Advertisement

Current Pharmacology Reports

, Volume 4, Issue 3, pp 202–209 | Cite as

Stilbenes: Chemistry and Molecular Mechanisms of Anti-obesity

  • Ya-Chun Chou
  • Chi-Tang Ho
  • Min-Hsiung Pan
Natural Products: From Chemistry to Pharmacology (C Ho, Section Editor)
  • 88 Downloads
Part of the following topical collections:
  1. Topical Collection on Natural Products: From Chemistry to Pharmacology

Abstract

Stilbenoids, a class of plant polyphenols abundant in berries, have been found to have many biological actions. Resveratrol, the most well-known of the stilbenes, is used for disease prevention, particularly for anti-obesity. Due to the low bioavailability of resveratrol, other stilbenes and their metabolites are also considered as candidates for anti-obesity. Obesity has numerous known causes, including genetics, diet, lifestyle, the endocrine system, and gut microbiota. Treating obesity can be rather problematic, with calorie intake reductions and increased physical exercise being difficult to maintain, medicines having side effects, and surgery being not suitable for all patients. Many stilbenes tested in animal studies have demonstrated beneficial effects, including reductions of lipid accumulation, regulation of glucose homeostasis, inflammation alleviation, and modulation of gut microbiota. This paper summarizes the molecular mechanisms of four major stilbenes used to treat obesity. Several pathways involved in regulation of fat metabolism affected by stilbenes, such as adipogenesis, lipogenesis, lipolysis, thermogenesis, and gut microbiota, will be introduced. In summary, stilbenes are promising for managing and treating obesity. A comparison of the physiological effects of various stilbenoids and other stilbene derivatives on obesity-associated diseases is warranted.

Keywords

Stilbenes Anti-obesity 

Abbreviations

ACC

Acetyl-CoA carboxylase

ATGL

Adipose triglyceride lipase

BAT

Brown adipose tissue

CPT1

Carnitine palmitoyltransferase-1

DAG

Diacylglycerol

FAS

Fatty acid synthase complex

FFA

Free fatty acids

GLUT4

Glucose transporter type 4

HSL

Hormone-sensitive lipase

MAG

Monoacylglycerol

MCE

Mitotic clonal expansion

NAFLD

Non-alcoholic fatty liver disease

NRF-1

Nuclear respiratory factor 1

PGC-1α

Proliferator-activated receptor gamma coactivator 1-alpha

PPARγ

Peroxisome proliferator-activated receptor gamma

SREBP-1c

Sterol regulatory element-binding transcription factor 1c

TG

Triglyceride

UCP1

Uncoupling protein 1

WAT

White adipose tissue

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. 1.
    Jeandet P, Delaunois B, Conreux A, Donnez D, Nuzzo V, Cordelier S, et al. Biosynthesis, metabolism, molecular engineering, and biological functions of stilbene phytoalexins in plants. Biofactors. 2010;36(5):331–41.CrossRefPubMedGoogle Scholar
  2. 2.
    Tsai H-Y, Ho C-T, Chen Y-K. Biological actions and molecular effects of resveratrol, pterostilbene, and 3′-hydroxypterostilbene. J Food Drug Anal. 2017;25(1):134–47.CrossRefPubMedGoogle Scholar
  3. 3.
    Dvorakova M, Landa P. Anti-inflammatory activity of natural stilbenoids: a review. Pharmacol Res. 2017;124:126–45.CrossRefPubMedGoogle Scholar
  4. 4.
    Aguirre L, Fernandez-Quintela A, Arias N, Portillo MP. Resveratrol: anti-obesity mechanisms of action. Molecules. 2014;19(11):18632–55.CrossRefPubMedGoogle Scholar
  5. 5.
    Pan M-H, Wu J-C, Ho C-T, Lai C-S. Antiobesity molecular mechanisms of action: resveratrol and pterostilbene. BioFactors.Google Scholar
  6. 6.
    Walle T, Hsieh F, DeLegge MH, Oatis JE Jr, Walle UK. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos. 2004;32(12):1377–82.CrossRefPubMedGoogle Scholar
  7. 7.
    Knight JA. Diseases and disorders associated with excess body weight. Annals of Clinical & Laboratory Science. 2011;41(2):107–121.Google Scholar
  8. 8.
    Lebovitz HE, Banerji MA. Point: visceral adiposity is causally related to insulin resistance. Diabetes Care. 2005;28(9):2322–5.CrossRefPubMedGoogle Scholar
  9. 9.
    Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front Endocrinol (Lausanne). 2016;7:30.Google Scholar
  10. 10.
    Esteve Rafols M. Adipose tissue: cell heterogeneity and functional diversity. Endocrinol Nutr. 2014;61(2):100–12.CrossRefPubMedGoogle Scholar
  11. 11.
    Tang QQ, Otto TC, Lane MD. Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc Natl Acad Sci U S A. 2003;100(1):44–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Rosen ED, Hsu C-H, Wang X, Sakai S, Freeman MW, Gonzalez FJ, et al. C/EBPα induces adipogenesis through PPARγ: a unified pathway. Genes Dev. 2002;16(1):22–6.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang Y, Jones Voy B, Urs S, Kim S, Soltani-Bejnood M, Quigley N, et al. The human fatty acid synthase gene and de novo lipogenesis are coordinately regulated in human adipose tissue. J Nutr. 2004;134(5):1032–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Ladeira M, Schoonmaker J, Gionbelli M, Dias J, Gionbelli T, Carvalho J, et al. Nutrigenomics and beef quality: a review about lipogenesis. Int J Mol Sci. 2016;17(6):918.CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS. Regulation of lipolysis in adipocytes. Annu Rev Nutr. 2007;27:79–101.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sanchez-Gurmaches J, Hung C-M, Guertin DA. Emerging complexities in adipocyte origins and identity. Trends in Cell Biol. 26(5):313–26.Google Scholar
  17. 17.
    Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol. 2014;10(1):24–36.CrossRefPubMedGoogle Scholar
  18. 18.
    Gleyzer N, Vercauteren K, Scarpulla RC. Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol. 2005;25(4):1354–66.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–23.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3.CrossRefPubMedGoogle Scholar
  21. 21.
    Madsen K, Cornish A, Soper P, McKaigney C, Jijon H, Yachimec C, et al. Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology. 2001;121(3):580–91.CrossRefPubMedGoogle Scholar
  22. 22.
    Rimando AM, Kalt W, Magee JB, Dewey J, Ballington JR. Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J Agric Food Chem. 2004;52(15):4713–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Chen S, Xiao X, Feng X, Li W, Zhou N, Zheng L, et al. Resveratrol induces Sirt1-dependent apoptosis in 3T3-L1 preadipocytes by activating AMPK and suppressing AKT activity and survivin expression. J Nutr Biochem. 2012;23(9):1100–12.CrossRefPubMedGoogle Scholar
  24. 24.
    Kwon JY, Seo SG, Yue S, Cheng J-X, Lee KW, Kim K-H. An inhibitory effect of resveratrol in the mitotic clonal expansion and insulin signaling pathway in the early phase of adipogenesis. Nutr Res. 2012;32(8):607–16.CrossRefPubMedGoogle Scholar
  25. 25.
    Lasa A, Schweiger M, Kotzbeck P, Churruca I, Simón E, Zechner R, et al. Resveratrol regulates lipolysis via adipose triglyceride lipase. J Nutr Biochem. 2012;23(4):379–84.CrossRefPubMedGoogle Scholar
  26. 26.
    Li S, Bouzar C, Cottet-Rousselle C, Zagotta I, Lamarche F, Wabitsch M, et al. Resveratrol inhibits lipogenesis of 3T3-L1 and SGBS cells by inhibition of insulin signaling and mitochondrial mass increase. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2016;1857(6):643–52.CrossRefGoogle Scholar
  27. 27.
    Kim S, Jin Y, Choi Y, Park T. Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice. Biochem Pharmacol. 2011;81(11):1343–51.CrossRefPubMedGoogle Scholar
  28. 28.
    Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell. 2006;127(6):1109–22.CrossRefPubMedGoogle Scholar
  29. 29.
    Wang S, Liang X, Yang Q, Fu X, Rogers CJ, Zhu M, et al. Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) alpha1. Int J Obes (2005). 2015;39(6):967–76.CrossRefGoogle Scholar
  30. 30.
    Qiao Y, Sun J, Xia S, Tang X, Shi Y, Le G. Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity. Food Funct. 2014;5(6):1241–9.  https://doi.org/10.1039/c3fo60630a.CrossRefPubMedGoogle Scholar
  31. 31.
    Poulsen MM, Vestergaard PF, Clasen BF, Radko Y, Christensen LP, Stødkilde-Jørgensen H, et al. High-dose resveratrol supplementation in obese men. an investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition. Diabetes. 2013;62(4):1186–95.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Asensi M, Medina I, Ortega A, Carretero J, Baño MC, Obrador E, et al. Inhibition of cancer growth by resveratrol is related to its low bioavailability. Free Radic Biol Med. 2002;33(3):387–98.CrossRefPubMedGoogle Scholar
  33. 33.
    Wenzel E, Somoza V. Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res. 2005;49(5):472–81.CrossRefPubMedGoogle Scholar
  34. 34.
    Lasa A, Churruca I, Eseberri I, Andres-Lacueva C, Portillo MP. Delipidating effect of resveratrol metabolites in 3T3-L1 adipocytes. Mol Nutr Food Res. 2012;56(10):1559–68.CrossRefPubMedGoogle Scholar
  35. 35.
    Eseberri I, Lasa A, Churruca I, Portillo MP. Resveratrol metabolites modify adipokine expression and secretion in 3T3-L1 pre-adipocytes and mature adipocytes. PLoS One. 2013;8(5):e63918.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Böhmdorfer M, Szakmary A, Schiestl R, Vaquero J, Riha J, Brenner S, et al. Involvement of UDP-glucuronosyltransferases and sulfotransferases in the excretion and tissue distribution of resveratrol in mice. Nutrients. 2017;9(12):1347.CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Zhou J, Li S-x, Wang W, X-y G, X-y L, X-p Y, et al. Variations in the levels of mulberroside A, oxyresveratrol, and resveratrol in mulberries in different seasons and during growth. Sci World J. 2013;2013:1–7.Google Scholar
  38. 38.
    Maneechai S, Likhitwitayawuid K, Sritularak B, Palanuvej C, Ruangrungsi N, Sirisa-Ard P. Quantitative analysis of oxyresveratrol content in Artocarpus lakoocha and ‘Puag-Haad’. Med Princ Pract. 2009;18(3):223–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Tan H-Y, Tse IMY, Li ETS, Wang M. Inhibitory effects of oxyresveratrol and cyanomaclurin on adipogenesis of 3T3-L1 cells. J Funct Foods. 2015;15:207–16.CrossRefGoogle Scholar
  40. 40.
    Tan HY, Tse IM, Li ET, Wang M. Oxyresveratrol supplementation to C57bl/6 mice fed with a high-fat diet ameliorates obesity-associated symptoms. Nutrients. 2017;9(2)  https://doi.org/10.3390/nu9020147.
  41. 41.
    Li F, Sun Y, Song M, Wu X, Xiao H. Gastrointestinal biotransformation of resveratrol in mice. FASEB J. 2016;30:145.7–.7.Google Scholar
  42. 42.
    Kwon JY, Seo SG, Heo YS, Yue S, Cheng JX, Lee KW, et al. Piceatannol, natural polyphenolic stilbene, inhibits adipogenesis via modulation of mitotic clonal expansion and insulin receptor-dependent insulin signaling in early phase of differentiation. J Biol Chem. 2012;287(14):11566–78.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Uchida-Maruki H, Inagaki H, Ito R, Kurita I, Sai M, Ito T. Piceatannol lowers the blood glucose level in diabetic mice. Biol Pharm Bull. 2015;38(4):629–33.CrossRefPubMedGoogle Scholar
  44. 44.
    Tung YC, Lin YH, Chen HJ, Chou SC, Cheng AC, Kalyanam N, et al. Piceatannol exerts anti-obesity effects in C57BL/6 mice through modulating adipogenic proteins and gut microbiota. Mol (Basel, Switzerland). 2016;21(11)Google Scholar
  45. 45.
    Yamamoto T, Li Y, Hanafusa Y, Yeh YS, Maruki-Uchida H, Kawakami S, et al. Piceatannol exhibits anti-inflammatory effects on macrophages interacting with adipocytes. Food Sci Nutr. 2017;5(1):76–85.CrossRefPubMedGoogle Scholar
  46. 46.
    Li Y, Yang P, Chang Q, Wang J, Liu J, Lv Y, et al. Inhibitory effect of piceatannol on TNF-α mediated inflammation and insulin resistance in 3T3-L1 adipocytes. J Agric Food Chem. 2017;Google Scholar
  47. 47.
    Kapetanovic IM, Muzzio M, Huang Z, Thompson TN, McCormick DL. Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its dimethylether analog, pterostilbene, in rats. Cancer Chemother Pharmacol. 2011;68(3):593–601.CrossRefPubMedGoogle Scholar
  48. 48.
    Seo YJ, Kim KJ, Koh EJ, Choi J, Lee BY. Anti-adipogenesis mechanism of pterostilbene through the activation of heme oxygenase-1 in 3T3-L1 cells. Phytomedicine. 2017;33:7–13.CrossRefPubMedGoogle Scholar
  49. 49.
    Nagao K, Jinnouchi T, Kai S, Yanagita T. Pterostilbene, a dimethylated analog of resveratrol, promotes energy metabolism in obese rats. J Nutr Biochem. 2017;43:151–5.CrossRefPubMedGoogle Scholar
  50. 50.
    Aguirre L, Milton-Laskibar I, Hijona E, Bujanda L, Rimando AM, Portillo MP. Effects of pterostilbene in brown adipose tissue from obese rats. J Physiol Biochem. 2016;73(3):457–64.CrossRefPubMedGoogle Scholar
  51. 51.
    Etxeberria U, Hijona E, Aguirre L, Milagro FI, Bujanda L, Rimando AM, et al. Pterostilbene-induced changes in gut microbiota composition in relation to obesity. Mol Nutr Food Res. 2017;61(1).Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Food Science and TechnologyNational Taiwan UniversityTaipeiTaiwan
  2. 2.Department of Food ScienceRutgers UniversityNew BrunswickUSA
  3. 3.Department of Medical Research, China Medical University HospitalChina Medical UniversityTaichungTaiwan
  4. 4.Department of Health and Nutrition BiotechnologyAsia UniversityTaichungTaiwan

Personalised recommendations