 

  12. Palmisano WA, Divine KK, Saccomanno G, Gilliland FD, Baylin SB, Herman JG, et al. Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res. 2000;60:5954–8.

    PubMed  CAS  Google Scholar 

  13. Selamat SA, Galler JS, Joshi AD, et al. DNA Methylation changes in atypical adenomatous hyperplasia, adenocarcinoma in situ, and lung adenocarcinoma. PLoS One. 2011;6.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Fischer JR, Ohnmacht U, Rieger N, Zemaitis M, Stoffregen C, Manegold C, et al. Prognostic significance of RASSF1A promoter methylation on survival of non-small cell lung cancer patients treated with gemcitabine. Lung Cancer. 2007;56:115–23.

    PubMed  Google Scholar 

  15. Heller G, Fong KM, Girard L, et al. Expression and methylation pattern of TSLC1 cascade genes in lung carcinomas. Oncogene. 2006;25:959–68.

    PubMed  CAS  Google Scholar 

  16. Buckingham L, Faber LP, Kim A, et al. PTEN, RASSF1 and DAPK site-specific hypermethylation and outcome in surgically treated stage I and II nonsmall cell lung cancer patients. Int J Cancer. 2010;126:1630–9.

    PubMed  CAS  Google Scholar 

  17. Yanagawa N, Tamura G, Oizumi H, Kanauchi N, Endoh M, Sadahiro M, et al. Promoter hypermethylation of RASSF1A and RUNX3 genes as an independent prognostic prediction marker in surgically resected non-small cell lung cancers. Lung Cancer. 2007;58:131–8.

    PubMed  Google Scholar 

  18. Licchesi JDF, Westra WH, Hooker CM, Herman JG. Promoter hypermethylation of hallmark cancer genes in atypical adenomatous hyperplasia of the lung. Clin Cancer Res. 2008;14:2570–8.

    PubMed  CAS  Google Scholar 

  19. Witcher M, Emerson BM. Epigenetic silencing of the p16INK4a tumor suppressor is associated with loss of CTCF binding and a chromatin boundary. Mol Cell. 2009;34:271–84.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Tam KW, Zhang W, Soh J, Stastny V, Chen M, Sun H, et al. CDKN2A/p16 inactivation mechanisms and their relationship to smoke exposure and molecular features in non-small-cell lung cancer. J Thorac Oncol. 2013;8:1378–88.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Zhao R, Choi BY, Lee MH, et al. Implications of genetic and epigenetic alterations of CDKN2A (p16 INK4a ) in cancer. EBioMedicine. Elsevier B.V.; 2016;30–39.

    PubMed  PubMed Central  Google Scholar 

  22. Kim N, Song M, Kim S, Seo Y, Kim Y, Yoon S. Differential regulation and synthetic lethality of exclusive RB1 and CDKN2A mutations in lung cancer. Int J Oncol. 2016;48:367–75.

    PubMed  CAS  Google Scholar 

  23. Jeong EH, Lee TG, Ko YJ, et al. Anti-tumor effect of CDK inhibitors on CDKN2A-defective squamous cell lung cancer cells. Cell Oncol. 2018;41:663–75.

    CAS  Google Scholar 

  24. Ahn ER, Mangat PK, Garrett-Mayer E, et al. Palbociclib (P) in patients (pts) with non-small cell lung cancer (NSCLC) with CDKN2A alterations: results from the Targeted Agent and Profiling Utilization Registry (TAPUR) Study. J Clin Oncol. 2019;37:9041.

    Google Scholar 

  25. Michie AM, McCaig AM, Nakagawa R, et al. Death-associated protein kinase (DAPK) and signal transduction: regulation in cancer. FEBS J. 2010;74–80.

    PubMed  Google Scholar 

  26. Katzenellenbogen RA, Baylin SB, Herman JG. Hypermethylation of the DAP-kinase CpG island is a common alteration in B-cell malignancies. Blood. 1999;93:4347–53.

    PubMed  CAS  Google Scholar 

  27. Xu JN, Liu ZH, Shen D. Clinical significance of DAPK promoter hypermethylation in gastric cancer: a meta-analysis. Int J Clin Exp Med. 2016;9:7883–95.

    CAS  Google Scholar 

  28. Dammann R, Li C, Yoon JH, et al. Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet. 2000;25:315–9.

    PubMed  CAS  Google Scholar 

  29. Grote HJ, Schmiemann V, Geddert H, Bocking A, Kappes R, Gabbert HE, et al. Methylation of RAS association domain family protein 1A as a biomarker of lung cancer. Cancer. 2006;108:129–34.

    PubMed  CAS  Google Scholar 

  30. Amaar YG, Minera MG, Hatran LK, et al. Ras association domain family 1C protein stimulates human lung cancer cell proliferation. Am J Physiol - Lung Cell Mol Physiol. 2006;291.

    PubMed  CAS  Google Scholar 

  31. Kim DH, Kim JS, Ji YI, Shim YM, Kim H, Han J, et al. Hypermethylation of RASSF1A promoter is associated with the age at starting smoking and a poor prognosis in primary non-small cell lung cancer. Cancer Res. 2003;63:3743–6.

    PubMed  CAS  Google Scholar 

  32. Mengxi D, Qian W, Nan W, et al. Effect of DNA methylation inhibitor on RASSF1A genes expression in non-small cell lung cancer cell line A549 and A549DDP. Cancer Cell Int. 2013;13.

    PubMed  PubMed Central  Google Scholar 

  33. Ohta M, Inoue H, Cotticelli MG, et al. The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell. 1996;84:587–97.

    PubMed  CAS  Google Scholar 

  34. Pekarsky Y, Campiglio M, Siprashvili Z, Druck T, Sedkov Y, Tillib S, et al. Nitrilase and Fhit homologs are encoded as fusion proteins in Drosophila melanogaster and Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1998;95:8744–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Hassan MI, Naiyer A, Ahmad F. Fragile histidine triad protein: structure, function, and its association with tumorogenesis. J Cancer Res Clin Oncol. 2010;136:333–50.

    PubMed  CAS  Google Scholar 

  36. Huang F, Wang P, Wang X. Thapsigargin induces apoptosis of prostate cancer through cofilin-1 and paxillin. Oncol Lett. 2018;16:1975–80.

    PubMed  PubMed Central  Google Scholar 

  37. Rimessi A, Marchi S, Fotino C, Romagnoli A, Huebner K, Croce CM, et al. Intramitochondrial calcium regulation by the FHIT gene product sensitizes to apoptosis. Proc Natl Acad Sci U S A. 2009;106:12753–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Yan W, Xu N, Han X, et al. The clinicopathological significance of FHIT hypermethylation in non-small cell lung cancer, a meta-analysis and literature review. Sci Rep. 2016;6:19303.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Andriani F, Perego P, Carenini N, Sozzi G, Roz L. Increased sensitivity to cisplatin in non-small cell lung cancer cell lines after FHIT gene transfer. Neoplasia. 2006;8:9–17.

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Wu D-W, Hsu N-Y, Wang Y-C, et al. c-Myc suppresses microRNA-29b to promote tumor aggressiveness and poor outcomes in non-small cell lung cancer by targeting FHIT. Oncogene. 2014;34:2072.

    PubMed  Google Scholar 

  41. Drilon A, Sugita H, Sima CS, Zauderer M, Rudin CM, Kris MG, et al. A prospective study of tumor suppressor gene methylation as a prognostic biomarker in surgically resected stage I to IIIA non-small-cell lung cancers. J Thorac Oncol. 2014;9:1272–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Andreeva AV, Kutuzov MA. Cadherin 13 in cancer. Genes Chromosom Cancer. 2010;49:775–90.

    PubMed  CAS  Google Scholar 

  43. Kim DS, Kim MJ, Lee JY, Kim YZ, Kim EJ, Park JY. Aberrant methylation of E-cadherin and H-cadherin genes in nonsmall cell lung cancer and its relation to clinicopathologic features. Cancer. 2007;110:2785–92.

    PubMed  CAS  Google Scholar 

  44. Pu W, Geng X, Chen S, Tan L, Tan Y, Wang A, et al. Aberrant methylation of CDH13 can be a diagnostic biomarker for lung adenocarcinoma. J Cancer. 2016;7:2280–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Wang Y, Zhang L, Yang J, Li B, Wang J. CDH13 promoter methylation regulates cisplatin resistance of non-small cell lung cancer cells. Oncol Lett. 2018;16:5715–22.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Chen X, Guan X, Zhang H, et al. DAL-1 attenuates epithelial-to mesenchymal transition in lung cancer. J Exp Clin Cancer Res. 2015;34:3.

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Liu R, Li X, Gao W, et al. Monoclonal antibody against cell surface GRP78 as a novel agent in suppressing PI3K/AKT signaling, tumor growth, and metastasis. Clin. Cancer Res. 2013/09/18. 2013;19:6802–6811. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24048331.

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Qiu X, Guan X, Liu W, Zhang Y. DAL-1 attenuates epithelial to mesenchymal transition and metastasis by suppressing HSPA5 expression in non-small cell lung cancer. Oncol Rep. 2017;38:3103–13.

    PubMed  CAS  Google Scholar 

  49. Cai T, Guan X, Wang H, Fang Y, Long J, Xie X, et al. MicroRNA-26a regulates ANXA1, rather than DAL-1, in the development of lung cancer. Oncol Lett. 2018;15:5893–902.

    PubMed  PubMed Central  Google Scholar 

  50. Nathke IS. The adenomatous polyposis coli protein: the Achilles heel of the gut epithelium. Annu Rev Cell Dev Biol. 2004;20:337–66.

    PubMed  Google Scholar 

  51. Fearnhead NS, Britton MP, Bodmer WF. The ABC of APC. Hum Mol Genet. 2001;10:721–33.

    PubMed  CAS  Google Scholar 

  52. Ding L, Getz G, Wheeler DA, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature. 2008;455:1069–75.

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Ohgaki H, Kros JM, Okamoto Y, Gaspert A, Huang H, Kurrer MO. APC mutations are infrequent but present in human lung cancer. Cancer Lett. 2004;207:197–203.

    PubMed  CAS  Google Scholar 

  54. Wagner AH, Devarakonda S, Skidmore ZL, et al. Recurrent WNT pathway alterations are frequent in relapsed small cell lung cancer. Nat Commun. 2018;9:3787. https://doi.org/10.1038/s41467-018-06162-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Hu B, Zhang H, Wei H, Wang Z, Zhang F, Wang X, et al. Does adenomatous polyposis coli gene promoter 1A methylation increase non-small cell lung cancer risk? A meta-analysis. Thorac Cancer. 2017;8:410–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Chen F, Liu X, Bai J, Pei D, Zheng J. The emerging role of RUNX3 in cancer metastasis (Review). Oncol Rep. 2016;35:1227–36.

    PubMed  CAS  Google Scholar 

  57. Voon DC-C, Wang H, Koo JKW, et al. Runx3 protects gastric epithelial cells against epithelial-mesenchymal transition-induced cellular plasticity and tumorigenicity. Stem Cells. 2012;30:2088–99.

    PubMed  CAS  Google Scholar 

  58. Tanaka S, Shiraha H, Nakanishi Y, Nishina S, Matsubara M, Horiguchi S, et al. Runt-related transcription factor 3 reverses epithelial-mesenchymal transition in hepatocellular carcinoma. Int J Cancer. 2012;131:2537–46.

    PubMed  CAS  Google Scholar 

  59. Lee Y-S, Lee J-W, Jang J-W, Chi XZ, Kim JH, Li YH, et al. Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma. Cancer Cell. 2013;24:603–16.

    PubMed  Google Scholar 

  60. Li X, Zhong M, Wang J, et al. miR-301a promotes lung tumorigenesis by suppressing Runx3. Mol Cancer. 2019;18:99.

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Yanada M, Yaoi T, Shimada J, Sakakura C, Nishimura M, Ito K, et al. Frequent hemizygous deletion at 1p36 and hypermethylation downregulate RUNX3 expression in human lung cancer cell lines. Oncol Rep. 2005;14:817–22.

    PubMed  CAS  Google Scholar 

  62. Araki K, Osaki M, Nagahama Y, Hiramatsu T, Nakamura H, Ohgi S, et al. Expression of RUNX3 protein in human lung adenocarcinoma: implications for tumor progression and prognosis. Cancer Sci. 2005;96:227–31.

    PubMed  CAS  Google Scholar 

  63. Xu L, Lan H, Su Y, et al. Clinicopathological significance and potential drug target of RUNX3 in non-small cell lung cancer: a meta-analysis. Drug Des Devel Ther. 2015;9:2855–65.

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Chen X, Deng Y, Shi Y, Zhu W, Cai Y, Xu C, et al. Loss of expression rather than cytoplasmic mislocalization of RUNX3 predicts worse outcome in non-small cell lung cancer. Oncol Lett. 2018;15:5043–55.

    PubMed  PubMed Central  Google Scholar 

  65. Takeichi M. Cadherins: a molecular family important in selective cell-cell adhesion. Annu Rev Biochem. 1990;59:237–52.

    PubMed  CAS  Google Scholar 

  66. Karayiannakis AJ, Syrigos KN, Chatzigianni E, Papanikolaou S, Alexiou D, Kalahanis N, et al. Aberrant E-cadherin expression associated with loss of differentiation and advanced stage in human pancreatic cancer. Anticancer Res. 1998;18:4177–80.

    PubMed  CAS  Google Scholar 

  67. Yu Q, Guo Q, Chen L, et al. Clinicopathological significance and potential drug targeting of CDH1 in lung cancer: a meta-analysis and literature review. Drug Des Devel Ther. 2015;9:2171–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Krishnamurthy K, Mishra TK, Saxena A, et al. Evaluating NISCH and CDH1 promoter hypermethylation in nonsmokers, cancer free smokers and lung cancer patients: a case control study. Indian J Clin Biochem. 2018. https://doi.org/10.1007/s12291-018-0767-5.

    PubMed  Google Scholar 

  69. Gao L-M, Xu S-F, Zheng Y, et al. Long non-coding RNA H19 is responsible for the progression of lung adenocarcinoma by mediating methylation-dependent repression of CDH1 promoter. J Cell Mol Med. 2019/07/17. 2019;23:6411–6428. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31317666.

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Liu B, Sun X. miR-25 promotes invasion of human non-small cell lung cancer via CDH1. Bioengineered. 2019;10:271–81.

    PubMed  CAS  Google Scholar 

  71. Sussan TE, Pletcher MT, Murakami Y, et al. Tumor suppressor in lung cancer 1 (TSLC1) alters tumorigenic growth properties and gene expression. Mol Cancer. 2005;4:28.

    PubMed  PubMed Central  Google Scholar 

  72. Wang Z, Yang K, Wang X, Zhang J, Hao D, Chen Z. Expressions and clinical significances of TSLC1 and 4.1B in non-small cell lung cancer. Zhongguo Fei Ai Za Zhi. 2010;13:1041–5.

    PubMed  CAS  Google Scholar 

  73. Kuramochi M, Fukuhara H, Nobukuni T, Kanbe T, Maruyama T, Ghosh HP, et al. TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nat Genet. 2001;27:427–30.

    PubMed  CAS  Google Scholar 

  74. Fukami T, Fukuhara H, Kuramochi M, et al. Promoter methylation of the TSLC1 gene in advanced lung tumors and various cancer cell lines. Int J Cancer. 2003;107:53–9. https://doi.org/10.1002/ijc.11348.

    Article  PubMed  CAS  Google Scholar 

  75. Tang J-M, He Q-Y, Guo R-X, et al. Phosphorylated Akt overexpression and loss of PTEN expression in non-small cell lung cancer confers poor prognosis. Lung Cancer. 2006;51:181–91 Available from: http://www.sciencedirect.com/science/article/pii/S0169500205005040.

    PubMed  Google Scholar 

  76. Pérez-Ramírez C, Cañadas-Garre M, Molina MÁ, et al. PTEN and PI3K/AKT in non-small-cell lung cancer. Pharmacogenomics. 2015;16:1843–62. https://doi.org/10.2217/pgs.15.122.

    Article  PubMed  CAS  Google Scholar 

  77. Zhang J, Wang J, Zhao F, et al. MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta. 2010;411:846–52 Available from: http://www.sciencedirect.com/science/article/pii/S0009898110001695.

    PubMed  CAS  Google Scholar 

  78. Malaney P, Palumbo E, Semidey-Hurtado J, et al. PTEN physically interacts with and regulates E2F1-mediated transcription in lung cancer. Cell Cycle. 2018;17:947–62. https://doi.org/10.1080/15384101.2017.1388970.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Sos ML, Koker M, Weir BA, Heynck S, Rabinovsky R, Zander T, et al. PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res. 2009;69:3256–61.

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Pasini A, Paganelli G, Tesei A, Zoli W, Giordano E, Calistri D. Specific biomarkers are associated with docetaxeland gemcitabine-resistant NSCLC cell lines. Transl Oncol. 2012;5:461–8.

    PubMed  PubMed Central  Google Scholar 

  81. Ibanez de Caceres I, Cortes-Sempere M, Moratilla C, et al. IGFBP-3 hypermethylation-derived deficiency mediates cisplatin resistance in non-small-cell lung cancer. Oncogene. 2010;29:1681–90.

    PubMed  CAS  Google Scholar 

Download references

Funding

This review was supported by the National Natural Science Foundation (Nos. 81670045, 81272586, 81470249, and 81970048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengqing Li.

Ethics declarations

Conflict of Interest

No conflict interests declared.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Epigenetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zou, H. The Diagnostic and Therapeutic Potential of the Epigenetic Modifications of Lung Cancer–Related Genes. Curr Pharmacol Rep 5, 421–428 (2019). https://doi.org/10.1007/s40495-019-00201-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-019-00201-9

Keywords

Navigation