Current Pharmacology Reports

, Volume 4, Issue 2, pp 132–144 | Cite as

New Insights: MicroRNA Function in CNS Development and Psychiatric Diseases

  • Qian Liu
  • Lu Zhang
  • Hedong Li
Neurogenesis and Disease (L Cai, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Neurogenesis and Disease


Purpose of Review

Here, we concisely review microRNA (miRNA)-related research publications on the central nervous system (CNS) development (focusing on the forebrain and the cerebellum) and related psychiatric diseases over the past 3 years. We intend to summarize the new insights from these publications and, at the same time, provide personal views on some of the important mechanistic questions in the field.

Recent Findings

MiRNAs, a type of small non-coding RNA molecules, have emerged as essential players in many biological processes. During CNS development, miRNAs have also been shown to exert their posttranscriptional regulation in numerous developmental events acting from master regulators to fine tuners of gene expression. While a single miRNA miR-980 regulates neuronal excitability and leads to alterations in behaviors associated with memory, sometimes multiple miRNAs have to functionally converge to induce one developmental process. Recent findings identified novel target genes for selected miRNAs during distinct developmental processes, and highlighted their important functions in several signaling pathways. Meanwhile, abnormal function of miRNAs during CNS development could lead to psychiatric diseases later on in life. Indeed, genomic variants, microdeletion, and microduplication could directly or indirectly involve miRNAs in the onset of these psychiatric diseases.


Over the years, substantial research discoveries have been made to uncover molecular mechanisms of miRNA action, especially in the CNS, during normal development and under disease conditions. Thorough understanding of miRNAs function during these biological processes will facilitate future therapeutic interventions with this small, chemically synthesizable RNA molecules.


Dicer (Dicer1) MicroRNA Cerebellum Forebrain MRS target gene Psychiatric diseases 



The authors wish to apologize to the scientific colleagues whose work could not be included in this review due to space limitation. This work was supported by grants from the National Natural Science Foundation of China (30971633 and 31171045), the Department of Science and Technology of Sichuan Province (Young Scientific Innovation Team in Neurological Disorders grant 2011JTD0005), and the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) (IRT0935).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as:• Of importance•• Of major importance

  1. 1.
    Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5.CrossRefPubMedGoogle Scholar
  2. 2.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet. 2015;16(7):421–33.CrossRefPubMedGoogle Scholar
  4. 4.
    Lytle JR, Yario TA, Steitz JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR. Proc Natl Acad Sci U S A. 2007;104(23):9667–72.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhou H, Rigoutsos I. MiR-103a-3p targets the 5' UTR of GPRC5A in pancreatic cells. RNA. 2014;20(9):1431–9.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Orom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell. 2008;30(4):460–71.CrossRefPubMedGoogle Scholar
  7. 7.
    Cipolla GA. A non-canonical landscape of the microRNA system. Front Genet. 2014;5:337.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, et al. Dicer is essential for mouse development. Nat Genet. 2003;35(3):215–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Murchison EP, Hannon GJ. miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol. 2004;16(3):223–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Herrera-Carrillo E, Berkhout B. Dicer-independent processing of small RNA duplexes: mechanistic insights and applications. Nucleic Acids Res. 2017;45(18):10369–79.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cheloufi S, Dos Santos CO, Chong MM, Hannon GJ. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature. 2010;465(7298):584–9.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Constantin L. The role of microRNAs in cerebellar development and autism spectrum disorder during embryogenesis. Mol Neurobiol 2016.Google Scholar
  13. 13.
    •• Rajman M, Schratt G. MicroRNAs in neural development: from master regulators to fine-tuners. Development. 2017;144(13):2310–22. This is a very concise and up-to-date review on miRNA function during CNS development CrossRefPubMedGoogle Scholar
  14. 14.
    Fregeac J, Colleaux L, Nguyen LS. The emerging roles of MicroRNAs in autism spectrum disorders. Neurosci Biobehav Rev. 2016;71:729–38.CrossRefPubMedGoogle Scholar
  15. 15.
    Sun E, Shi Y. MicroRNAs: small molecules with big roles in neurodevelopment and diseases. Exp Neurol. 2015;268:46–53.CrossRefPubMedGoogle Scholar
  16. 16.
    Mori T, Buffo A, Gotz M. The novel roles of glial cells revisited: the contribution of radial glia and astrocytes to neurogenesis. Curr Top Dev Biol. 2005;69:67–99.CrossRefPubMedGoogle Scholar
  17. 17.
    Pinto L, Gotz M. Radial glial cell heterogeneity—the source of diverse progeny in the CNS. Prog Neurobiol. 2007;83(1):2–23.CrossRefPubMedGoogle Scholar
  18. 18.
    Fededa JP, Esk C, Mierzwa B, Stanyte R, Yuan S, Zheng H, et al. MicroRNA-34/449 controls mitotic spindle orientation during mammalian cortex development. EMBO J. 2016;35(22):2386–98.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhang W, Kim PJ, Chen Z, Lokman H, Qiu L, Zhang K, et al. MiRNA-128 regulates the proliferation and neurogenesis of neural precursors by targeting PCM1 in the developing cortex. elife. 2016;5Google Scholar
  20. 20.
    Ge X, Frank CL, Calderon de Anda F, Tsai LH. Hook3 interacts with PCM1 to regulate pericentriolar material assembly and the timing of neurogenesis. Neuron. 2010;65(2):191–203.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Franzoni E, Booker SA, Parthasarathy S, Rehfeld F, Grosser S, Srivatsa S, Fuchs HR, Tarabykin V, Vida I, Wulczyn FG. miR-128 regulates neuronal migration, outgrowth and intrinsic excitability via the intellectual disability gene Phf6. elife 2015;4.Google Scholar
  22. 22.
    Tan CL, Plotkin JL, Veno MT, von Schimmelmann M, Feinberg P, Mann S, et al. MicroRNA-128 governs neuronal excitability and motor behavior in mice. Science. 2013;342(6163):1254–8.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gaiano N, Fishell G. The role of notch in promoting glial and neural stem cell fates. Annu Rev Neurosci. 2002;25:471–90.CrossRefPubMedGoogle Scholar
  24. 24.
    Gao F, Zhang YF, Zhang ZP, Fu LA, Cao XL, Zhang YZ, et al. miR-342-5p regulates neural stem cell proliferation and differentiation downstream to notch signaling in mice. Stem Cell Rep. 2017;8(4):1032–45.CrossRefGoogle Scholar
  25. 25.
    •• Rani N, Nowakowski TJ, Zhou H, Godshalk SE, Lisi V, Kriegstein AR, et al. A primate lncRNA mediates notch signaling during neuronal development by sequestering miRNA. Neuron. 2016;90(6):1174–88. This article reveals a novel mechanism for a long non-coding RNA to act as miRNA sponge to modulate Notch signalling during human neurogenesis CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zhang C, Ge X, Liu Q, Jiang M, Li MW, Li H. MicroRNA-mediated non-cell-autonomous regulation of cortical radial glial transformation revealed by a Dicer1 knockout mouse model. Glia. 2015;63(5):860–76.CrossRefPubMedGoogle Scholar
  27. 27.
    Liu Q, Jiang M, Kuang Y, Shu X, Li J, Li MW, et al. Dicer1 ablation impairs responsiveness of cerebellar granule neuron precursors to sonic hedgehog and disrupts expression of distinct cell cycle regulator genes. Cerebellum. 2017;16(2):450–61.CrossRefPubMedGoogle Scholar
  28. 28.
    Tsuyama J, Bunt J, Richards LJ, Iwanari H, Mochizuki Y, Hamakubo T, et al. MicroRNA-153 regulates the acquisition of gliogenic competence by neural stem cells. Stem Cell Rep. 2015;5(3):365–77.CrossRefGoogle Scholar
  29. 29.
    Xia X, Ahmad I. let-7 microRNA regulates neurogliogenesis in the mammalian retina through Hmga2. Dev Biol. 2016;410(1):70–85.CrossRefPubMedGoogle Scholar
  30. 30.
    Pandey A, Singh P, Jauhari A, Singh T, Khan F, Pant AB, et al. Critical role of the miR-200 family in regulating differentiation and proliferation of neurons. J Neurochem. 2015;133(5):640–52.CrossRefPubMedGoogle Scholar
  31. 31.
    Garaffo G, Conte D, Provero P, Tomaiuolo D, Luo Z, Pinciroli P, et al. The Dlx5 and Foxg1 transcription factors, linked via miRNA-9 and -200, are required for the development of the olfactory and GnRH system. Mol Cell Neurosci. 2015;68:103–19.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zhang Y, Chen M, Qiu Z, Hu K, McGee W, Chen X, et al. MiR-130a regulates neurite outgrowth and dendritic spine density by targeting MeCP2. Protein Cell. 2016;7(7):489–500.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gu X, Fu C, Lin L, Liu S, Su X, Li A et al. miR-124 and miR-9 mediated downregulation of HDAC5 promotes neurite development through activating MEF2C-GPM6A pathway. J Cell Physiol 2017.Google Scholar
  34. 34.
    Yoshimura A, Numakawa T, Odaka H, Adachi N, Tamai Y, Kunugi H. Negative regulation of microRNA-132 in expression of synaptic proteins in neuronal differentiation of embryonic neural stem cells. Neurochem Int. 2016;97:26–33.CrossRefPubMedGoogle Scholar
  35. 35.
    Kos A, Olde Loohuis N, Meinhardt J, van Bokhoven H, Kaplan BB, Martens GJ, et al. MicroRNA-181 promotes synaptogenesis and attenuates axonal outgrowth in cortical neurons. Cell Mol Life Sci: CMLS. 2016;73(18):3555–67.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    • Liu HY, Huang CM, Hung YF, Hsueh YP. The microRNAs Let7c and miR21 are recognized by neuronal toll-like receptor 7 to restrict dendritic growth of neurons. Exp Neurol. 2015;269:202–12. This article describes a non-canonical mechanism of action for miRNAs through binding to a cell memberane receptor CrossRefPubMedGoogle Scholar
  37. 37.
    Lippi G, Fernandes CC, Ewell LA, John D, Romoli B, Curia G, et al. MicroRNA-101 regulates multiple developmental programs to constrain excitation in adult neural networks. Neuron. 2016;92(6):1337–51.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Busto GU, Guven-Ozkan T, Chakraborty M, Davis RL. Developmental inhibition of miR-iab8-3p disrupts mushroom body neuron structure and adult learning ability. Dev Biol. 2016;419(2):237–49.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tuncdemir SN, Fishell G, Batista-Brito R. miRNAs are essential for the survival and maturation of cortical interneurons. Cereb Cortex (New York, NY: 1991). 2015;25(7):1842–57.Google Scholar
  40. 40.
    Han J, Kim HJ, Schafer ST, Paquola A, Clemenson GD, Toda T, et al. Functional implications of miR-19 in the migration of newborn neurons in the adult brain. Neuron. 2016;91(1):79–89.CrossRefPubMedGoogle Scholar
  41. 41.
    Pons-Espinal M, de Luca E, Marzi MJ, Beckervordersandforth R, Armirotti A, Nicassio F, et al. Synergic functions of miRNAs determine neuronal fate of adult neural stem cells. Stem Cell Rep. 2017;8(4):1046–61.CrossRefGoogle Scholar
  42. 42.
    Sim SE, Lim CS, Kim JI, Seo D, Chun H, Yu NK, et al. The brain-enriched microRNA miR-9-3p regulates synaptic plasticity and memory. J Neurosci. 2016;36(33):8641–52.CrossRefPubMedGoogle Scholar
  43. 43.
    Gu QH, Yu D, Hu Z, Liu X, Yang Y, Luo Y, et al. miR-26a and miR-384-5p are required for LTP maintenance and spine enlargement. Nat Commun. 2015;6:6789.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Rajman M, Metge F, Fiore R, Khudayberdiev S, Aksoy-Aksel A, Bicker S, et al. A microRNA-129-5p/Rbfox crosstalk coordinates homeostatic downscaling of excitatory synapses. EMBO J. 2017;36(12):1770–87.CrossRefPubMedGoogle Scholar
  45. 45.
    • Marinaro F, Marzi MJ, Hoffmann N, Amin H, Pelizzoli R, Niola F, et al. MicroRNA-independent functions of DGCR8 are essential for neocortical development and TBR1 expression. EMBO Rep. 2017;18(4):603–18. This article reports a miRNA-independent function of DGCR8 during neocortical development. CrossRefPubMedGoogle Scholar
  46. 46.
    • Ristori E, Lopez-Ramirez MA, Narayanan A, Hill-Teran G, Moro A, Calvo CF, et al. A dicer-miR-107 interaction regulates biogenesis of specific miRNAs crucial for neurogenesis. Dev Cell. 2015;32(5):546–60. This article reports that Dicer gene itself can be regulated by a miRNA in order to control levels of other miRNAs during hindbrain neurogenesis CrossRefPubMedGoogle Scholar
  47. 47.
    Madelaine R, Sloan SA, Huber N, Notwell JH, Leung LC, Skariah G, et al. MicroRNA-9 couples brain neurogenesis and angiogenesis. Cell Rep. 2017;20(7):1533–42.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Xu B, Zhang Y, Du XF, Li J, Zi HX, Bu JW, et al. Neurons secrete miR-132-containing exosomes to regulate brain vascular integrity. Cell Res. 2017;27(7):882–97.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Dahmane N, Ruiz I, Altaba A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development. 1999;126(14):3089–100.PubMedGoogle Scholar
  50. 50.
    Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by sonic hedgehog. Neuron. 1999;22(1):103–14.CrossRefPubMedGoogle Scholar
  51. 51.
    Constantin L, Wainwright BJ. MicroRNAs promote granule cell expansion in the cerebellum through Gli2. Cerebellum. 2015;14(6):688–98.CrossRefPubMedGoogle Scholar
  52. 52.
    Zindy F, Lee Y, Kawauchi D, Ayrault O, Merzoug LB, Li Y, et al. Dicer is required for normal cerebellar development and to restrain medulloblastoma formation. PLoS One. 2015;10(6):e0129642.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Constantin L, Constantin M, Wainwright BJ. MicroRNA biogenesis and hedgehog-patched signaling cooperate to regulate an important developmental transition in granule cell development. Genetics. 2016;202(3):1105–18.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    • Swahari V, Nakamura A, Baran-Gale J, Garcia I, Crowther AJ, Sons R, et al. Essential function of dicer in resolving DNA damage in the rapidly dividing cells of the developing and malignant cerebellum. Cell Rep. 2016;14(2):216–24. This article reveals the mechanism of apoptosis in Dicer -deleted cells. CrossRefPubMedGoogle Scholar
  55. 55.
    Sotelo C. Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol. 2004;72(5):295–339.CrossRefPubMedGoogle Scholar
  56. 56.
    Wang VY, Zoghbi HY. Genetic regulation of cerebellar development. Nat Rev Neurosci. 2001;2(7):484–91.CrossRefPubMedGoogle Scholar
  57. 57.
    Kuang Y, Liu Q, Shu X, Zhang C, Huang N, Li J, et al. Dicer1 and MiR-9 are required for proper Notch1 signaling and the Bergmann glial phenotype in the developing mouse cerebellum. Glia. 2012;60(11):1734–46.CrossRefPubMedGoogle Scholar
  58. 58.
    Tao J, Wu H, Lin Q, Wei W, Lu XH, Cantle JP, et al. Deletion of astroglial dicer causes non-cell-autonomous neuronal dysfunction and degeneration. J Neurosci. 2011;31(22):8306–19.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Hong P, Jiang M, Li H. Functional requirement of dicer1 and miR-17-5p in reactive astrocyte proliferation after spinal cord injury in the mouse. Glia. 2014;62(12):2044–60.CrossRefPubMedGoogle Scholar
  60. 60.
    Schaefer A, O'Carroll D, Tan CL, Hillman D, Sugimori M, Llinas R, et al. Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med. 2007;204(7):1553–8.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Pieczora L, Stracke L, Vorgerd M, Hahn S, Theiss C, Theis V. Unveiling of miRNA expression patterns in Purkinje cells during development. Cerebellum. 2017;16(2):376–87.CrossRefPubMedGoogle Scholar
  62. 62.
    Seto Y, Nakatani T, Masuyama N, Taya S, Kumai M, Minaki Y, et al. Temporal identity transition from Purkinje cell progenitors to GABAergic interneuron progenitors in the cerebellum. Nat Commun. 2014;5:3337.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Ju J, Liu Q, Zhang Y, Liu Y, Jiang M, Zhang L, et al. Olig2 regulates Purkinje cell generation in the early developing mouse cerebellum. Sci Rep. 2016;6:30711.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Hicks SD, Middleton FA. A comparative review of microRNA expression patterns in autism spectrum disorder. Front Psych. 2016;7:176.Google Scholar
  65. 65.
    Hu Y, Ehli EA, Boomsma DI. MicroRNAs as biomarkers for psychiatric disorders with a focus on autism spectrum disorder: current progress in genetic association studies, expression profiling, and translational research. Autism Res. 2017;10(7):1184–203.CrossRefPubMedGoogle Scholar
  66. 66.
    Lai CY, Lee SY, Scarr E, Yu YH, Lin YT, Liu CM, et al. Aberrant expression of microRNAs as biomarker for schizophrenia: from acute state to partial remission, and from peripheral blood to cortical tissue. Transl Psychiatry. 2016;6:e717.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    •• Wu YE, Parikshak NN, Belgard TG, Geschwind DH. Genome-wide, integrative analysis implicates microRNA dysregulation in autism spectrum disorder. Nat Neurosci. 2016;19(11):1463–76. This is a comprehensive analysis of miRNA invovlement in psychiatric diseases. CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Mellios N, Feldman DA, Sheridan SD, Ip JPK, Kwok S, Amoah SK, Rosen B, Rodriguez BA, Crawford B, Swaminathan R, Chou S, Li Y, Ziats M, Ernst C, Jaenisch R, Haggarty SJ, Sur M. MeCP2-regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling. Mol Psychiatry 2017.Google Scholar
  69. 69.
    Tsujimura K, Irie K, Nakashima H, Egashira Y, Fukao Y, Fujiwara M, et al. miR-199a links MeCP2 with mTOR signaling and its dysregulation leads to Rett syndrome phenotypes. Cell Rep. 2015;12(11):1887–901.CrossRefPubMedGoogle Scholar
  70. 70.
    Gao Y, Su J, Guo W, Polich ED, Magyar DP, Xing Y, et al. Inhibition of miR-15a promotes BDNF expression and rescues dendritic maturation deficits in MeCP2-deficient neurons. Stem Cells. 2015;33(5):1618–29.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Lyu JW, Yuan B, Cheng TL, Qiu ZL, Zhou WH. Reciprocal regulation of autism-related genes MeCP2 and PTEN via microRNAs. Sci Rep. 2016;6:20392.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Rodrigues DC, Kim DS, Yang G, Zaslavsky K, Ha KC, Mok RS, et al. MECP2 is post-transcriptionally regulated during human neurodevelopment by combinatorial action of RNA-binding proteins and miRNAs. Cell Rep. 2016;17(3):720–34.CrossRefPubMedGoogle Scholar
  73. 73.
    Kim Y, Zhang Y, Pang K, Kang H, Park H, Lee Y, et al. Bipolar disorder associated microRNA, miR-1908-5p, regulates the expression of genes functioning in neuronal glutamatergic synapses. Exp Neurobiol. 2016;25(6):296–306.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Bavamian S, Mellios N, Lalonde J, Fass DM, Wang J, Sheridan SD, et al. Dysregulation of miR-34a links neuronal development to genetic risk factors for bipolar disorder. Mol Psychiatry. 2015;20(5):573–84.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Fujitani M, Zhang S, Fujiki R, Fujihara Y, Yamashita T. A chromosome 16p13.11 microduplication causes hyperactivity through dysregulation of miR-484/protocadherin-19 signaling. Mol Psychiatry. 2017;22(3):364–74.CrossRefPubMedGoogle Scholar
  76. 76.
    Guven-Ozkan T, Busto GU, Schutte SS, Cervantes-Sandoval I, O'Dowd DK, Davis RL. MiR-980 is a memory suppressor MicroRNA that regulates the autism-susceptibility gene A2bp1. Cell Rep. 2016;14(7):1698–709.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Olde Loohuis NF, Ba W, Stoerchel PH, Kos A, Jager A, Schratt G, et al. MicroRNA-137 controls AMPA-receptor-mediated transmission and mGluR-dependent LTD. Cell Rep. 2015;11(12):1876–84.CrossRefPubMedGoogle Scholar
  78. 78.
    Thomas KT, Anderson BR, Shah N, Zimmer SE, Hawkins D, Valdez AN, et al. Inhibition of the schizophrenia-associated microRNA miR-137 disrupts Nrg1alpha neurodevelopmental signal transduction. Cell Rep. 2017;20(1):1–12.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    • Siegert S, Seo J, Kwon EJ, Rudenko A, Cho S, Wang W, et al. The schizophrenia risk gene product miR-137 alters presynaptic plasticity. Nat Neurosci. 2015;18(7):1008–16. This article addresses minor alleles of the human MIR137 gene locus that show higher expression of the miRNA, and reveals their molecular mechanisms to target presynaptic protein genes. CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    •• Chun S, Du F, Westmoreland JJ, Han SB, Wang YD, Eddins D, et al. Thalamic miR-338-3p mediates auditory thalamocortical disruption and its late onset in models of 22q11.2 microdeletion. Nat Med. 2017;23(1):39–48. This article identifies miR-338-3p as an important mechanism for regulating neuronal projections in 22q11DS pathogenesis. CrossRefPubMedGoogle Scholar
  81. 81.
    Diamantopoulou A, Sun Z, Mukai J, Xu B, Fenelon K, Karayiorgou M, et al. Loss-of-function mutation in Mirta22/Emc10 rescues specific schizophrenia-related phenotypes in a mouse model of the 22q11.2 deletion. Proc Natl Acad Sci U S A. 2017;114(30):E6127–E36.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Irie K, Tsujimura K, Nakashima H, Nakashima K. MicroRNA-214 promotes dendritic development by targeting the schizophrenia-associated gene quaking (Qki). J Biol Chem. 2016;291(26):13891–904.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Murai K, Sun G, Ye P, Tian E, Yang S, Cui Q, et al. The TLX-miR-219 cascade regulates neural stem cell proliferation in neurodevelopment and schizophrenia iPSC model. Nat Commun. 2016;7:10965.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Cammaerts S, Strazisar M, Smets B, Weckhuysen S, Nordin A, De Jonghe P, et al. Schizophrenia-associated MIR204 regulates noncoding RNAs and affects neurotransmitter and Ion channel gene sets. PLoS One. 2015;10(12):e0144428.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Topol A, Zhu S, Hartley BJ, English J, Hauberg ME, Tran N, et al. Dysregulation of miRNA-9 in a subset of schizophrenia patient-derived neural progenitor cells. Cell Rep. 2016;15(5):1024–36.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Forstner AJ, Hofmann A, Maaser A, Sumer S, Khudayberdiev S, Muhleisen TW, et al. Genome-wide analysis implicates microRNAs and their target genes in the development of bipolar disorder. Transl Psychiatry. 2015;5:e678.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Eom TY, Bayazitov IT, Anderson K, Yu J, Zakharenko SS. Schizophrenia-related microdeletion impairs emotional memory through microRNA-dependent disruption of thalamic inputs to the amygdala. Cell Rep. 2017;19(8):1532–44.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Xu B, Hsu PK, Stark KL, Karayiorgou M, Gogos JA. Derepression of a neuronal inhibitor due to miRNA dysregulation in a schizophrenia-related microdeletion. Cell. 2013;152(1–2):262–75.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    van Rooij E, Kauppinen S. Development of microRNA therapeutics is coming of age. EMBO Mol Med. 2014;6(7):851–64.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Wen MM. Getting miRNA therapeutics into the target cells for neurodegenerative diseases: a mini-review. Front Mol Neurosci. 2016;9:129.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Choudhury SR, Harris AF, Cabral DJ, Keeler AM, Sapp E, Ferreira JS, et al. Widespread central nervous system gene transfer and silencing after systemic delivery of novel AAV-AS vector. Mol Ther. 2016;24(4):726–35.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Iida A, Takino N, Miyauchi H, Shimazaki K, Muramatsu S. Systemic delivery of tyrosine-mutant AAV vectors results in robust transduction of neurons in adult mice. Biomed Res Int. 2013;2013:974819.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Yang B, Li S, Wang H, Guo Y, Gessler DJ, Cao C, et al. Global CNS transduction of adult mice by intravenously delivered rAAVrh.8 and rAAVrh.10 and nonhuman primates by rAAVrh.10. Mol Ther. 2014;22(7):1299–309.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Aryani A, Denecke B. Exosomes as a Nanodelivery system: a key to the future of Neuromedicine? Mol Neurobiol. 2016;53(2):818–34.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University HospitalSichuan UniversityChengduPeople’s Republic of China
  2. 2.Sichuan Baili Pharmaceutical Co., Ltd, High-tech International Plaza, High-tech ZoneChengduPeople’s Republic of China
  3. 3.Department of Biology, Huck Institutes of Life SciencesThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations