Current Pharmacology Reports

, Volume 3, Issue 5, pp 294–300 | Cite as

Applications of Influenza Viral Kinetic Modeling in Drug Development

  • Mark LovernEmail author
  • Suzanne K. Minton
  • Kashyap Patel
  • Yuan Xiong
  • Carl M. Kirkpatrick
  • Patrick F. Smith
Pharmacometrics (H Kimko, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Pharmacometrics


Purpose of Review

Seasonal influenza epidemics continue to cause significant morbidity and mortality, especially in high-risk subpopulations. The rise of drug-resistant influenza strains and high rates of vaccine mismatches drives the search for new safe and effective antiviral drugs. The purpose of this review was to summarize how mathematical models―viral kinetic models, in particular―have advanced our understanding of influenza biology and antiviral pharmacology and to explore how these models may be further developed in the future.

Recent Findings

Viral kinetic models that use a population approach have been helpful in elucidating the major sources of intra- and inter-individual variability. Thus, these models can help explain why some influenza patients become much sicker than others. Linking viral kinetic models to pharmacokinetic/pharmacodynamic models has enabled quantification of drug effects based on their mechanism of action and in silico evaluation of the efficacy of drug combinations. Viral kinetic models have also been applied to optimizing the design of clinical trials. Future directions for viral kinetic models include coupling to epidemiological models to assess the effectiveness of various public health treatment strategies. These models can also inform health economic decision-making.


Since the 1970s, the field of viral kinetic modeling of influenza has made great advances in informing our knowledge of this infectious disease. This tool is being coupled to other types of modeling approaches and will continue to be a critical weapon in our infectious disease armamentarium.


Pharmacokinetics/pharmacodynamics Influenza virus Viral kinetic modeling Oseltamivir treatment Mathematical modeling Monoclonal antibody 



The authors would like to thank Christopher Howard Lincoln for his graphic design assistance.

Compliance with Ethical Standards

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


  1. 1.
    Baccam P, Beauchemin C, Macken CA, Hayden FG, Perelson AS. Kinetics of influenza a virus infection in humans. J Virol. 2006;80(15):7590–9.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Balasingam S, Horby P, Wilder-Smith A. The potential for a controlled human infection platform in singapore. Singap Med J. 2014;55(9):456–61.CrossRefGoogle Scholar
  3. 3.
    Beauchemin CA, Handel A. A review of mathematical models of influenza a infections within a host or cell culture: lessons learned and challenges ahead. BMC Public Health. 2011;11 Suppl 1:S7-2458-11-S1-S7.Google Scholar
  4. 4.
    Bocharov GA, Romanyukha AA. Mathematical model of antiviral immune response. III. Influenza a virus infection. J Theor Biol. 1994;167(4):323–60.CrossRefPubMedGoogle Scholar
  5. 5.
    Boianelli A, Nguyen VK, Ebensen T, Schulze K, Wilk E, Sharma N, et al. Modeling influenza virus infection: a roadmap for influenza research. Viruses. 2015;7(10):5274–304.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Boianelli A, Sharma-Chawla N, Bruder D, Hernandez-Vargas EA. Oseltamivir PK/PD modeling and simulation to evaluate treatment strategies against influenza-pneumococcus coinfection. Front Cell Infect Microbiol. 2016;6:60.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Canini L, Carrat F. Population modeling of influenza a/H1N1 virus kinetics and symptom dynamics. J Virol. 2011;85(6):2764–70.CrossRefPubMedGoogle Scholar
  8. 8.
    Canini L, Perelson AS. Viral kinetic modeling: state of the art. J Pharmacokinet Pharmacodyn. 2014;41(5):431–43.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Canini L, Conway JM, Perelson AS, Carrat F. Impact of different oseltamivir regimens on treating influenza a virus infection and resistance emergence: insights from a modelling study. PLoS Comput Biol. 2014;10(4):e1003568.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chambers BS, Parkhouse K, Ross TM, Alby K, Hensley SE. Identification of hemagglutinin residues responsible for H3N2 antigenic drift during the 2014-2015 influenza season. Cell Rep. 2015;12(1):1–6.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dobrovolny HM, Reddy MB, Kamal MA, Rayner CR, Beauchemin CA. Assessing mathematical models of influenza infections using features of the immune response. PLoS One. 2013;8(2):e57088.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Dorratoltaj N, Marathe A, Lewis BL, Swarup S, Eubank SG, Abbas KM. Epidemiological and economic impact of pandemic influenza in Chicago: priorities for vaccine interventions. PLoS Comput Biol. 2017;13(6):e1005521.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Eubank S, Guclu H, Kumar VS, Marathe MV, Srinivasan A, Toroczkai Z, et al. Modelling disease outbreaks in realistic urban social networks. Nature. 2004;429(6988):180–4.Google Scholar
  14. 14.
    Fidler M, Patel K, Kirkpatrick C, Rayner C, Kamal M, Smith P, et al. A symptom driven multiscale model of influenza. Chicago: Options Ix; 2016.Google Scholar
  15. 15.
    Guo D, Li KC, Peters TR, Snively BM, Poehling KA, Zhou X. Multi-scale modeling for the transmission of influenza and the evaluation of interventions toward it. Sci Rep. 2015;5:8980.
  16. 16.
    Hadjichrysanthou, C., Cauet, E., Lawrence, E., Vegvari, C., de Wolf, F., & Anderson, R. M.. Understanding the within-host dynamics of influenza A virus: From theory to clinical implications. J R Soc Interface. 2016;13(119),
  17. 17.
    Hancioglu B, Swigon D, Clermont G. A dynamical model of human immune response to influenza a virus infection. J Theor Biol. 2007;246(1):70–86.CrossRefPubMedGoogle Scholar
  18. 18.
    Handel A, Antia R. A simple mathematical model helps to explain the immunodominance of CD8 T cells in influenza a virus infections. J Virol. 2008;82(16):7768–72.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Handel A, Longini IM Jr, Antia R. Neuraminidase inhibitor resistance in influenza: assessing the danger of its generation and spread. PLoS Comput Biol. 2007;3(12):e240.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Heldt FS, Frensing T, Pflugmacher A, Gropler R, Peschel B, Reichl U. Multiscale modeling of influenza a virus infection supports the development of direct-acting antivirals. PLoS Comput Biol. 2013;9(11):e1003372.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Iyer GR, Liao S, Massarella J. Population analysis of the pharmacokinetics and pharmacodynamics of RWJ-270201 (BCX-1812) in treating experimental influenza a and B virus in healthy volunteers. Aaps Pharmsci. 2002;4(4):E22.CrossRefPubMedGoogle Scholar
  22. 22.
    Kamal MA, Gieschke R, Lemenuel-Diot A, Beauchemin CA, Smith PF, Rayner CR. A drug-disease model describing the effect of oseltamivir neuraminidase inhibition on influenza virus progression. Antimicrob Agents Chemother. 2015;59(9):5388–95.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kamal MA, Smith PF, Chaiyakunapruk N, Wu DB, Pratoomsoot C, Lee KK, et al. Interdisciplinary pharmacometrics linking oseltamivir pharmacology, influenza epidemiology and health economics to inform antiviral use in pandemics. Br J Clin Pharmacol. 2017;83(7):1580–94.CrossRefPubMedGoogle Scholar
  24. 24.
    Karimi E, Schmitt K, Akgunduz A. Effect of individual protective behaviors on influenza transmission: an agent-based model. Health Care Manag Sci. 2015;18(3):318–33.CrossRefPubMedGoogle Scholar
  25. 25.
    Kumar S, Grefenstette JJ, Galloway D, Albert SM, Burke DS. Policies to reduce influenza in the workplace: impact assessments using an agent-based model. Am J Public Health. 2013;103(8):1406–11.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Langmuir AD, Worthen TD, Solomon J, Ray CG, Petersen E. The thucydides syndrome. A new hypothesis for the cause of the plague of athens. N Engl J Med. 1985;313(16):1027–30.CrossRefPubMedGoogle Scholar
  27. 27.
    Larson EW, Dominik JW, Rowberg AH, Higbee GA. Influenza virus population dynamics in the respiratory tract of experimentally infected mice. Infect Immun. 1976;13(2):438–47.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Laskowski M, Greer AL, Moghadas SM. Antiviral strategies for emerging influenza viruses. 2014.Google Scholar
  29. 29.
    Lukens S, DePass J, Rosenfeld R, Ghedin E, Mochan E, Brown ST, Grefenstette J, Burke DS, Swigon D, Clermont GA. Large-scale immuno-epidemiological simulation of influenza A epidemics. BMC Public Health. 2014;14:1019.Google Scholar
  30. 30.
    Murillo LN, Murillo MS, Perelson AS. Towards multiscale modeling of influenza infection. J Theor Biol. 2013;332:267–90.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nachbagauer R, Krammer F. Universal influenza virus vaccines and therapeutic antibodies. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases. 2017;23(4):222–8.CrossRefGoogle Scholar
  32. 32.
    Osterholm MT, Ballering KS, Kelley NS. Major challenges in providing an effective and timely pandemic vaccine for influenza a(H7N9). JAMA. 2013;309(24):2557–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Patel, K., Kirkpatrick, C., Stroh, M., Smith, P., & Deng, R. Population Pharmacokinetic/Pharmacodynamic (PK/PD) modeling of MHAA4549A, an anti-influenza A monoclonal antibody, in healthy subjects challenged with influenza A virus. Interscience Conference on Antimicrobial Agents and Chemotherapy, San Diego, CA. 2015a.Google Scholar
  34. 34.
    Patel, K., Rao, G., Kirkpatrick, C., Kamal, M., Forrest, A., & Patel, K. Population modelling of influenza viral kinetics, immune response, symptom dynamics and the effect of oseltamivir. 17th Annual Population Approach Group in Australia and New Zealand Meeting, Melbourne, Australia. 2015b.Google Scholar
  35. 35.
    Patel, K., Smith, P., Nieforth, K., & Kirkpatrick, C.. Challenges and pitfalls of building models for Flu/RSV and respiratory viruses. World Conference on Pharmacometrics, Brisbane, Australia. 2016.Google Scholar
  36. 36.
    Patel K, Smith P, Dall G, Lovern M, Sloan S, Trevejo J, et al. Population pharmacokinetic and viral dynamic modeling of VIS410, a monoclonal antibody against influenza a virus in a human challenge model. New Orleans: ASM Microbe; 2017a.Google Scholar
  37. 37.
    Patel, K., Smith, P., Nieforth, K., Rayner, C., & Kirkpatrick C. Performance of estimation methods in modelling the kinetics of respiratory virus infection. Population Approach Group of Australia & New Zealand. 2017b;2017.Google Scholar
  38. 38.
    Perelson AS. Modelling viral and immune system dynamics. Nature Reviews. Immunology. 2002;2(1):28–36.PubMedGoogle Scholar
  39. 39.
    Rayner CR, Bulik CC, Kamal MA, Reynolds DK, Toovey S, Hammel JP, et al. Pharmacokinetic-pharmacodynamic determinants of oseltamivir efficacy using data from phase 2 inoculation studies. Antimicrob Agents Chemother. 2013;57(8):3478–87.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sheu TG, Deyde VM, Okomo-Adhiambo M, Garten RJ, Xu X, Bright RA, et al. Surveillance for neuraminidase inhibitor resistance among human influenza a and B viruses circulating worldwide from 2004 to 2008. Antimicrob Agents Chemother. 2008;52(9):3284–92.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Sheu TG, Fry AM, Garten RJ, Deyde VM, Shwe T, Bullion L, et al. Dual resistance to adamantanes and oseltamivir among seasonal influenza a(H1N1) viruses: 2008-2010. J Infect Dis. 2011;203(1):13–7.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    WHO guidelines for pharmacological management of pandemic influenza A(H1N1) 2009 and other influenza viruses. (2010). Retrieved April 5, 2017, from
  43. 43.
    Wollacott AM, Boni MF, Szretter KJ, Sloan SE, Yousofshahi M, Viswanathan K, et al. Safety and upper respiratory pharmacokinetics of the hemagglutinin stalk-binding antibody VIS410 support treatment and prophylaxis based on population modeling of seasonal influenza a outbreaks. Ebiomedicine. 2016;5:147–55.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Yewdell JW. Viva la revolucion: rethinking influenza a virus antigenic drift. Current Opinion in Virology. 2011;1(3):177–83.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mark Lovern
    • 1
    Email author
  • Suzanne K. Minton
    • 1
  • Kashyap Patel
    • 2
  • Yuan Xiong
    • 1
  • Carl M. Kirkpatrick
    • 3
  • Patrick F. Smith
    • 2
  1. 1.CertaraRaleighUSA
  2. 2.d3 Medicine, A Certara CompanyParsippanyUSA
  3. 3.Centre for Medicine Use and SafetyMonash UniversityMelbourneAustralia

Personalised recommendations