Skip to main content

Dietary Additives and Supplements Revisited: the Fewer, the Safer for Gut and Liver Health

An Author Correction to this article was published on 01 July 2019

This article has been updated

Abstract

Purpose of Review

The supplementation of dietary additives into processed foods has exponentially increased in the past few decades. Similarly, the incidence rates of various diseases, including metabolic syndrome, gut dysbiosis, and hepatocarcinogenesis, have been elevating. Current research reveals that there is a positive association between food additives and these pathophysiological diseases. This review highlights the research published within the past 5 years that elucidate and update the effects of dietary supplements on liver and intestinal health.

Recent Findings

Some of the key findings include: enterocyte dysfunction of fructose clearance causes non-alcoholic fatty liver disease (NAFLD); non-caloric sweeteners are hepatotoxic; dietary emulsifiers instigate gut dysbiosis and hepatocarcinogenesis; and certain prebiotics can induce cholestatic hepatocellular carcinoma (HCC) in gut dysbiotic mice. Overall, multiple reports suggest that the administration of purified, dietary supplements could cause functional damage to both the liver and gut.

Summary

The extraction of bioactive components from natural resources was considered a brilliant method to modulate human health. However, current research highlights that such purified components may negatively affect individuals with microbiotal dysbiosis, resulting in a deeper break of the symbiotic relationship between the host and gut microbiota, which can lead to repercussions on gut and liver health. Therefore, ingestion of these dietary additives should not go without some caution!

This is a preview of subscription content, access via your institution.

Fig. 1

Change history

  • 01 July 2019

    The original version of this article contained a mistake. The statement “VSL#3 (commercialized as Visbiome®)” is not correct. VSL#3® is not commercialized under the brand Visbiome®. It is currently available in the market with the same brand and is being sold in more than 30 countries.

References

  1. Hrncirova L, Hudcovic T, Sukova E, Machova V, Trckova E, Krejsek J, et al. Human gut microbes are susceptible to antimicrobial food additives in vitro. Folia Microbiol (Praha); 2019;32:99–103.

  2. Administration USFaD. CFR - Code of Federal Regulations Title 21, Sec. 184.1866 High fructose corn syrup 2018 [Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1866. Accessed 5 Apr 2019.

  3. Administration USFaD. Additional information about high-intensity sweeteners permitted for use in food in the United States 2018 [Available from: https://www.fda.gov/food/ingredientspackaginglabeling/foodadditivesingredients/ucm397725.htm. Accessed 5 Apr 2019.

  4. Administration USFaD. CFR - Code of Federal Regulations Title 21, Sec. 182.1745 sodium carboxymethylcellulose 2018 [Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=182.1745. Accessed 5 Apr 2019.

  5. Administration USFaD. CFR - code of federal regulations title 21, Sec. 172.840 polysorbate 80. 2018 [Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=172.840. Accessed 5 Apr 2019

  6. Administration USFaD. CFR - code of federal regulations title 21, Sec. 184.1400 lecithin 2018 [Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1400. Accessed 5 Apr 2019.

  7. Administration USFaD. Microorganisms & microbial-derived ingredients used in food (partial list) 2018 [Available from: https://www.fda.gov/food/ingredientspackaginglabeling/gras/microorganismsmicrobialderivedingredients/default.htm. Accessed 7 Apr 2019.

  8. Kumar H, Salminen S, Verhagen H, Rowland I, Heimbach J, Banares S, et al. Novel probiotics and prebiotics: road to the market. Curr Opin Biotechnol. 2015;32:99–103.

    Article  CAS  PubMed  Google Scholar 

  9. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiang JW, Chen XH, Ren Z, Zheng SS. Gut microbial dysbiosis associates hepatocellular carcinoma via the gut-liver axis. Hepatobiliary Pancreat Dis Int. 2019;18(1):19–27.

    Article  PubMed  Google Scholar 

  11. Roderburg C, Luedde T. The role of the gut microbiome in the development and progression of liver cirrhosis and hepatocellular carcinoma. Gut Microbes. 2014;5(4):441–5.

    Article  PubMed  Google Scholar 

  12. Tao X, Wang N, Qin W. Gut microbiota and hepatocellular carcinoma. Gastrointest Tumors. 2015;2(1):33–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Asgharpour A, Cazanave SC, Pacana T, Seneshaw M, Vincent R, Banini BA, et al. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J Hepatol. 2016;65(3):579–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hara E. Relationship between obesity, gut microbiome and hepatocellular carcinoma development. Dig Dis. 2015;33(3):346–50.

    Article  PubMed  Google Scholar 

  15. Newens KJ, Walton J. A review of sugar consumption from nationally representative dietary surveys across the world. J Hum Nutr Diet. 2016;29(2):225–40.

    Article  CAS  PubMed  Google Scholar 

  16. White JS, Hobbs LJ, Fernandez S. Fructose content and composition of commercial HFCS-sweetened carbonated beverages. Int J Obes. 2015;39(1):176–82.

    Article  CAS  Google Scholar 

  17. Jensen T, Abdelmalek MF, Sullivan S, Nadeau KJ, Green M, Roncal C, et al. Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J Hepatol. 2018;68(5):1063–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pereira RM, Botezelli JD, da Cruz Rodrigues KC, Mekary RA, Cintra DE, Pauli JR, et al. Fructose consumption in the development of obesity and the effects of different protocols of physical exercise on the hepatic metabolism. Nutrients. 2017;9(4):405.

  19. Komnenov D, Levanovich PE, Rossi NF. Hypertension associated with fructose and high salt: renal and sympathetic mechanisms. Nutrients. 2019;11(3):569.

  20. Hsu CN, Lin YJ, Hou CY, Tain YL. maternal administration of probiotic or prebiotic prevents male adult rat offspring against developmental programming of hypertension induced by high fructose consumption in pregnancy and lactation. Nutrients. 2018;10(9):1229.

  21. Astbury S, Song A, Zhou M, Nielsen B, Hoedl A, Willing BP, et al. High fructose intake during pregnancy in rats influences the maternal microbiome and gut development in the offspring. Front Genet. 2018;9:203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Volynets V, Louis S, Pretz D, Lang L, Ostaff MJ, Wehkamp J, et al. Intestinal barrier function and the gut microbiome are differentially affected in mice fed a Western-style diet or drinking water supplemented with fructose. J Nutr. 2017;147(5):770–80.

    Article  CAS  PubMed  Google Scholar 

  23. Ozawa T, Maehara N, Kai T, Arai S, Miyazaki T. Dietary fructose-induced hepatocellular carcinoma development manifested in mice lacking apoptosis inhibitor of macrophage (AIM). Genes Cells. 2016;21(12):1320–32.

    Article  CAS  PubMed  Google Scholar 

  24. Dowman JK, Hopkins LJ, Reynolds GM, Nikolaou N, Armstrong MJ, Shaw JC, et al. Development of hepatocellular carcinoma in a murine model of nonalcoholic steatohepatitis induced by use of a high-fat/fructose diet and sedentary lifestyle. Am J Pathol. 2014;184(5):1550–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schwarz JM, Noworolski SM, Erkin-Cakmak A, Korn NJ, Wen MJ, Tai VW, et al. Effects of dietary fructose restriction on liver fat, de novo lipogenesis, and insulin kinetics in children with obesity. Gastroenterology. 2017;153(3):743–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ibarra-Reynoso LDR, Lopez-Lemus HL, Garay-Sevilla ME, Malacara JM. Effect of restriction of foods with high fructose corn syrup content on metabolic indices and fatty liver in obese children. Obes Facts. 2017;10(4):332–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lustig RH, Mulligan K, Noworolski SM, Tai VW, Wen MJ, Erkin-Cakmak A, et al. Isocaloric fructose restriction and metabolic improvement in children with obesity and metabolic syndrome. Obesity (Silver Spring). 2016;24(2):453–60.

    Article  CAS  Google Scholar 

  28. Kanwal F, Kramer JR, Mapakshi S, Natarajan Y, Chayanupatkul M, Richardson PA, et al. Risk of hepatocellular cancer in patients with non-alcoholic fatty liver disease. Gastroenterology. 2018;155(6):1828–37 e2.

    Article  PubMed  Google Scholar 

  29. Goncalves MD, Lu C, Tutnauer J, Hartman TE, Hwang S-K, Murphy CJ, et al. High-fructose corn syrup enhances intestinal tumor growth in mice. Science. 2019;363(6433):1345–9.

    Article  CAS  PubMed  Google Scholar 

  30. Herman MA, Samuel VT. The sweet path to metabolic demise: fructose and lipid synthesis. Trends Endocrinol Metab. 2016;27(10):719–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jang C, Hui S, Lu W, Cowan AJ, Morscher RJ, Lee G, et al. The small intestine converts dietary fructose into glucose and organic acids. Cell Metab. 2018;27(2):351–61 e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Softic S, Cohen DE, Kahn CR. Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig Dis Sci. 2016;61(5):1282–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Poolsri WA, Phokrai P, Suwankulanan S, Phakdeeto N, Phunsomboon P, Pekthong D, et al. Combination of mitochondrial and plasma membrane citrate transporter inhibitors inhibits de novo lipogenesis pathway and triggers apoptosis in hepatocellular carcinoma cells. Biomed Res Int. 2018;2018:3683026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mock K, Lateef S, Benedito VA, Tou JC. High-fructose corn syrup-55 consumption alters hepatic lipid metabolism and promotes triglyceride accumulation. J Nutr Biochem. 2017;39:32–9.

    Article  CAS  PubMed  Google Scholar 

  35. Bawden SJ, Stephenson MC, Ciampi E, Hunter K, Marciani L, Macdonald IA, et al. Investigating the effects of an oral fructose challenge on hepatic ATP reserves in healthy volunteers: a (31)P MRS study. Clin Nutr. 2016;35(3):645–9.

    Article  CAS  PubMed  Google Scholar 

  36. Sullivan JS, Le MT, Pan Z, Rivard C, Love-Osborne K, Robbins K, et al. Oral fructose absorption in obese children with non-alcoholic fatty liver disease. Pediatr Obes. 2015;10(3):188–95.

    Article  CAS  PubMed  Google Scholar 

  37. Mosca A, Nobili V, De Vito R, Crudele A, Scorletti E, Villani A, et al. Serum uric acid concentrations and fructose consumption are independently associated with NASH in children and adolescents. J Hepatol. 2017;66(5):1031–6.

    Article  CAS  PubMed  Google Scholar 

  38. Kaneko C, Ogura J, Sasaki S, Okamoto K, Kobayashi M, Kuwayama K, et al. Fructose suppresses uric acid excretion to the intestinal lumen as a result of the induction of oxidative stress by NADPH oxidase activation. Biochim Biophys Acta Gen Subj. 2017;1861(3):559–66.

    Article  CAS  PubMed  Google Scholar 

  39. Softic S, Gupta MK, Wang GX, Fujisaka S, O'Neill BT, Rao TN, et al. Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling. J Clin Invest. 2017;127(11):4059–74.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nakatsu Y, Seno Y, Kushiyama A, Sakoda H, Fujishiro M, Katasako A, et al. The xanthine oxidase inhibitor febuxostat suppresses development of nonalcoholic steatohepatitis in a rodent model. Am J Physiol Gastrointest Liver Physiol. 2015;309(1):G42–51.

    Article  CAS  PubMed  Google Scholar 

  41. Goffredo M, Mass K, Parks EJ, Wagner DA, McClure EA, Graf J, et al. Role of gut microbiota and short chain fatty acids in modulating energy harvest and fat partitioning in youth. J Clin Endocrinol Metab. 2016;101(11):4367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Toop CR, Muhlhausler BS, O'Dea K, Gentili S. Impact of perinatal exposure to sucrose or high fructose corn syrup (HFCS-55) on adiposity and hepatic lipid composition in rat offspring. J Physiol. 2017;595(13):4379–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yuruk AA, Nergiz-Unal R. Maternal dietary free or bound fructose diversely influence developmental programming of lipogenesis. Lipids Health Dis. 2017;16(1):226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sellmann C, Priebs J, Landmann M, Degen C, Engstler AJ, Jin CJ, et al. Diets rich in fructose, fat or fructose and fat alter intestinal barrier function and lead to the development of nonalcoholic fatty liver disease over time. J Nutr Biochem. 2015;26(11):1183–92.

    Article  CAS  PubMed  Google Scholar 

  45. Jin R, Willment A, Patel SS, Sun X, Song M, Mannery YO, et al. Fructose induced endotoxemia in pediatric nonalcoholic fatty liver disease. Int J Hepatol. 2014;2014:560620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Seki K, Kitade M, Nishimura N, Kaji K, Asada K, Namisaki T, et al. Oral administration of fructose exacerbates liver fibrosis and hepatocarcinogenesis via increased intestinal permeability in a rat steatohepatitis model. Oncotarget. 2018;9(47):28638–51.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jegatheesan P, Beutheu S, Freese K, Waligora-Dupriet AJ, Nubret E, Butel MJ, et al. Preventive effects of citrulline on Western diet-induced non-alcoholic fatty liver disease in rats. Br J Nutr. 2016;116(2):191–203.

    Article  CAS  PubMed  Google Scholar 

  48. Jegatheesan P, Beutheu S, Ventura G, Sarfati G, Nubret E, Kapel N, et al. Effect of specific amino acids on hepatic lipid metabolism in fructose-induced non-alcoholic fatty liver disease. Clin Nutr. 2016;35(1):175–82.

    Article  CAS  PubMed  Google Scholar 

  49. Wang H, Mei L, Deng Y, Liu Y, Wei X, Liu M, et al. Lactobacillus brevis DM9218 ameliorates fructose-induced hyperuricemia through inosine degradation and manipulation of intestinal dysbiosis. Nutrition. 2018;62:63–73.

    Article  CAS  PubMed  Google Scholar 

  50. Aldamiz-Echevarria L, de Las Heras J, Couce ML, Alcalde C, Vitoria I, Bueno M, et al. Non-alcoholic fatty liver in hereditary fructose intolerance. Clin Nutr. 2019.

  51. Lee AA, Owyang C. Sugars, sweet taste receptors, and brain responses. Nutrients. 2017;9(7):653.

  52. Suez J, Korem T, Zilberman-Schapira G, Segal E, Elinav E. Non-caloric artificial sweeteners and the microbiome: findings and challenges. Gut Microbes. 2015;6(2):149–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Andrejic BM, Mijatovic VM, Samojlik IN, Horvat OJ, Calasan JD, Dolai MA. The influence of chronic intake of saccharin on rat hepatic and pancreatic function and morphology: gender differences. Bosn J Basic Med Sci. 2013;13(2):94–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Amin KA, AlMuzafar HM. Alterations in lipid profile, oxidative stress and hepatic function in rat fed with saccharin and methyl-salicylates. Int J Clin Exp Med. 2015;8(4):6133–44.

    PubMed  PubMed Central  Google Scholar 

  55. Bian X, Tu P, Chi L, Gao B, Ru H, Lu K. Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food Chem Toxicol. 2017;107(Pt B):530–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mansourian M, Mahnam K, Rajabi HR, Roushani M, Doustimotlagh AH. Exploring the binding mechanism of saccharin and sodium saccharin to promoter of human p53 gene by theoretical and experimental methods. J Biomol Struct Dyn. 2019:1–17:457.

  57. Dhar D, Antonucci L, Nakagawa H, Kim JY, Glitzner E, Caruso S, et al. Liver cancer initiation requires p53 inhibition by CD44-enhanced growth factor signaling. Cancer Cell. 2018;33(6):1061–77 e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Alkafafy Mel S, Ibrahim ZS, Ahmed MM, El-Shazly SA. Impact of aspartame and saccharin on the rat liver: biochemical, molecular, and histological approach. Int J Immunopathol Pharmacol. 2015;28(2):247–55.

    Article  CAS  Google Scholar 

  59. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514(7521):181–6.

    Article  CAS  PubMed  Google Scholar 

  60. Haighton L, Roberts A, Jonaitis T, Lynch B. Evaluation of aspartame cancer epidemiology studies based on quality appraisal criteria. Regul Toxicol Pharmacol. 2019;103:352–62.

    Article  CAS  PubMed  Google Scholar 

  61. FDA 101: Dietary supplements: US Food and Drug Administration; 2017 [updated 11/06/2017. Available from: https://www.fda.gov/ForConsumers/ConsumerUpdates/ucm050803.htm. Accessed 26 Mar 2019.

  62. Lebda MA, Tohamy HG, El-Sayed YS. Long-term soft drink and aspartame intake induces hepatic damage via dysregulation of adipocytokines and alteration of the lipid profile and antioxidant status. Nutr Res. 2017;41:47–55.

    Article  CAS  PubMed  Google Scholar 

  63. Finamor I, Perez S, Bressan CA, Brenner CE, Rius-Perez S, Brittes PC, et al. Chronic aspartame intake causes changes in the trans-sulphuration pathway, glutathione depletion and liver damage in mice. Redox Biol. 2017;11:701–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Adaramoye OA, Akanni OO. Effects of long-term administration of aspartame on biochemical indices, lipid profile and redox status of cellular system of male rats. J Basic Clin Physiol Pharmacol. 2016;27(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  65. Qu D, Jiang M, Huang D, Zhang H, Feng L, Chen Y, et al. Synergistic effects of the enhancements to mitochondrial ROS, p53 activation and apoptosis generated by aspartame and potassium sorbate in HepG2 cells. Molecules. 2019;24(3):457.

  66. Ashok I, Sheeladevi R. Oxidant stress evoked damage in rat hepatocyte leading to triggered nitric oxide synthase (NOS) levels on long term consumption of aspartame. J Food Drug Anal. 2015;23(4):679–91.

    Article  CAS  PubMed  Google Scholar 

  67. Palmnas MS, Cowan TE, Bomhof MR, Su J, Reimer RA, Vogel HJ, et al. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS One. 2014;9(10):e109841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Martinson JNV, Pinkham NV, Peters GW, Cho H, Heng J, Rauch M, et al. Rethinking gut microbiome residency and the Enterobacteriaceae in healthy human adults. ISME J. 2019.

  69. Zhu W, Winter MG, Byndloss MX, Spiga L, Duerkop BA, Hughes ER, et al. Precision editing of the gut microbiota ameliorates colitis. Nature. 2018;553(7687):208–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sanduzzi Zamparelli M, Rocco A, Compare D, Nardone G. The gut microbiota: a new potential driving force in liver cirrhosis and hepatocellular carcinoma. United European Gastroenterol J. 2017;5(7):944–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kakiyama G, Pandak WM, Gillevet PM, Hylemon PB, Heuman DM, Daita K, et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol. 2013;58(5):949–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ponziani FR, Bhoori S, Castelli C, Putignani L, Rivoltini L, Del Chierico F, et al. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology. 2019;69(1):107–20.

    Article  CAS  PubMed  Google Scholar 

  73. Chassaing B, Gewirtz AT. Not so splendid for the gut microbiota. Inflamm Bowel Dis. 2018;24(5):1055–6.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rodriguez-Palacios A, Harding A, Menghini P, Himmelman C, Retuerto M, Nickerson KP, et al. The artificial sweetener splenda promotes gut proteobacteria, dysbiosis, and myeloperoxidase reactivity in Crohn's disease-like ileitis. Inflamm Bowel Dis. 2018;24(5):1005–20.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Uebanso T, Ohnishi A, Kitayama R, Yoshimoto A, Nakahashi M, Shimohata T, et al. Effects of low-dose non-caloric sweetener consumption on gut microbiota in mice. Nutrients. 2017;9(6):560.

  76. Bian X, Chi L, Gao B, Tu P, Ru H, Lu K. Gut microbiome response to sucralose and its potential role in inducing liver inflammation in mice. Front Physiol. 2017;8:487.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Dhurandhar D, Bharihoke V, Kalra S. A histological assessment of effects of sucralose on liver of albino rats. Morphologie. 2018;102(338):197–204.

    Article  CAS  PubMed  Google Scholar 

  78. Liu CW, Chi L, Tu P, Xue J, Ru H, Lu K. Quantitative proteomics reveals systematic dysregulations of liver protein metabolism in sucralose-treated mice. J Proteome. 2019;196:1–10.

    Article  CAS  Google Scholar 

  79. Magnuson BA, Roberts A, Nestmann ER. Critical review of the current literature on the safety of sucralose. Food Chem Toxicol. 2017;106(Pt A):324–55.

    Article  CAS  PubMed  Google Scholar 

  80. Berry C, Brusick D, Cohen SM, Hardisty JF, Grotz VL, Williams GM. Sucralose non-carcinogenicity: a review of the scientific and regulatory rationale. Nutr Cancer. 2016;68(8):1247–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. M S, M P, E T, L F, F M, M L, et al. Sucralose administered in feed, beginning prenatally through lifespan, induces hematopoietic neoplasias in male swiss mice. Int J Occup Environ Health. 2016;22(1):7–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Qin X. The effect of Splenda on gut microbiota of humans could be much more detrimental than in animals and deserves more extensive research. Inflamm Bowel Dis. 2019;25(2):e7.

    Article  PubMed  Google Scholar 

  83. Bian X, Chi L, Gao B, Tu P, Ru H, Lu K. The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS One. 2017;12(6):e0178426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chi L, Bian X, Gao B, Tu P, Lai Y, Ru H, et al. Effects of the artificial sweetener neotame on the gut microbiome and fecal metabolites in mice. Molecules. 2018;23(2):367.

  85. Xie G, Wang X, Liu P, Wei R, Chen W, Rajani C, et al. Distinctly altered gut microbiota in the progression of liver disease. Oncotarget. 2016;7(15):19355–66.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Drasar BS, Renwick AG, Williams RT. The conversion of cyclamate into cyclohexylamine by gut bacteria. Biochem J. 1971;123(4):26P–7P.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Halmos EP, Mack A, Gibson PR. Review article: emulsifiers in the food supply and implications for gastrointestinal disease. Aliment Pharmacol Ther. 2019;49(1):41–50.

    Article  CAS  PubMed  Google Scholar 

  88. Chassaing B, Van de Wiele T, De Bodt J, Marzorati M, Gewirtz AT. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut. 2017;66(8):1414–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Holder MK, Peters NV, Whylings J, Fields CT, Gewirtz AT, Chassaing B, et al. Dietary emulsifiers consumption alters anxiety-like and social-related behaviors in mice in a sex-dependent manner. Sci Rep. 2019;9(1):172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015;519(7541):92–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Singh RK, Wheildon N, Ishikawa S. Food additive P-80 impacts mouse gut microbiota promoting intestinal inflammation, obesity and liver dysfunction. SOJ Microbiol Infect Dis. 2016;4(1).

  92. Lock JY, Carlson TL, Wang C-M, Chen A, Carrier RL. Acute exposure to commonly ingested emulsifiers alters intestinal mucus structure and transport properties. Sci Rep. 2018;8(1):10008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Janeiro MH, Ramirez MJ, Milagro FI, Martinez JA, Solas M. Implication of trimethylamine N-oxide (TMAO) in disease: potential biomarker or new therapeutic target. Nutrients. 2018;10(10):1398.

  94. Hoyles L, Jimenez-Pranteda ML, Chilloux J, Brial F, Myridakis A, Aranias T, et al. Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota. Microbiome. 2018;6(1):73.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Chen YM, Liu Y, Zhou RF, Chen XL, Wang C, Tan XY, et al. Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci Rep. 2016;6:19076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu ZY, Tan XY, Li QJ, Liao GC, Fang AP, Zhang DM, et al. Trimethylamine N-oxide, a gut microbiota-dependent metabolite of choline, is positively associated with the risk of primary liver cancer: a case-control study. Nutr Metab (Lond). 2018;15:81.

    Article  CAS  Google Scholar 

  97. Cox IJ, Aliev AE, Crossey MM, Dawood M, Al-Mahtab M, Akbar SM, et al. Urinary nuclear magnetic resonance spectroscopy of a Bangladeshi cohort with hepatitis-B hepatocellular carcinoma: a biomarker corroboration study. World J Gastroenterol. 2016;22(16):4191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nejrup RG, Licht TR, Hellgren LI. Fatty acid composition and phospholipid types used in infant formulas modifies the establishment of human gut bacteria in germ-free mice. Sci Rep. 2017;7(1):3975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bajaj JS, Heuman DM, Hylemon PB, Sanyal AJ, White MB, Monteith P, et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol. 2014;60(5):940–7.

    Article  CAS  PubMed  Google Scholar 

  100. Zhou RF, Chen XL, Zhou ZG, Zhang YJ, Lan QY, Liao GC, et al. Higher dietary intakes of choline and betaine are associated with a lower risk of primary liver cancer: a case-control study. Sci Rep. 2017;7(1):679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Butler LM, Arning E, Wang R, Bottiglieri T, Govindarajan S, Gao YT, et al. Prediagnostic levels of serum one-carbon metabolites and risk of hepatocellular carcinoma. Cancer Epidemiol Biomark Prev. 2013;22(10):1884–93.

    Article  CAS  Google Scholar 

  102. Newman AC, Maddocks ODK. One-carbon metabolism in cancer. Br J Cancer. 2017;116(12):1499–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Elbassuoni EA, Ragy MM, Ahmed SM. Evidence of the protective effect of l-arginine and vitamin D against monosodium glutamate-induced liver and kidney dysfunction in rats. Biomed Pharmacother. 2018;108:799–808.

    Article  CAS  PubMed  Google Scholar 

  104. Coelho CFF, Franca LM, Nascimento JR, Dos Santos AM, Azevedo-Santos APS, Nascimento FRF, et al. Early onset and progression of non-alcoholic fatty liver disease in young monosodium l-glutamate-induced obese mice. J Dev Orig Health Dis. 2018;10(2):188–195.

  105. Nakanishi Y, Tsuneyama K, Fujimoto M, Salunga TL, Nomoto K, An JL, et al. Monosodium glutamate (MSG): a villain and promoter of liver inflammation and dysplasia. J Autoimmun. 2008;30(1–2):42–50.

    Article  CAS  PubMed  Google Scholar 

  106. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–14.

    Article  PubMed  Google Scholar 

  107. Pandey KR, Naik SR, Vakil BV. Probiotics, prebiotics and synbiotics- a review. J Food Sci Technol. 2015;52(12):7577–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Meng X, Li S, Li Y, Gan RY, Li HB. Gut microbiota's relationship with liver disease and role in hepatoprotection by dietary natural products and probiotics. Nutrients. 2018;10(10):1457.

  109. Dimidi E, Christodoulides S, Scott SM, Whelan K. Mechanisms of action of probiotics and the gastrointestinal microbiota on gut motility and constipation. Adv Nutr. 2017;8(3):484–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bartolomaeus H, Balogh A, Yakoub M, Homann S, Marko L, Hoges S, et al. Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation. 2019;139(11):1407–21.

    Article  CAS  PubMed  Google Scholar 

  111. Chandrasekharan B, Saeedi BJ, Alam A, Houser M, Srinivasan S, Tansey M, et al. Interactions between commensal bacteria and enteric neurons, via FPR1 induction of ROS, increase gastrointestinal motility in mice. Gastroenterology. 2019.

  112. Yadav R, Singh PK, Puniya AK, Shukla P. Catalytic interactions and molecular docking of bile salt hydrolase (BSH) from L. plantarum RYPR1 and its prebiotic utilization. Front Microbiol. 2016;7:2116.

    PubMed  Google Scholar 

  113. Huang L, Duan C, Zhao Y, Gao L, Niu C, Xu J, et al. Reduction of aflatoxin B1 toxicity by Lactobacillus plantarum C88: a potential probiotic strain isolated from Chinese traditional fermented food “tofu”. PLoS One. 2017;12(1):e0170109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ritze Y, Bardos G, Claus A, Ehrmann V, Bergheim I, Schwiertz A, et al. Lactobacillus rhamnosus GG protects against non-alcoholic fatty liver disease in mice. PLoS One. 2014;9(1):e80169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Endo H, Niioka M, Kobayashi N, Tanaka M, Watanabe T. Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: new insight into the probiotics for the gut-liver axis. PLoS One. 2013;8(5):e63388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xin J, Zeng D, Wang H, Ni X, Yi D, Pan K, et al. Preventing non-alcoholic fatty liver disease through Lactobacillus johnsonii BS15 by attenuating inflammation and mitochondrial injury and improving gut environment in obese mice. Appl Microbiol Biotechnol. 2014;98(15):6817–29.

    Article  CAS  PubMed  Google Scholar 

  117. Scaldaferri F, Gerardi V, Mangiola F, Lopetuso LR, Pizzoferrato M, Petito V, et al. Role and mechanisms of action of Escherichia coli Nissle 1917 in the maintenance of remission in ulcerative colitis patients: an update. World J Gastroenterol. 2016;22(24):5505–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Crook N, Ferreiro A, Gasparrini AJ, Pesesky MW, Gibson MK, Wang B, et al. Adaptive strategies of the candidate probiotic E. coli Nissle in the mammalian gut. Cell Host Microbe. 2019.

  119. Xue L, He J, Gao N, Lu X, Li M, Wu X, et al. Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci Rep. 2017;7:45176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nabavi S, Rafraf M, Somi MH, Homayouni-Rad A, Asghari-Jafarabadi M. Effects of probiotic yogurt consumption on metabolic factors in individuals with nonalcoholic fatty liver disease. J Dairy Sci. 2014;97(12):7386–93.

    Article  CAS  PubMed  Google Scholar 

  121. Famouri F, Shariat Z, Hashemipour M, Keikha M, Kelishadi R. Effects of probiotics on nonalcoholic fatty liver disease in obese children and adolescents. J Pediatr Gastroenterol Nutr. 2017;64(3):413–7.

    Article  CAS  PubMed  Google Scholar 

  122. Li J, Sung CY, Lee N, Ni Y, Pihlajamaki J, Panagiotou G, et al. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc Natl Acad Sci U S A. 2016;113(9):E1306–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wan MLY, El-Nezami H. Targeting gut microbiota in hepatocellular carcinoma: probiotics as a novel therapy. Hepatobiliary Surg Nutr. 2018;7(1):11–20.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Zmora N, Zilberman-Schapira G, Suez J, Mor U, Dori-Bachash M, Bashiardes S, et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell. 2018;174(6):1388–405 e21.

    Article  CAS  PubMed  Google Scholar 

  125. Suez J, Zmora N, Zilberman-Schapira G, Mor U, Dori-Bachash M, Bashiardes S, et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell. 2018;174(6):1406–23 e16.

    Article  CAS  PubMed  Google Scholar 

  126. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: the international scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491–502.

    Article  PubMed  Google Scholar 

  127. Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, et al. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods. 2019;8(3):92.

  128. Choque Delgado GT, Tamashiro W. Role of prebiotics in regulation of microbiota and prevention of obesity. Food Res Int. 2018;113:183–8.

    Article  CAS  PubMed  Google Scholar 

  129. Mensink MA, Frijlink HW, van der Voort Maarschalk K, Hinrichs WL. Inulin, a flexible oligosaccharide I: review of its physicochemical characteristics. Carbohydr Polym. 2015;130:405–19.

    Article  CAS  PubMed  Google Scholar 

  130. Administration USFaD. GRAS notices 2002 [Available from: https://www.accessdata.fda.gov/scripts/fdcc/index.cfm?set=grasnotices&id=118. Accessed 4 Apr 2019.

  131. Zou J, Chassaing B, Singh V, Pellizzon M, Ricci M, Fythe MD, et al. Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health. Cell Host Microbe. 2018;23(1):41–53 e4.

    Article  CAS  PubMed  Google Scholar 

  132. Pham VT, Seifert N, Richard N, Raederstorff D, Steinert R, Prudence K, et al. The effects of fermentation products of prebiotic fibres on gut barrier and immune functions in vitro. PeerJ. 2018;6:e5288.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Wang X, Gibson GR, Costabile A, Sailer M, Theis S, Rastall RA. Prebiotic supplementation of in vitro faecal fermentations inhibits proteolysis by gut bacteria and host diet shapes gut bacterial metabolism and response to intervention. Appl Environ Microbiol. 2019;85(9):e02749–18.

  134. Baxter NT, Schmidt AW, Venkataraman A, Kim KS, Waldron C, Schmidt TM. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. MBio. 2019;10(1):e02566–18.

  135. Vandeputte D, Falony G, Vieira-Silva S, Wang J, Sailer M, Theis S, et al. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut. 2017;66(11):1968–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yang X, He F, Zhang Y, Xue J, Li K, Zhang X, et al. Inulin ameliorates alcoholic liver disease via suppressing LPS-TLR4-Mpsi Axis and modulating gut microbiota in mice. Alcohol Clin Exp Res. 2019;43(3):411–24.

    Article  CAS  PubMed  Google Scholar 

  137. Chassaing B, Gewirtz AT. Identification of inner mucus-associated bacteria by laser capture microdissection. Cell Mol Gastroenterol Hepatol. 2019;7(1):157–60.

    Article  PubMed  Google Scholar 

  138. Healey G, Murphy R, Butts C, Brough L, Whelan K, Coad J. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention study. Br J Nutr. 2018;119(2):176–89.

    Article  CAS  PubMed  Google Scholar 

  139. Li K, Zhang L, Xue J, Yang X, Dong X, Sha L, et al. Dietary inulin alleviates diverse stages of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in db/db mice. Food Funct. 2019;10(4):1915–1927.

  140. Shang HM, Zhou HZ, Yang JY, Li R, Song H, Wu HX. In vitro and in vivo antioxidant activities of inulin. PLoS One. 2018;13(2):e0192273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kalantari H, Asadmasjedi N, Abyaz MR, Mahdavinia M, Mohammadtaghvaei N. Protective effect of inulin on methotrexate-induced liver toxicity in mice. Biomed Pharmacother. 2019;110:943–50.

    Article  CAS  PubMed  Google Scholar 

  142. Correa-Ferreira ML, Verdan MH, Dos Reis Livero FA, Galuppo LF, Telles JE, Alves Stefanello ME, et al. Inulin-type fructan and infusion of Artemisia vulgaris protect the liver against carbon tetrachloride-induced liver injury. Phytomedicine. 2017;24:68–76.

    Article  CAS  PubMed  Google Scholar 

  143. Liu J, Lu JF, Wen XY, Kan J, Jin CH. Antioxidant and protective effect of inulin and catechin grafted inulin against CCl4-induced liver injury. Int J Biol Macromol. 2015;72:1479–84.

    Article  CAS  PubMed  Google Scholar 

  144. Javadi L, Khoshbaten M, Safaiyan A, Ghavami M, Abbasi MM, Gargari BP. Pro- and prebiotic effects on oxidative stress and inflammatory markers in non-alcoholic fatty liver disease. Asia Pac J Clin Nutr. 2018;27(5):1031–9.

    CAS  PubMed  Google Scholar 

  145. Singh V, Yeoh BS, Chassaing B, Xiao X, Saha P, Aguilera Olvera R, et al. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. Cell. 2018;175(3):679–94 e22.

    Article  CAS  PubMed  Google Scholar 

  146. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499(7456):97–101.

    Article  CAS  PubMed  Google Scholar 

  147. Lam KL, Ko KC, Li X, Ke X, Cheng WY, Chen T, et al. In vitro infant faecal fermentation of low viscosity barley beta-glucan and its acid hydrolyzed derivatives: evaluation of their potential as novel prebiotics. Molecules. 2019;24(5):828.

  148. Wang Y, Harding SV, Thandapilly SJ, Tosh SM, Jones PJH, Ames NP. Barley beta-glucan reduces blood cholesterol levels via interrupting bile acid metabolism. Br J Nutr. 2017;118(10):822–9.

    Article  CAS  PubMed  Google Scholar 

  149. Thandapilly SJ, Ndou SP, Wang Y, Nyachoti CM, Ames NP. Barley beta-glucan increases fecal bile acid excretion and short chain fatty acid levels in mildly hypercholesterolemic individuals. Food Funct. 2018;9(6):3092–6.

    Article  CAS  PubMed  Google Scholar 

  150. Wang YJ, Zhan R, Sontag-Strohm T, Maina NH. The protective role of phytate in the oxidative degradation of cereal beta-glucans. Carbohydr Polym. 2017;169:220–6.

    Article  CAS  PubMed  Google Scholar 

  151. Jayachandran M, Chen J, Chung SSM, Xu B. A critical review on the impacts of beta-glucans on gut microbiota and human health. J Nutr Biochem. 2018;61:101–10.

    Article  CAS  PubMed  Google Scholar 

  152. Mikkelsen MS, Jensen MG, Nielsen TS. Barley beta-glucans varying in molecular mass and oligomer structure affect cecal fermentation and microbial composition but not blood lipid profiles in hypercholesterolemic rats. Food Funct. 2017;8(12):4723–32.

    Article  CAS  PubMed  Google Scholar 

  153. Gudi R, Perez N, Johnson BM, Sofi MH, Brown R, Quan S, et al. Complex dietary polysaccharide modulates gut immune function and microbiota, and promotes protection from autoimmune diabetes. Immunology. 2019;157(1):70–85.

  154. Sun SS, Wang K, Ma K, Bao L, Liu HW. An insoluble polysaccharide from the sclerotium of Poria cocos improves hyperglycemia, hyperlipidemia and hepatic steatosis in ob/ob mice via modulation of gut microbiota. Chin J Nat Med. 2019;17(1):3–14.

    PubMed  Google Scholar 

  155. Teixeira C, Prykhodko O, Alminger M, Fak Hallenius F, Nyman M. Barley products of different Ffiber composition selectively change microbiota composition in rats. Mol Nutr Food Res. 2018;62(19):e1701023.

    Article  CAS  PubMed  Google Scholar 

  156. Luo Y, Zhang L, Li H, Smidt H, Wright AG, Zhang K, et al. Different types of dietary fibers trigger specific alterations in composition and predicted functions of colonic bacterial communities in BALB/c mice. Front Microbiol. 2017;8:966.

    Article  PubMed  PubMed Central  Google Scholar 

  157. De Angelis M, Montemurno E, Vannini L, Cosola C, Cavallo N, Gozzi G, et al. Effect of whole-grain barley on the human fecal microbiota and metabolome. Appl Environ Microbiol. 2015;81(22):7945–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Vetvicka V, Garcia-Mina JM, Proctor M, Yvin JC. Humic acid and glucan: protection against liver injury induced by carbon tetrachloride. J Med Food. 2015;18(5):572–7.

    Article  CAS  PubMed  Google Scholar 

  159. Nakashima A, Sugimoto R, Suzuki K, Shirakata Y, Hashiguchi T, Yoshida C, et al. Anti-fibrotic activity of Euglena gracilis and paramylon in a mouse model of non-alcoholic steatohepatitis. Food Sci Nutr. 2019;7(1):139–47.

    Article  CAS  PubMed  Google Scholar 

  160. Suchecka D, Harasym J, Wilczak J, Gromadzka-Ostrowska J. Hepato- and gastro- protective activity of purified oat 1-3, 1-4-beta-d-glucans of different molecular weight. Int J Biol Macromol. 2016;91:1177–85.

    Article  CAS  PubMed  Google Scholar 

  161. Siddiqui S, Ahmad R, Khan MA, Upadhyay S, Husain I, Srivastava AN. Cytostatic and anti-tumor potential of Ajwa date pulp against human hepatocellular carcinoma HepG2 cells. Sci Rep. 2019;9(1):245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Elsonbaty SM, Zahran WE, Moawed FS. Gamma-irradiated beta-glucan modulates signaling molecular targets of hepatocellular carcinoma in rats. Tumour Biol. 2017;39(8):1010428317708703.

    Article  PubMed  Google Scholar 

  163. Zou S, Duan B, Xu X. Inhibition of tumor growth by beta-glucans through promoting CD4(+) T cell immunomodulation and neutrophil-killing in mice. Carbohydr Polym. 2019;213:370–81.

    Article  CAS  PubMed  Google Scholar 

  164. Sundar Raj A Allwyn, Jayabalan R and Ranganathan T. V. A Review on pectin: chemistry due to general properties of pectin and its pharmaceutical uses: Open Access Scientific Reports; 2012 [Available from: https://www.omicsonline.org/scientific-reports/srep550.php. Accessed 4 Apr 2019.

  165. Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev. 2017;81(4):e00036–17.

  166. Morel FB, Oozeer R, Piloquet H, Moyon T, Pagniez A, Knol J, et al. Preweaning modulation of intestinal microbiota by oligosaccharides or amoxicillin can contribute to programming of adult microbiota in rats. Nutrition. 2015;31(3):515–22.

    Article  CAS  PubMed  Google Scholar 

  167. Sierra C, Bernal MJ, Blasco J, Martinez R, Dalmau J, Ortuno I, et al. Prebiotic effect during the first year of life in healthy infants fed formula containing GOS as the only prebiotic: a multicentre, randomised, double-blind and placebo-controlled trial. Eur J Nutr. 2015;54(1):89–99.

    Article  CAS  PubMed  Google Scholar 

  168. Mao B, Li D, Zhao J, Liu X, Gu Z, Chen YQ, et al. Metagenomic insights into the effects of fructo-oligosaccharides (FOS) on the composition of fecal microbiota in mice. J Agric Food Chem. 2015;63(3):856–63.

    Article  CAS  PubMed  Google Scholar 

  169. Genda T, Kondo T, Hino S, Sugiura S, Nishimura N, Morita T. The impact of fructo-oligosaccharides on gut permeability and inflammatory responses in the cecal mucosa quite differs between rats fed semi-purified and non-purified diets. J Nutr Sci Vitaminol (Tokyo). 2018;64(5):357–66.

    Article  CAS  Google Scholar 

  170. Ferreira-Lazarte A, Kachrimanidou V, Villamiel M, Rastall RA, Moreno FJ. In vitro fermentation properties of pectins and enzymatic-modified pectins obtained from different renewable bioresources. Carbohydr Polym. 2018;199:482–91.

    Article  CAS  PubMed  Google Scholar 

  171. Jiang T, Gao X, Wu C, Tian F, Lei Q, Bi J, et al. Apple-derived pectin modulates gut microbiota, improves gut barrier function, and attenuates metabolic Endotoxemia in rats with diet-induced obesity. Nutrients. 2016;8(3):126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Yang J, Ding C, Dai X, Lv T, Xie T, Zhang T, et al. Soluble dietary fiber ameliorates radiation-induced intestinal epithelial-to-mesenchymal transition and fibrosis. JPEN J Parenter Enteral Nutr. 2017;41(8):1399–410.

    Article  CAS  PubMed  Google Scholar 

  173. Abu-Elsaad NM, Elkashef WF. Modified citrus pectin stops progression of liver fibrosis by inhibiting galectin-3 and inducing apoptosis of stellate cells. Can J Physiol Pharmacol. 2016;94(5):554–62.

    Article  CAS  PubMed  Google Scholar 

  174. Borges Haubert NJ, Marchini JS, Carvalho Cunha SF, Suen VM, Padovan GJ, Jordao AAJ, et al. Choline and fructooligosaccharide: non-alcoholic fatty liver disease, cardiac fat deposition, and oxidative stress markers. Nutr Metab Insights. 2015;8:1–6.

    PubMed  PubMed Central  Google Scholar 

  175. Chappuis E, Morel-Depeisse F, Bariohay B, Roux J. Alpha-galacto-oligosaccharides at low dose improve liver steatosis in a high-fat diet mouse model. Molecules. 2017;22(10):1725.

  176. Ferrere G, Wrzosek L, Cailleux F, Turpin W, Puchois V, Spatz M, et al. Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice. J Hepatol. 2017;66(4):806–15.

    Article  CAS  PubMed  Google Scholar 

  177. Li W, Zhang K, Yang H. Pectin alleviates high fat (lard) diet-induced nonalcoholic fatty liver disease in mice: possible role of short-chain fatty acids and gut microbiota regulated by pectin. J Agric Food Chem. 2018;66(30):8015–25.

    Article  CAS  PubMed  Google Scholar 

  178. Matsumoto K, Ichimura M, Tsuneyama K, Moritoki Y, Tsunashima H, Omagari K, et al. Fructo-oligosaccharides and intestinal barrier function in a methionine-choline-deficient mouse model of nonalcoholic steatohepatitis. PLoS One. 2017;12(6):e0175406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Shtriker MG, Peri I, Taieb E, Nyska A, Tirosh O, Madar Z. Galactomannan more than pectin exacerbates liver injury in mice fed with high-fat, high-cholesterol diet. Mol Nutr Food Res. 2018;62(20):e1800331.

    Article  CAS  PubMed  Google Scholar 

  180. Ke X, Walker A, Haange SB, Lagkouvardos I, Liu Y, Schmitt-Kopplin P, et al. Synbiotic-driven improvement of metabolic disturbances is associated with changes in the gut microbiome in diet-induced obese mice. Mol Metab. 2019;22:96–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Abrahamse-Berkeveld M, Alles M, Franke-Beckmann E, Helm K, Knecht R, Kollges R, et al. Infant formula containing galacto-and fructo-oligosaccharides and Bifidobacterium breve M-16V supports adequate growth and tolerance in healthy infants in a randomised, controlled, double-blind, prospective, multicentre study. J Nutr Sci. 2016;5:e42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Hibberd AA, Yde CC, Ziegler ML, Honore AH, Saarinen MT, Lahtinen S, et al. Probiotic or symbiotic alters the gut microbiota and metabolism in a randomised controlled trial of weight management in overweight adults. Benefic Microbes. 2019;10(2):121–35.

    Article  CAS  Google Scholar 

  183. Rajkumar H, Kumar M, Das N, Kumar SN, Challa HR, Nagpal R. Effect of probiotic Lactobacillus salivarius UBL S22 and prebiotic Fructo-oligosaccharide on serum lipids, inflammatory markers, insulin sensitivity, and gut Bacteria in healthy young volunteers: a randomized controlled single-blind pilot study. J Cardiovasc Pharmacol Ther. 2015;20(3):289–98.

    Article  CAS  PubMed  Google Scholar 

  184. Asemi Z, Aarabi MH, Hajijafari M, Alizadeh SA, Razzaghi R, Mazoochi M, et al. Effects of synbiotic food consumption on serum minerals, liver enzymes, and blood pressure in patients with type 2 diabetes: a double-blind randomized cross-over controlled clinical trial. Int J Prev Med. 2017;8:43.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Malaguarnera M, Vacante M, Antic T, Giordano M, Chisari G, Acquaviva R, et al. Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis. Dig Dis Sci. 2012;57(2):545–53.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matam Vijay-Kumar.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Microbiome

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Golonka, R.M., Yeoh, B.S. & Vijay-Kumar, M. Dietary Additives and Supplements Revisited: the Fewer, the Safer for Gut and Liver Health. Curr Pharmacol Rep 5, 303–316 (2019). https://doi.org/10.1007/s40495-019-00187-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-019-00187-4

Keywords

  • Gut microbiome
  • Hepatocellular carcinoma
  • High fructose corn syrup
  • Artificial sweeteners
  • Emulsifiers
  • Probiotics and prebiotics