Current Pharmacology Reports

, Volume 5, Issue 5, pp 377–390 | Cite as

Cytokine Therapeutics in Cancer Immunotherapy: Design and Development

  • Juha Punnonen
  • David Rosen
  • Luis Zuniga
  • Kennett Sprogøe
  • Mohammad TabriziEmail author
Pharmacometrics and Quantitative System Pharmacology (A Chakraborty and S Polak, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Pharmacometrics and Quantitative System Pharmacology


Purpose of Review

In this article, recent advances in the application of cytokine therapeutics in cancer, as single agents or in combination with other immunotherapies, are reviewed. Additionally, critical characteristics that govern cytokine exposure-response properties are discussed.

Recent Findings

Immunotherapy has revolutionized the traditional approach to treating cancer. Targeted therapies, via modulation of the host immune responses, have elevated the expectations for a beneficial impact on patients’ lives. Novel drugs that modulate various steps in the cancer-immunity cycle are now available with an impact on both the magnitude and duration of effect relative to traditional chemotherapeutic approaches. Due to cancer heterogeneity, induction of effective anti-tumor immunity requires the orchestration of several critical events, and hence, combination approaches are being explored. Combination immunotherapy is anticipated to enhance the durability and efficacy profiles of otherwise single agents that can benefit from the “synergistic” effects from the engagement of two or more pathways, simultaneously. As cytokines regulate many aspects of innate and adaptive immunity, application of cytokines in cancer immunotherapy has attracted considerable attention.


Application of cytokines in the treatment of cancer is limited by their pleiotropic effects, toxicity at required clinical doses, and unfavorable pharmacokinetic properties. Recent advances in protein engineering have now made it possible to improve the undesirable properties of these biologics. Additionally, the recent breakthroughs in the treatment of cancer, using immunotherapies, have renewed interest in evaluating cytokines and their variants in combination regiments to improve immunity against malignant cells.


Cytokine Immunotherapy Quantitative pharmacology Stimulus-response Combination therapy 


Compliance with Ethical Standards

Conflict of Interest

a. All authors are currently employees of Ascendis Pharma.

b. This article does not contain any studies with human or animal subjects performed by any of the authors.


  1. 1.
    Scheller J, Engelowski E, Moll JM, Floss DM. Immunoreceptor engineering and synthetic cytokine signaling for therapeutics. Trends Immunol. 2019;40(3):258–72.CrossRefPubMedGoogle Scholar
  2. 2.
    Garcia-Martinez E, Smith M, Buque A, Aranda F, de la Pena FA, Ivars A, et al. Trial watch: immunostimulation with recombinant cytokines for cancer therapy. Oncoimmunology. 2018;7(6):e1433982.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rider P, Carmi Y, Cohen I. Biologics for targeting inflammatory cytokines, clinical uses, and limitations. Int J Cell Biol. 2016;2016:9259646.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wrangle JM, Patterson A, Johnson CB, Neitzke DJ, Mehrotra S, Denlinger CE, et al. IL-2 and beyond in cancer immunotherapy. J Interf Cytokine Res. 2018;38(2):45–68.CrossRefGoogle Scholar
  5. 5.
    Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci. 1957;147(927):258–67.CrossRefPubMedGoogle Scholar
  6. 6.
    Pestka S. The interferons: 50 years after their discovery, there is much more to learn. J Biol Chem. 2007;282(28):20047–51.CrossRefPubMedGoogle Scholar
  7. 7.
    Gresser ION, Bourali-Maury C. Inhibition by interferon preparations of a solid malignant tumour and pulmonary metastases in mice. Nat New Biol. 1972;236:78.CrossRefPubMedGoogle Scholar
  8. 8.
    Lee S, Margolin K. Cytokines in cancer immunotherapy. Cancers (Basel). 2011;3(4):3856–93.CrossRefGoogle Scholar
  9. 9.
    Chang C-CJ, Chen TT, Cox BW, Dawes GN, Stemmer WPC, Punnonen J, et al. Evolution of a cytokine using DNA family shuffling. Nat Biotechnol. 1999;17:793.CrossRefPubMedGoogle Scholar
  10. 10.
    Garcin G, Paul F, Staufenbiel M, Bordat Y, Van der Heyden J, Wilmes S, et al. High efficiency cell-specific targeting of cytokine activity. Nat Commun. 2014;5:3016.CrossRefPubMedGoogle Scholar
  11. 11.
    Mendoza JL, Escalante NK, Jude KM, Sotolongo Bellon J, Su L, Horton TM, et al. Structure of the IFNγ receptor complex guides design of biased agonists. Nature. 2019;567(7746):56–60.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Eggermont AM, Suciu S, Santinami M, Testori A, Kruit WH, Marsden J, et al. Adjuvant therapy with pegylated interferon alfa-2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomised phase III trial. Lancet. 2008;372(9633):117–26.CrossRefPubMedGoogle Scholar
  13. 13.
    Yang Z, Zhuang L, Yang L, Chen X. Efficacy and tolerability of peginterferon alpha -2a and peginterferon alpha -2b, both plus ribavirin, for chronic hepatitis C: a meta-analysis of randomized controlled trials. Gastroenterol Res Pract. 2013;2013:739029.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Caliceti P. Pharmacokinetics of pegylated interferons: what is misleading? Dig Liver Dis. 2004;36(Suppl 3):S334–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Heathcote EJ, Shiffman ML, Cooksley WG, Dusheiko GM, Lee SS, Balart L, et al. Peginterferon alfa-2a in patients with chronic hepatitis C and cirrhosis. N Engl J Med. 2000;343(23):1673–80.CrossRefPubMedGoogle Scholar
  16. 16.
    Shanafelt AB, Lin Y, Shanafelt MC, Forte CP, Dubois-Stringfellow N, Carter C, et al. A T-cell-selective interleukin 2 mutein exhibits potent antitumor activity and is well tolerated in vivo. Nat Biotechnol. 2000;18(11):1197–202.CrossRefPubMedGoogle Scholar
  17. 17.
    Margolin K, Atkins MB, Dutcher JP, Ernstoff MS, Smith JW 2nd, Clark JI, et al. Phase I trial of BAY 50–4798, an interleukin-2-specific agonist in advanced melanoma and renal cancer. Clin Cancer Res. 2007;13(11):3312–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Rochman Y, Spolski R, Leonard WJ. New insights into the regulation of T cells by gamma(c) family cytokines. Nat Rev Immunol. 2009;9(7):480–90.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Abbas AK, Trotta E, Simeonov DR, Marson A, Bluestone JA. Revisiting IL-2: Biology and therapeutic prospects. Sci Immunol. 2018;3(25):eaat1482.CrossRefPubMedGoogle Scholar
  20. 20.
    Van Gool F, Molofsky AB, Morar MM, Rosenzwajg M, Liang HE, Klatzmann D, et al. Interleukin-5-producing group 2 innate lymphoid cells control eosinophilia induced by interleukin-2 therapy. Blood. 2014;124(24):3572–6.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Krieg C, Letourneau S, Pantaleo G, Boyman O. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc Natl Acad Sci U S A. 2010;107(26):11906–11.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ghasemi R, Lazear E, Wang X, Arefanian S, Zheleznyak A, Carreno BM, et al. Selective targeting of IL-2 to NKG2D bearing cells for improved immunotherapy. Nat Commun. 2016;7:12878.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Klein C, Waldhauer I, Nicolini VG, Freimoser-Grundschober A, Nayak T, Vugts DJ, et al. Cergutuzumab amunaleukin (CEA-IL2v), a CEA-targeted IL-2 variant-based immunocytokine for combination cancer immunotherapy: Overcoming limitations of aldesleukin and conventional IL-2-based immunocytokines. Oncoimmunology. 2017;6(3):e1277306.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bentebibel SE, Hurwitz ME, Bernatchez C, Haymaker C, Hudgens CW, Kluger HM, et al. A first-in-human study and biomarker analysis of NKTR-214, a novel IL-2-receptor beta/gamma (betagamma)-biased cytokine, in patients with advanced or metastatic solid tumors. Cancer Discov. 2019;9(6):711–21.CrossRefPubMedGoogle Scholar
  25. 25.
    Charych DH, Hoch U, Langowski JL, Lee SR, Addepalli MK, Kirk PB, et al. NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin Cancer Res. 2016;22(3):680–90.CrossRefPubMedGoogle Scholar
  26. 26.
    Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. J Immunol. 2014;192(12):5451–8.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Onder L, Narang P, Scandella E, Chai Q, Iolyeva M, Hoorweg K, et al. IL-7-producing stromal cells are critical for lymph node remodeling. Blood. 2012;120(24):4675–83.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Maeurer MJ, Walter W, Martin D, Zitvogel L, Elder E, Storkus W, et al. Interleukin-7 (IL-7) in colorectal cancer: IL-7 is produced by tissues from colorectal cancer and promotes preferential expansion of tumour infiltrating lymphocytes. Scand J Immunol. 1997;45(2):182–92.CrossRefPubMedGoogle Scholar
  29. 29.
    Puel A, Ziegler SF, Buckley RH, Leonard WJ. Defective IL7R expression in T(−)B(+)NK(+) severe combined immunodeficiency. Nat Genet. 1998;20(4):394–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Okamoto Y, Douek DC, McFarland RD, Koup RA. Effects of exogenous interleukin-7 on human thymus function. Blood. 2002;99(8):2851–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Silva SL, Albuquerque AS, Matoso P, Charmeteau-de-Muylder B, Cheynier R, Ligeiro D, et al. IL-7-induced proliferation of human naive CD4 T-cells relies on continued thymic activity. Front Immunol. 2017;8:20.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol. 2003;4(12):1191–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Cosenza L, Gorgun G, Urbano A, Foss F. Interleukin-7 receptor expression and activation in nonhaematopoietic neoplastic cell lines. Cell Signal. 2002;14(4):317–25.CrossRefPubMedGoogle Scholar
  34. 34.
    Zenatti PP, Ribeiro D, Li W, Zuurbier L, Silva MC, Paganin M, et al. Oncogenic IL7R gain-of-function mutations in childhood T cell acute lymphoblastic leukemia. Nat Genet. 2011;43(10):932–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Liu ZH, Wang MH, Ren HJ, Qu W, Sun LM, Zhang QF, et al. Interleukin 7 signaling prevents apoptosis by regulating bcl-2 and bax via the p53 pathway in human non-small cell lung cancer cells. Int J Clin Exp Pathol. 2014;7(3):870–81.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Ming J, Zhang QF, Jiang YD, Jiang GC, Qiu XS. Interleukin 7 and its receptor promote cell proliferation and induce lymphangiogenesis in non-small cell lung cancer. Zhonghua Bing Li Xue Za Zhi. 2012;41(8):511–8.PubMedGoogle Scholar
  37. 37.
    ElKassar N, Gress RE. An overview of IL-7 biology and its use in immunotherapy. J Immunotoxicol. 2010;7(1):1–7.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Robinson TO, Schluns KS. The potential and promise of IL-15 in immuno-oncogenic therapies. Immunol Lett. 2017;190:159–68.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Budagian V, Bulanova E, Paus R, Bulfone-Paus S. IL-15/IL-15 receptor biology: a guided tour through an expanding universe. Cytokine Growth Factor Rev. 2006;17(4):259–80.CrossRefPubMedGoogle Scholar
  40. 40.
    Knudson KM, Hicks KC, Alter S, Schlom J, Gameiro SR. Mechanisms involved in IL-15 superagonist enhancement of anti-PD-L1 therapy. J Immunother Cancer. 2019;7(1):82.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rhode PR, Egan JO, Xu W, Hong H, Webb GM, Chen X, et al. Comparison of the superagonist complex, ALT-803, to IL15 as cancer immunotherapeutics in animal models. Cancer Immunol Res. 2016;4(1):49–60.CrossRefPubMedGoogle Scholar
  42. 42.
    Epardaud M, Elpek KG, Rubinstein MP, Yonekura AR, Bellemare-Pelletier A, Bronson R, et al. Interleukin-15/interleukin-15R alpha complexes promote destruction of established tumors by reviving tumor-resident CD8+ T cells. Cancer Res. 2008;68(8):2972–83.CrossRefPubMedGoogle Scholar
  43. 43.
    Chen Y, Sun C, Landoni E, Metelitsa L, Dotti G, Savoldo B. Eradication of neuroblastoma by T Cells redirected with an optimized GD2-specific chimeric antigen receptor and interleukin-15. Clin Cancer Res. 2019Google Scholar
  44. 44.
    Romee R, Cooley S, Berrien-Elliott MM, Westervelt P, Verneris MR, Wagner JE, et al. First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation. Blood. 2018;131(23):2515–27.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wrangle JM, Velcheti V, Patel MR, Garrett-Mayer E, Hill EG, Ravenel JG, et al. ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol. 2018;19(5):694–704.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Waldmann TA, Lugli E, Roederer M, Perera LP, Smedley JV, Macallister RP, et al. Safety (toxicity), pharmacokinetics, immunogenicity, and impact on elements of the normal immune system of recombinant human IL-15 in rhesus macaques. Blood. 2011;117(18):4787–95.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Walter MR. The molecular basis of IL-10 function: from receptor structure to the onset of signaling. Curr Top Microbiol Immunol. 2014;380:191–212.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Berti FCB, Pereira APL, Trugilo KP, Cebinelli GCM, Silva L, Lozovoy MAB, et al. IL-10 gene polymorphism C.-592C>A increases HPV infection susceptibility and influences IL-10 levels in HPV infected women. Infect Genet Evol. 2017;53:128–34.CrossRefPubMedGoogle Scholar
  49. 49.
    Williams LM, Ricchetti G, Sarma U, Smallie T, Foxwell BM. Interleukin-10 suppression of myeloid cell activation--a continuing puzzle. Immunology. 2004;113(3):281–92.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    de Waal MR, Haanen J, Spits H, Roncarolo MG, te Velde A, Figdor C, et al. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med. 1991;174(4):915–24.CrossRefGoogle Scholar
  51. 51.
    Punnonen J, de Waal MR, van Vlasselaer P, Gauchat JF, de Vries JE. IL-10 and viral IL-10 prevent IL-4-induced IgE synthesis by inhibiting the accessory cell function of monocytes. J Immunol. 1993;151(3):1280–9.PubMedGoogle Scholar
  52. 52.
    Itoh K, Hirohata S. The role of IL-10 in human B cell activation, proliferation, and differentiation. J Immunol. 1995;154(9):4341–50.PubMedGoogle Scholar
  53. 53.
    Taga K, Tosato G. IL-10 inhibits human T cell proliferation and IL-2 production. J Immunol. 1992;148(4):1143–8.PubMedGoogle Scholar
  54. 54.
    Mumm JB, Emmerich J, Zhang X, Chan I, Wu L, Mauze S, et al. IL-10 elicits IFNgamma-dependent tumor immune surveillance. Cancer Cell. 2011;20(6):781–96.CrossRefPubMedGoogle Scholar
  55. 55.
    Emmerich J, Mumm JB, Chan IH, LaFace D, Truong H, McClanahan T, et al. IL-10 directly activates and expands tumor-resident CD8(+) T cells without de novo infiltration from secondary lymphoid organs. Cancer Res. 2012;72(14):3570–81.CrossRefPubMedGoogle Scholar
  56. 56.
    Naing A, Infante JR, Papadopoulos KP, Chan IH, Shen C, Ratti NP, et al. PEGylated IL-10 (pegilodecakin) induces systemic immune activation, CD8(+) T cell invigoration and polyclonal T cell expansion in cancer patients. Cancer Cell. 2018;34(5):775–91 e3.CrossRefPubMedGoogle Scholar
  57. 57.
    Watford WT, Moriguchi M, Morinobu A, O’Shea JJ. The biology of IL-12: coordinating innate and adaptive immune responses. Cytokine Growth Factor Rev. 2003;14(5):361–8.CrossRefPubMedGoogle Scholar
  58. 58.
    Li Q, Carr AL, Donald EJ, Skitzki JJ, Okuyama R, Stoolman LM, et al. Synergistic effects of IL-12 and IL-18 in skewing tumor-reactive T-cell responses towards a type 1 pattern. Cancer Res. 2005;65(3):1063–70.PubMedGoogle Scholar
  59. 59.
    Kannan Y, Yu J, Raices RM, Seshadri S, Wei M, Caligiuri MA, et al. IkappaBzeta augments IL-12- and IL-18-mediated IFN-gamma production in human NK cells. Blood. 2011;117(10):2855–63.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Tominaga K, Yoshimoto T, Torigoe K, Kurimoto M, Matsui K, Hada T, et al. IL-12 synergizes with IL-18 or IL-1beta for IFN-gamma production from human T cells. Int Immunol. 2000;12(2):151–60.CrossRefPubMedGoogle Scholar
  61. 61.
    Witold L, Zagożdżon R, and Jakobisiak M. Interleukin 12: antitumor activity and immunotherapeutic potential in oncology: Springer Nature 2016.Google Scholar
  62. 62.
    Strauss J, Heery CR, Kim JW, Jochems C, Donahue RN, Montgomery AS, et al. First-in-human phase I trial of a tumor-targeted cytokine (NHS-IL12) in subjects with metastatic solid tumors. Clin Cancer Res. 2019;25(1):99–109.CrossRefPubMedGoogle Scholar
  63. 63.
    Rudman SM, Jameson MB, McKeage MJ, Savage P, Jodrell DI, Harries M, et al. A phase 1 study of AS1409, a novel antibody-cytokine fusion protein, in patients with malignant melanoma or renal cell carcinoma. Clin Cancer Res. 2011;17(7):1998–2005.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Burkart C, Mukhopadhyay A, Shirley SA, Connolly RJ, Wright JH, Bahrami A, et al. Improving therapeutic efficacy of IL-12 intratumoral gene electrotransfer through novel plasmid design and modified parameters. Gene Ther. 2018;25(2):93–103.CrossRefPubMedGoogle Scholar
  65. 65.
    Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol. 2015;15(8):471–85.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Pestka S. Purification and cloning of interferon alpha. Curr Top Microbiol Immunol. 2007;316:23–37.PubMedGoogle Scholar
  67. 67.
    Krause CD, Pestka S. Historical developments in the research of interferon receptors. Cytokine Growth Factor Rev. 2007;18(5–6):473–82.CrossRefPubMedGoogle Scholar
  68. 68.
    Schreiber G. The molecular basis for differential type I interferon signaling. J Biol Chem. 2017;292(18):7285–94.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A, Sanmamed MF, Le Bon A, Melero I. Direct effects of type I interferons on cells of the immune system. Clin Cancer Res. 2011;17(9):2619–27.CrossRefPubMedGoogle Scholar
  70. 70.
    de Weerd NA, Nguyen T. The interferons and their receptors--distribution and regulation. Immunol Cell Biol. 2012;90(5):483–91.CrossRefPubMedGoogle Scholar
  71. 71.
    Rodriguez-Villanueva J, McDonnell TJ. Induction of apoptotic cell death in non-melanoma skin cancer by interferon-alpha. Int J Cancer. 1995;61(1):110–4.CrossRefPubMedGoogle Scholar
  72. 72.
    Kotredes KP, Gamero AM. Interferons as inducers of apoptosis in malignant cells. J Interf Cytokine Res. 2013;33(4):162–70.CrossRefGoogle Scholar
  73. 73.
    Zhang T, Sun HC, Zhou HY, Luo JT, Zhang BL, Wang P, et al. Interferon alpha inhibits hepatocellular carcinoma growth through inducing apoptosis and interfering with adhesion of tumor endothelial cells. Cancer Lett. 2010;290(2):204–10.CrossRefPubMedGoogle Scholar
  74. 74.
    Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Perez-Gracia JL, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer. 2019;120(1):6–15.CrossRefPubMedGoogle Scholar
  75. 75.
    Vazquez-Lombardi R, Roome B, Christ D. Molecular engineering of therapeutic cytokines. Antibodies. 2013;2(3):426–51.CrossRefGoogle Scholar
  76. 76.
    Waldmann TA. Cytokines in cancer immunotherapy. Cold Spring Harb Perspect Biol. 2018;10(12):a028472.CrossRefPubMedGoogle Scholar
  77. 77.
    Gibbons JA, Luo ZP, Hannon ER, Braeckman RA, Young JD. Quantitation of the renal clearance of interleukin-2 using nephrectomized and ureter-ligated rats. J Pharmacol Exp Ther. 1995;272(1):119–25.PubMedGoogle Scholar
  78. 78.
    Mager DE, Neuteboom B, Efthymiopoulos C, Munafo A, Jusko WJ. Receptor-mediated pharmacokinetics and pharmacodynamics of interferon-beta1a in monkeys. J Pharmacol Exp Ther. 2003;306(1):262–70.CrossRefPubMedGoogle Scholar
  79. 79.
    Kobayashi H, Carrasquillo JA, Paik CH, Waldmann TA, Tagaya Y. Differences of biodistribution, pharmacokinetics, and tumor targeting between interleukins 2 and 15. Cancer Res. 2000;60(13):3577–83.PubMedGoogle Scholar
  80. 80.
    Knauf MJ, Bell DP, Hirtzer P, Luo ZP, Young JD, Katre NV. Relationship of effective molecular size to systemic clearance in rats of recombinant interleukin-2 chemically modified with water-soluble polymers. J Biol Chem. 1988;263(29):15064–70.PubMedGoogle Scholar
  81. 81.
    Li Z, Krippendorff BF, Sharma S, Walz AC, Lave T, Shah DK. Influence of molecular size on tissue distribution of antibody fragments. MAbs. 2016;8(1):113–9.CrossRefPubMedGoogle Scholar
  82. 82.
    Alvarez HM, So OY, Hsieh S, Shinsky-Bjorde N, Ma H, Song Y, et al. Effects of PEGylation and immune complex formation on the pharmacokinetics and biodistribution of recombinant interleukin 10 in mice. Drug Metab Dispos. 2012;40(2):360–73.CrossRefPubMedGoogle Scholar
  83. 83.
    Chen SA, Sawchuk RJ, Brundage RC, Horvath C, Mendenhall HV, Gunther RA, et al. Plasma and lymph pharmacokinetics of recombinant human interleukin-2 and polyethylene glycol-modified interleukin-2 in pigs. J Pharmacol Exp Ther. 2000;293(1):248–59.PubMedGoogle Scholar
  84. 84.
    Konrad MW, Hemstreet G, Hersh EM, Mansell PW, Mertelsmann R, Kolitz JE, et al. Pharmacokinetics of recombinant interleukin 2 in humans. Cancer Res. 1990;50(7):2009–17.PubMedGoogle Scholar
  85. 85.
    Anderson PM, Sorenson MA. Effects of route and formulation on clinical pharmacokinetics of interleukin-2. Clin Pharmacokinet. 1994;27(1):19–31.CrossRefPubMedGoogle Scholar
  86. 86.
    Sadekar S, Figueroa I, Tabrizi M. Antibody drug conjugates: application of quantitative pharmacology in modality design and target selection. AAPS J. 2015;17(4):828–36.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Tabrizi M, Funelas C, Suria H. Application of quantitative pharmacology in development of therapeutic monoclonal antibodies. AAPS J. 2010;12(4):592–601.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Mager DE, Jusko WJ. Receptor-mediated pharmacokinetic/pharmacodynamic model of interferon-beta 1a in humans. Pharm Res. 2002;19(10):1537–43.CrossRefPubMedGoogle Scholar
  89. 89.
    Fernandez-Botran R. Soluble cytokine receptors: their role in immunoregulation. FASEB J. 1991;5(11):2567–74.CrossRefPubMedGoogle Scholar
  90. 90.
    Levine SJ. Molecular mechanisms of soluble cytokine receptor generation. J Biol Chem. 2008;283(21):14177–81.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Levine SJ. Mechanisms of soluble cytokine receptor generation. J Immunol. 2004;173(9):5343–8.CrossRefPubMedGoogle Scholar
  92. 92.
    Berghella AM, Pellegrini P, Del Beato T, Marini M, Tomei E, Adorno D, et al. The significance of an increase in soluble interleukin-2 receptor level in colorectal cancer and its biological regulating role in the physiological switching of the immune response cytokine network from TH1 to TH2 and back. Cancer Immunol Immunother. 1998;45(5):241–9.CrossRefPubMedGoogle Scholar
  93. 93.
    Jones SA, Rose-John S. The role of soluble receptors in cytokine biology: the agonistic properties of the sIL-6R/IL-6 complex. Biochim Biophys Acta. 2002;1592(3):251–63.CrossRefPubMedGoogle Scholar
  94. 94.
    Remi M, Vanmaris GTR. Biological role of the soluble interleukin-2 receptor in sarcoidosis. SVDLD. 2017;34(2):122–9.Google Scholar
  95. 95.
    Crawley AM, Faucher S, Angel JB. Soluble IL-7R alpha (sCD127) inhibits IL-7 activity and is increased in HIV infection. J Immunol. 2010;184(9):4679–87.CrossRefPubMedGoogle Scholar
  96. 96.
    Lundstrom W, Highfill S, Walsh ST, Beq S, Morse E, Kockum I, et al. Soluble IL7Ralpha potentiates IL-7 bioactivity and promotes autoimmunity. Proc Natl Acad Sci U S A. 2013;110(19):E1761–70.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Monti P, Brigatti C, Krasmann M, Ziegler AG, Bonifacio E. Concentration and activity of the soluble form of the interleukin-7 receptor alpha in type 1 diabetes identifies an interplay between hyperglycemia and immune function. Diabetes. 2013;62(7):2500–8.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Cabrera R, Ararat M, Eksioglu EA, Cao M, Xu Y, Wasserfall C, et al. Influence of serum and soluble CD25 (sCD25) on regulatory and effector T-cell function in hepatocellular carcinoma. Scand J Immunol. 2010;72(4):293–301.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Russell SE, Moore AC, Fallon PG, Walsh PT. Soluble IL-2Ralpha (sCD25) exacerbates autoimmunity and enhances the development of Th17 responses in mice. PLoS One. 2012;7(10):e47748.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Yang ZZ, Grote DM, Ziesmer SC, Manske MK, Witzig TE, Novak AJ, et al. Soluble IL-2Ralpha facilitates IL-2-mediated immune responses and predicts reduced survival in follicular B-cell non-Hodgkin lymphoma. Blood. 2011;118(10):2809–20.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Kirchner GI, Franzke A, Buer J, Beil W, Probst-Kepper M, Wittke F, et al. Pharmacokinetics of recombinant human interleukin-2 in advanced renal cell carcinoma patients following subcutaneous application. Br J Clin Pharmacol. 1998;46(1):5–10.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Bogner MP, Voss SD, Bechhofer R, Hank JA, Roper M, Poplack D, et al. Serum CD25 levels during interleukin-2 therapy: dose dependence and correlations with clinical toxicity and lymphocyte surface sCD25 expression. J Immunother. 1991). 1992;11(2):111–8.CrossRefGoogle Scholar
  103. 103.
    Tabrizi M, Bornstein GG, Suria H. Biodistribution mechanisms of therapeutic monoclonal antibodies in health and disease. AAPS J. 2010;12(1):33–43.CrossRefPubMedGoogle Scholar
  104. 104.
    Hsu WC, Chien YC, Chang CH, Yuan TT, Lee TW, Hwang JJ. Characteristic comparison between 131I-interferon-alpha and 131I-interferon-alpha-immunoglobulin-Fc hybrid protein in rats using molecular imaging. In Vivo. 2015;29(4):445–52.PubMedGoogle Scholar
  105. 105.
    Tabrizi M, Zhang D, Ganti V, Azadi G. Integrative pharmacology: advancing development of effective immunotherapies. AAPS J. 2018;20(4):66.CrossRefPubMedGoogle Scholar
  106. 106.
    Marshall HT, Djamgoz MBA. Immuno-oncology: emerging targets and combination therapies. Front Oncol. 2018;8:315.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Bornstein GG, Klakamp SL, Andrews L, Boyle WJ, Tabrizi M. Surrogate approaches in development of monoclonal antibodies. Drug Discov Today. 2009;14(23–24):1159–65.CrossRefPubMedGoogle Scholar
  108. 108.
    Jusko WJ. Moving from basic toward systems pharmacodynamic models. J Pharm Sci. 2013;102(9):2930–40.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Yao Z, Krzyzanski W, Jusko WJ. Assessment of basic indirect pharmacodynamic response models with physiological limits. J Pharmacokinet Pharmacodyn. 2006;33(2):167–93.CrossRefPubMedGoogle Scholar
  110. 110.
    Chakraborty A, Blum RA, Cutler DL, Jusko WJ. Pharmacoimmunodynamic interactions of interleukin-10 and prednisone in healthy volunteers. Clin Pharmacol Ther. 1999;65(3):304–18.CrossRefPubMedGoogle Scholar
  111. 111.
    Dayneka NL, Garg V, Jusko WJ. Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm. 1993;21(4):457–78.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Sharma A, Jusko WJ. Characterization of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm. 1996;24(6):611–35.CrossRefPubMedGoogle Scholar
  113. 113.
    Sharma A, Jusko WJ. Characteristics of indirect pharmacodynamic models and applications to clinical drug responses. Br J Clin Pharmacol. 1998;45(3):229–39.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Mager DE, Jusko WJ. Pharmacodynamic modeling of time-dependent transduction systems. Clin Pharmacol Ther. 2001;70(3):210–6.CrossRefPubMedGoogle Scholar
  115. 115.
    Mager DE, Wyska E, Jusko WJ. Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos. 2003;31(5):510–8.CrossRefPubMedGoogle Scholar
  116. 116.
    Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol. 2018;18(3):153–67.CrossRefGoogle Scholar
  117. 117.
    Saha D, Martuza RL, Rabkin SD. Curing glioblastoma: oncolytic HSV-IL12 and checkpoint blockade. Oncoscience. 2017;4(7–8):67–9.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Berraondo P, Etxeberria I, Ponz-Sarvise M, Melero I. Revisiting Interleukin-12 as a cancer immunotherapy agent. Clin Cancer Res. 2018;24(12):2716–8.CrossRefPubMedGoogle Scholar
  119. 119.
    Fallon JK, Vandeveer AJ, Schlom J, Greiner JW. Enhanced antitumor effects by combining an IL-12/anti-DNA fusion protein with avelumab, an anti-PD-L1 antibody. Oncotarget. 2017;8(13):20558–71.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Wu Y, Tian Z, Wei H. Developmental and functional control of natural killer cells by cytokines. Front Immunol. 2017;8:930.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Miller JS, Morishima C, McNeel DG, Patel MR, Kohrt HEK, Thompson JA, et al. A first-in-human phase I study of subcutaneous outpatient recombinant human IL15 (rhIL15) in adults with advanced solid tumors. Clin Cancer Res. 2018;24(7):1525–35.CrossRefPubMedGoogle Scholar
  122. 122.
    Atkins MB, Hodi FS, Thompson JA, McDermott DF, Hwu WJ, Lawrence DP, et al. Pembrolizumab plus pegylated interferon alfa-2b or ipilimumab for advanced melanoma or renal cell carcinoma: dose-finding results from the phase Ib KEYNOTE-029 study. Clin Cancer Res. 2018;24(8):1805–15.CrossRefPubMedGoogle Scholar
  123. 123.
    Davar D, Wang H, Chauvin JM, Pagliano O, Fourcade JJ, Ka M, et al. Phase Ib/II study of pembrolizumab and pegylated-interferon alfa-2b in advanced melanoma. J Clin Oncol. 2018;JCO1800632.Google Scholar
  124. 124.
    Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 2017;19(6):1189–201.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Musante CJ, Ramanujan S, Schmidt BJ, Ghobrial OG, Lu J, Heatherington AC. Quantitative systems pharmacology: a case for disease models. Clin Pharmacol Ther. 2017;101(1):24–7.CrossRefPubMedGoogle Scholar
  126. 126.
    Knight-Schrijver VR, Chelliah V, Cucurull-Sanchez L, Le Novere N. The promises of quantitative systems pharmacology modelling for drug development. Comput Struct Biotechnol J. 2016;14:363–70.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Kalra P, Brandl J, Gaub T, Niederalt C, Lippert J, Sahle S, et al. Quantitative systems pharmacology of interferon alpha administration: a multi-scale approach. PLoS One. 2019;14(2):e0209587.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Rhrissorrakrai K, Belcastro V, Bilal E, Norel R, Poussin C, Mathis C, et al. Understanding the limits of animal models as predictors of human biology: lessons learned from the sbv IMPROVER species translation challenge. Bioinformatics. 2015;31(4):471–83.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Juha Punnonen
    • 1
  • David Rosen
    • 1
  • Luis Zuniga
    • 1
  • Kennett Sprogøe
    • 2
  • Mohammad Tabrizi
    • 1
    Email author
  1. 1.AscendisPharma Inc.Palo AltoUSA
  2. 2.Ascendis Pharma A/SHellerupDenmark

Personalised recommendations