Skip to main content

Advertisement

Log in

Disposition of Flavonoids for Personal Intake

  • Molecular Drug Disposition (M Hu, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Flavonoids represent a group of polyphenolic phytochemicals. Diverse biological activities of flavonoids are becoming increasingly popular in scientific and public research. Epidemiological human intervention studies showed association of flavonoids to several diseases, which include cancer, neurodegeneration, and cardiovascular diseases. Variation in pathways affecting absorption, distribution, metabolism, and excretion (ADME) of flavonoids possibly influences exposure at the circulatory system, thus modifying disease risk in individuals. This article focuses on current knowledge on factors affecting disposition of flavonoids and personal intake. These factors include nuclear receptors (NRs), gene transcriptional regulation of drug-metabolizing enzymes (DMEs), and efflux transporters (ETs). First, we summarize the current knowledge for main subclasses of flavonoids and their metabolism pathways. Important novel insights proved that regulatory mechanisms control enzyme activities and gene expressions of these DMEs and ETs by NRs. Typically, considerable evidence showed that NRs directly or indirectly regulate expressions of critical DMEs and drug transporters. Variation in metabolism pathways of flavonoids, polymorphic phase II enzymes, and ETs contributes to variability of flavonoid disposition. Covariation of enzymes, ETs, and NRs can explain individual variability of flavonoid disposition. Thus, identified gaps in these factors must be addressed to further understand flavonoid intake, which can serve as basis for more comprehensive evaluation of the effects of these dietary supplies on health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adachi Y, Suzuki H, Schinkel AH, Sugiyama Y. Role of breast cancer resistance protein (Bcrp1/Abcg2) in the extrusion of glucuronide and sulfate conjugates from enterocytes to intestinal lumen. Mol Pharmacol. 2005;67(3):923–8.

    Article  CAS  PubMed  Google Scholar 

  2. AI Á, Vallejo F, Barrera B, Merino G, Prieto JG, Tomásbarberán F, et al. Bioavailability of the glucuronide and sulfate conjugates of genistein and daidzein in breast cancer resistance protein 1 knockout mice. Drug Metab Dispos Biol Fate Chem. 2011;39(11):2008–12.

    Article  CAS  Google Scholar 

  3. Alnouti Y, Klaassen CD. Regulation of sulfotransferase enzymes by prototypical microsomal enzyme inducers in mice. J Pharmacol Exp Ther. 2008;324(2):612–21.

    Article  CAS  PubMed  Google Scholar 

  4. Andlauer W, Kolb J, Stehle P, Fürst P. Absorption and metabolism of genistein in isolated rat small intestine. FEBS Lett. 2000;130(2):843–6.

    CAS  Google Scholar 

  5. Avior Y, Bomze D, Ramon O, Nahmias Y. Flavonoids as dietary regulators of nuclear receptor activity. Food Funct. 2013;4(6):831–44. doi:10.1039/c3fo60063g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baes M, Gulick T, Choi HS, Martinoli MG, Simha D, Moore DD. A new orphan member of the nuclear hormone receptor superfamily that interacts with a subset of retinoic acid response elements. Mol Cell Biol. 1994;14(3):1544–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bai W, Wang C, Ren C. Intakes of total and individual flavonoids by US adults. Int J Food Sci Nutr. 2014;65(1):9–20. doi:10.3109/09637486.2013.832170.

    Article  CAS  PubMed  Google Scholar 

  8. Bailey DG, Dresser GK, Kreeft JH, Munoz C, Freeman DJ, Bend JR. Grapefruit-felodipine interaction: effect of unprocessed fruit and probable active ingredients. Clin Pharmacol Ther. 2000;68(5):468–77.

    Article  CAS  PubMed  Google Scholar 

  9. Bain DL, Heneghan AF, Connaghan-Jones KD, Miura MT. Nuclear receptor structure: implications for function. Physiology. 2007;69(69):201–20.

    Article  CAS  Google Scholar 

  10. Barbier O, Villeneuve L, Bocher V, Fontaine C, Torra IP, Duhem C, et al. The UDP-glucuronosyltransferase 1A9 enzyme is a peroxisome proliferator-activated receptor alpha and gamma target gene. J Biol Chem. 2003;278(16):13975–83.

    Article  CAS  PubMed  Google Scholar 

  11. Bock KW, Köhle C. Coordinate regulation of drug metabolism by xenobiotic nuclear receptors: UGTs acting together with CYPs and glucuronide transporters. Drug Metab Rev. 2004;36(3–4):595–615.

    Article  CAS  PubMed  Google Scholar 

  12. Bode AM, Dong Z. Signal transduction and molecular targets of selected flavonoids. Antioxid Redox Signal. 2013;19(2):163–80. doi:10.1089/ars.2013.5251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bolca S, Urpi-Sarda M, Blondeel P, Roche N, Vanhaecke L, Possemiers S, et al. Disposition of soy isoflavones in normal human breast tissue. Am J Clin Nutr. 2010;91(4):976–84.

    Article  CAS  PubMed  Google Scholar 

  14. Boonpawa R, Moradi N, Spenkelink A, Rietjens IM, Punt A. Use of physiologically based kinetic (PBK) modeling to study interindividual human variation and species differences in plasma concentrations of quercetin and its metabolites. Biochem Pharmacol. 2015;98(4):690–702. doi:10.1016/j.bcp.2015.09.022.

    Article  CAS  PubMed  Google Scholar 

  15. Boonpawa R, Spenkelink A, Rietjens IM, Punt A. A physiologically based kinetic (PBK) model describing plasma concentrations of quercetin and its metabolites in rats. Biochem Pharmacol. 2014;89(2):287–99. doi:10.1016/j.bcp.2014.02.007.

    Article  CAS  PubMed  Google Scholar 

  16. Braissant O, Foufelle F, Scotto C, Dauça M, Wahli W. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology. 1996;137(1):354–66.

    Article  CAS  PubMed  Google Scholar 

  17. Brantley SJ, Argikar AA, Lin YS, Nagar S, Paine MF. Herb-drug interactions: challenges and opportunities for improved predictions. Drug Metab Dispos Biol Fate Chem. 2014;42(3):301–17. doi:10.1124/dmd.113.055236.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Brunt EM. Humanized xenobiotic response in mice expressing nuclear receptor SXR. Nature. 2000;406(6794):435–9.

    Article  PubMed  CAS  Google Scholar 

  19. Burchell B, Nebert DW, Nelson DR, Bock KW, Iyanagi T, Jansen PL, et al. The UDP glucuronosyltransferase gene superfamily: suggested nomenclature based on evolutionary divergence. DNA Cell Biol. 1991;10(7):487–94.

    Article  CAS  PubMed  Google Scholar 

  20. Cao Y, Chen ZJ, Jiang HD, Chen JZ. Computational studies of the regioselectivities of COMT-catalyzed meta-/para-O methylations of luteolin and quercetin. J Phys Chem B. 2013;118(2):470–81.

    Article  CAS  Google Scholar 

  21. Chang Q, Zuo Z, Chow MS, Ho WK. Difference in absorption of the two structurally similar flavonoid glycosides, hyperoside and isoquercitrin, in rats. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik E V. 2005;59(3):549–55.

    CAS  Google Scholar 

  22. Chen J, Lin H, Hu M. Metabolism of flavonoids via enteric recycling: role of intestinal disposition. J Pharmacol Exp Ther. 2003;304(3):1228–35.

    Article  CAS  PubMed  Google Scholar 

  23. Chen J, Lin H, Hu M. Absorption and metabolism of genistein and its five isoflavone analogs in the human intestinal Caco-2 model. Cancer Chemother Pharmacol. 2005a;55(2):159–69.

    Article  CAS  PubMed  Google Scholar 

  24. Chen J, Wang S, Jia X, Bajimaya S, Lin H, Tam VH, et al. Disposition of flavonoids via recycling: comparison of intestinal versus hepatic disposition. Drug Metab Dispos Biol Fate Chem. 2005b;33(12):1777–84.

    CAS  PubMed  Google Scholar 

  25. Chen JJ, Lipska BK, Halim N, et al. Functional analysis of genetic variation in Catechol-O-Methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet. 2004;75(5):807–821.

  26. Chen Y, Nie D. Pregnane X receptor and its potential role in drug resistance in cancer treatment. Recent Pat Anticancer Drug Discov. 2009;4(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  27. Chen Y, Tang Y, Guo C, Wang J, Boral D, Nie D. Nuclear receptors in the multidrug resistance through the regulation of drug-metabolizing enzymes and drug transporters. Biochem Pharmacol. 2012;83(8):1112–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen Z, Chen M, Pan H, Sun S, Li L, Zeng S, et al. Role of catechol-O-methyltransferase in the disposition of luteolin in rats. Drug Metab Dispos Biol Fate Chem. 2011;39(4):667–74.

    Article  CAS  PubMed  Google Scholar 

  29. Chen Z, Zheng S, Li L, Jiang H. Metabolism of flavonoids in human: a comprehensive review. Curr Drug Metab. 2014a;15(1):48.

    Article  CAS  PubMed  Google Scholar 

  30. Chen Z, Zheng S, Li L, Jiang H. Metabolism of flavonoids in human: a comprehensive review. Curr Drug Metab. 2014b;15(1):48–61.

    Article  CAS  PubMed  Google Scholar 

  31. Chen ZJ, Dai YQ, Kong SS, Song FF, Li LP, Ye JF, et al. Luteolin is a rare substrate of human catechol-O-methyltransferase favoring a para-methylation. Mol Nutr Food Res. 2013;57(5):877–85.

    Article  CAS  PubMed  Google Scholar 

  32. Chinni S, Dubala A, Kosaraju J, Khatwal RB, Satish Kumar MN, Kannan E. Effect of crude extract of Eugenia jambolana Lam. on human cytochrome P450 enzymes. Phytother Res. 2014;28(11):1731–4. doi:10.1002/ptr.5137.

    Article  PubMed  Google Scholar 

  33. Ciolino HP, Daschner PJ, Yeh GC. Dietary flavonols quercetin and kaempferol are ligands of the aryl hydrocarbon receptor that affect Cyp1a1 transcription differentially. Biochem J. 1999;340(Pt 3):715–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Consortium TGP, Ayub Q. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.

    Article  CAS  Google Scholar 

  35. Coughtrie MW, Gilissen RA, Shek B, Strange RC, Fryer AA, Jones PW, et al. Phenol sulphotransferase SULT1A1 polymorphism: molecular diagnosis and allele frequencies in Caucasian and African populations. Biochem J. 1999;337(Pt 1):45–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Court MH, Zhang X, Ding X, Yee KK, Hesse LM, Finel M. Quantitative distribution of mRNAs encoding the 19 human UDP-glucuronosyltransferase enzymes in 26 adult and 3 fetal tissues. Xenobiotica. 2012;42(3):266–77.

    Article  CAS  PubMed  Google Scholar 

  37. Cummins CL, Salphati L, Reid MJ, Benet LZ. In vivo modulation of intestinal CYP3A metabolism by P-glycoprotein: studies using the rat single-pass intestinal perfusion model. J Pharmacol Exp Ther. 2003;305(1):306–14.

    Article  CAS  PubMed  Google Scholar 

  38. Dai P, Luo F, Wang Y, Jiang H, Wang L, Zhang G, et al. Species- and gender-dependent differences in the glucuronidation of a flavonoid glucoside and its aglycone determined using expressed UGT enzymes and microsomes. Biopharm Drug Dispos. 2015a;36(9):622–35.

    Article  CAS  PubMed  Google Scholar 

  39. Dai P, Luo F, Ying W, Jiang H, Wang L, Zhang G, et al. Species- and gender-dependent differences in the glucuronidation of a flavonoid glucoside and its aglycone determined using expressed UGT enzymes and microsomes. Biopharm Drug Dispos. 2015c;36(9):622–35.

    Article  CAS  PubMed  Google Scholar 

  40. Dai P, Zhu L, Luo F, Lu L, Li Q, Wang L, et al. Triple recycling processes impact systemic and local bioavailability of orally administered flavonoids. AAPS J. 2015b;17(3):723–36. doi:10.1208/s12248-015-9732-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dai P, Zhu L, Luo F, Lu L, Qiang L, Wang L, et al. Triple recycling processes impact systemic and local bioavailability of orally administered flavonoids. AAPS J. 2015d;17(3):723–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Day AJ, Cañada FJ, kroon PA, Mclauchlan R, et al. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett. 2000;468(2–3):166–70.

    Article  CAS  PubMed  Google Scholar 

  43. Day AJ, Dupont MS, Ridley S, Rhodes M, Rhodes MJ, Morgan MR, et al. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett. 1998;436(1):71–5.

    Article  CAS  PubMed  Google Scholar 

  44. Day AJ, Gee JM, Dupont MS, Johnson IT, Williamson G. Absorption of quercetin-3-glucoside and quercetin-4′-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochem Pharmacol. 2003;65(7):1199–206.

    Article  CAS  PubMed  Google Scholar 

  45. Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal. 2013;18(14):1818–92. doi:10.1089/ars.2012.4581.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Eaton EA, Walle UK, Lewis AJ, Hudson T, Wilson AA, Walle T. Flavonoids, potent inhibitors of the human P-form phenolsulfotransferase. Potential role in drug metabolism and chemoprevention. Drug Metab Dispos. 1996;24(2):232–7.

    CAS  PubMed  Google Scholar 

  47. Enokizono J, Kusuhara H, Sugiyama Y. Effect of breast cancer resistance protein (Bcrp/Abcg2) on the disposition of phytoestrogens. Mol Pharmacol. 2007;72(4):967–75.

    Article  CAS  PubMed  Google Scholar 

  48. Erlund I, Meririnne E, Alfthan G, Aro A. Plasma kinetics and urinary excretion of the flavanones naringenin and hesperetin in humans after ingestion of orange juice and grapefruit juice. J Nutr. 2001;131(2):235–41.

    CAS  PubMed  Google Scholar 

  49. Eun Ju J, Jia X, Ming H. Disposition of formononetin via enteric recycling: metabolism and excretion in mouse intestinal perfusion and Caco-2 cell models. Mol Pharm. 2005a;2(4):319–28.

    Article  CAS  Google Scholar 

  50. Jeong EJ, Jia X, Ming H. Disposition of formononetin via enteric recycling: metabolism and excretion in mouse intestinal perfusion and Caco-2 cell models. Mol Pharm. 2005b;2(4):319–28.

    Article  CAS  PubMed  Google Scholar 

  51. Fan Y, Tang L, Zhou J, Feng Q, Xia B, Liu Z. Simultaneous determination of sulfation and glucuronidation of flavones in FVB mouse intestine in vitro and in vivo. J Appl Toxicol. 2013;33(4):273–80.

    Article  PubMed  CAS  Google Scholar 

  52. Fang HL, Strom SC, Cai H, Falany CN, Kocarek TA, Rungemorris M. Regulation of human hepatic hydroxysteroid sulfotransferase gene expression by the peroxisome proliferator-activated receptor alpha transcription factor. Mol Pharmacol. 2005;67(4):1257–67.

    Article  CAS  PubMed  Google Scholar 

  53. Fuhr DMU. Drug interactions with grapefruit juice. Drug Saf. 1998;33(4):103–21.

    Google Scholar 

  54. Galijatovic A, Otake Y, Walle UK, Walle T. Induction of UDP-glucuronosyltransferase UGT1A1 by the flavonoid chrysin in Caco-2 cells—potential role in carcinogen bioinactivation. Pharm Res. 2001;18(3):374–9.

    Article  CAS  PubMed  Google Scholar 

  55. Galijatovic A, Walle UK, Walle T. Induction of UDP-glucuronosyltransferase by the flavonoids chrysin and quercetin in Caco-2 cells. Pharm Res. 2000;17(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  56. Gamage N. Human sulfotransferases and their role in chemical metabolism. Toxicol Sci An Off J Soc Toxicol. 2006;90(1):5–22.

    Article  CAS  Google Scholar 

  57. Giacomini KM, Shiew-Mei H, Tweedie DJ, Benet LZ, Brouwer KLR, Xiaoyan C, et al. Membrane transporters in drug development. Adv Pharmacol. 2012;63(3):1–42.

    Google Scholar 

  58. Gonzales GB, Raes K, Coelus S, Struijs K, Smagghe G, Van Camp J. Ultra(high)-pressure liquid chromatography-electrospray ionization-time-of-flight-ion mobility-high definition mass spectrometry for the rapid identification and structural characterization of flavonoid glycosides from cauliflower waste. J Chromatogr A. 2014;1323:39–48. doi:10.1016/j.chroma.2013.10.077.

    Article  CAS  PubMed  Google Scholar 

  59. Gonzales GB, Smagghe G, Grootaert C, Zotti M, Raes K, Van Camp J. Flavonoid interactions during digestion, absorption, distribution and metabolism: a sequential structure-activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metab Rev. 2015;47(2):175–90. doi:10.3109/03602532.2014.1003649.

    Article  CAS  PubMed  Google Scholar 

  60. Goodwin B, Jones SA, Price RR, Watson MA, Mckee DD, Moore LB, et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell. 2000;6(3):517–26.

    Article  CAS  PubMed  Google Scholar 

  61. Gronemeyer H, Gustafsson J, Laudet V. Principles for modulation of the nuclear receptor superfamily. Nat Rev Drug Discov. 2004;3(11):950–64.

    Article  CAS  PubMed  Google Scholar 

  62. Guillemette C, Lévesque E, Harvey M, Bellemare J, Menard V. UGT genomic diversity: beyond gene duplication. Drug Metab Rev. 2010;42(1):24–44.

    Article  CAS  PubMed  Google Scholar 

  63. Hana J, Krantis A, Akhtar MH, Bryan M. In vitro inhibition of human cytochrome P450-mediated metabolism of marker substrates by natural products. Phytomedicine. 2003;10(4):334–42.

    Article  PubMed  Google Scholar 

  64. Handschin C, Meyer UA. Induction of drug metabolism: the role of nuclear receptors. Pharmacol Rev. 2003;55(4):649–73.

    Article  CAS  PubMed  Google Scholar 

  65. Hanske L, Loh G, Sczesny S, Blaut M, Braune A. The bioavailability of apigenin-7-glucoside is influenced by human intestinal microbiota in rats. J Nutr. 2009;139(6):1095–102. doi:10.3945/jn.108.102814.

    Article  CAS  PubMed  Google Scholar 

  66. Helsby NA, Chipman JK, Gescher A, Kerr D. Inhibition of mouse and human CYP 1A- and 2E1-dependent substrate metabolism by the isoflavonoids genistein and equol. Food Chem Toxicol. 1998;36(36):375–82.

    Article  CAS  PubMed  Google Scholar 

  67. Holst B, Williamson G. A critical review of the bioavailability of glucosinolates and related compounds. Nat Prod Rep. 2004;21(3):425–47. doi:10.1039/b204039p.

    Article  CAS  PubMed  Google Scholar 

  68. Hu M, Chen J, Lin H. Metabolism of flavonoids via enteric recycling: mechanistic studies of disposition of apigenin in the Caco-2 cell culture model. J Pharmacol Exp Ther. 2003;307(1):314–21.

    Article  CAS  PubMed  Google Scholar 

  69. Huang C, Chen Y, Zhou T, Chen G. Sulfation of dietary flavonoids by human sulfotransferases. Xenobiotica Fate Foreign Compd Biol Syst. 2009;39(4):312–22.

    Article  CAS  Google Scholar 

  70. Huang P, Chandra V, Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Physiology. 2010;72(72):247–72.

    Article  CAS  Google Scholar 

  71. Hunt MC, Yang YZ, Eggertsen G, Carneheim CM, Gåfvels M, Einarsson C, et al. The peroxisome proliferator-activated receptor alpha (PPAR alpha) regulates bile acid biosynthesis. J Biol Chem. 2000;275(37):28947–53.

    Article  CAS  PubMed  Google Scholar 

  72. Ieiri I, Takane H, Hirota T, Otsubo K, Higuchi S. Genetic polymorphisms of drug transporters: pharmacokinetic and pharmacodynamic consequences in pharmacotherapy. Expert Opin Drug Metab Toxicol. 2006;2(5):651–74. doi:10.1517/17425255.2.5.651.

    Article  CAS  PubMed  Google Scholar 

  73. Imai Y, Nakane M, Kage K, Tsukahara S, Ishikawa E, Tsuruo T, et al. C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. Mol Cancer Ther. 2002;1(8):611–6.

    CAS  PubMed  Google Scholar 

  74. Imai Y, Tsukahara S, Asada S, Sugimoto Y. Phytoestrogens/flavonoids reverse breast cancer resistance protein/ABCG2-mediated multidrug resistance. Cancer Res. 2004;64(12):4346–52. doi:10.1158/0008-5472.CAN-04-0078.

    Article  CAS  PubMed  Google Scholar 

  75. Izumi T, Piskula MK, Osawa S, Obata A, Tobe K, Saito M, et al. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J Nutr. 2000;130(7):1695–9.

    CAS  PubMed  Google Scholar 

  76. Jacques PF, Cassidy A, Rogers G, Peterson JJ, Meigs JB, Dwyer JT. Higher dietary flavonol intake is associated with lower incidence of type 2 diabetes. J Nutr. 2013;143(9):1474–80. doi:10.3945/jn.113.177212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jelinek DF, Russell DW. Structure of the rat gene encoding cholesterol 7 alpha-hydroxylase. Biochemistry. 1990;29(29):7781–5.

    Article  CAS  PubMed  Google Scholar 

  78. Jeong EJ, Jia X, Hu M. Disposition of formononetin via enteric recycling: metabolism and excretion in mouse intestinal perfusion and Caco-2 cell models. Mol Pharm. 2005a;2(4):319–28.

    Article  CAS  PubMed  Google Scholar 

  79. Jeong EJ, Liu X, Jia X, Chen J, Hu M. Coupling of conjugating enzymes and efflux transporters: impact on bioavailability and drug interactions. Curr Drug Metab. 2005c;6(5):455–68.

    Article  CAS  PubMed  Google Scholar 

  80. Jia X, Chen J, Lin H, Hu M. Disposition of flavonoids via enteric recycling: enzyme-transporter coupling affects metabolism of biochanin A and formononetin and excretion of their phase II conjugates. J Pharmacol Exp Ther. 2004;310(3):1103–13.

    Article  CAS  PubMed  Google Scholar 

  81. Johnson EF, Palmer CN, Griffin KJ, Hsu MH. Role of the peroxisome proliferator-activated receptor in cytochrome P450 4A gene regulation. Faseb J Off Publ Fed Am Soc Exp Biol. 1996;10(11):1241–8.

    CAS  Google Scholar 

  82. Jones SA, Moore LB, Shenk JL, Wisely GB, Hamilton GA, Mckee DD, et al. The pregnane X receptor: a promiscuous xenobiotic receptor that has diverged during evolution. Mol Endocrinol. 2000;14(1):27–39.

    Article  CAS  PubMed  Google Scholar 

  83. Keogh JP. Membrane transporters in drug development. Adv Pharmacol (San Diego, Calif). 2012;63:1–42. doi:10.1016/b978-0-12-398339-8.00001-x.

    Article  CAS  Google Scholar 

  84. Krogsdam AM, Nielsen CA, Neve S, Holst D, Helledie T, Thomsen B, et al. Nuclear receptor corepressor-dependent repression of peroxisome-proliferator-activated receptor delta-mediated transactivation. Biochem J. 2002;363(1):157–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kuijsten A, Arts IC, Vree TB, Hollman PC. Pharmacokinetics of enterolignans in healthy men and women consuming a single dose of secoisolariciresinol diglucoside. J Nutr. 2005;135(4):795–801.

    CAS  PubMed  Google Scholar 

  86. Lee HS, Ji HY, Park EJ, Kim SY. Metabolism of eupatilin by multiple cytochrome P450 and UDP-glucuronosyltransferase enzymes. Xenobiotica. 2007;37(8):803–17.

    Article  CAS  PubMed  Google Scholar 

  87. LEE SST, GONZALEZ FJ. Targeted disruption of the peroxisome proliferator—activated receptor α gene PPARα. Mol Cell Biol. 1995;15(6):3012–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lehmann JM, Kliewer SA, Moore LB, Smith-Oliver TA, Oliver BB, Su JL, et al. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem. 1997;272(6):3137–40.

    Article  CAS  PubMed  Google Scholar 

  89. Liang Z, Zhu L, Min Z, Jian S, Li Y, Jia Y, et al. In vivo exposure of kaempferol is driven by phase II metabolic enzymes and efflux transporters. AAPS J. 2016;18(5):1–11.

    Google Scholar 

  90. Liu Y, Hu M. Absorption and metabolism of flavonoids in the caco-2 cell culture model and a perused rat intestinal model. Drug Metab Dispos Biol Fate Chem. 2002;30(4):370–7.

    Article  CAS  PubMed  Google Scholar 

  91. Lodi F, Jimenez R, Moreno L, Kroon PA, Needs PW, Hughes DA, et al. Glucuronidated and sulfated metabolites of the flavonoid quercetin prevent endothelial dysfunction but lack direct vasorelaxant effects in rat aorta. Atherosclerosis. 2009;204(1):34–9.

    Article  CAS  PubMed  Google Scholar 

  92. Lucas CD, Allen KC, Dorward DA, Hoodless LJ, Melrose LA, Marwick JA, et al. Flavones induce neutrophil apoptosis by down-regulation of Mcl-1 via a proteasomal-dependent pathway. FASEB J Off Publ Fed Am Soc Exp Biol. 2013;27(3):1084–94. doi:10.1096/fj.12-218990.

    CAS  Google Scholar 

  93. Luo CF, Cai B, Hou N, Yuan M, Liu SM, Ji H, et al. UDP-glucuronosyltransferase 1A1 is the principal enzyme responsible for puerarin metabolism in human liver microsomes. Arch Toxicol. 2012;86(11):1681–90.

    Article  CAS  PubMed  Google Scholar 

  94. Männistö PT, Kaakkola S. Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev. 1999;51(4):593–628.

    PubMed  Google Scholar 

  95. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, et al. Identification of a nuclear receptor for bile acids. Science. 1999;284(5418):1362–5.

    Article  CAS  PubMed  Google Scholar 

  96. Maliepaard M. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res. 2001;61(8):3458–64.

    CAS  PubMed  Google Scholar 

  97. Miners JO, Smith PA, Sorich MJ, Mckinnon RA, Mackenzie PI. Predicting human drug glucuronidation parameters: application of in vitro and in silico modeling approaches. Pharmacol Toxicol. 2004;44(44):1–25.

    CAS  Google Scholar 

  98. Mitsunaga Y, Takanaga H, Matsuo H, Naito M, Tsuruo T, Ohtani H, et al. Effect of bioflavonoids on vincristine transport across blood-brain barrier. Eur J Pharmacol. 2000;395(3):193–201.

    Article  CAS  PubMed  Google Scholar 

  99. Miura M, Satoh S, Tada H, Saito M, Kagaya H, Inoue K, et al. Influence of ABCB1 C3435T polymorphism on the pharmacokinetics of lansoprazole and gastroesophageal symptoms in Japanese renal transplant recipients classified as CYP2C19 extensive metabolizers and treated with tacrolimus. Int J Clin Pharmacol Ther. 2006;44(12):605–13.

    Article  CAS  PubMed  Google Scholar 

  100. Nakano H, Ogura K, Takahashi E, Harada T, Nishiyama T, Muro K, et al. Regioselective monosulfation and disulfation of the phytoestrogens daidzein and genistein by human liver sulfotransferases. Drug Metab Pharmacokinet. 2004;19(3):216–26.

    Article  CAS  PubMed  Google Scholar 

  101. Notas G, Nifli AP, Kampa M, Pelekanou V, Alexaki VI, Theodoropoulos P, et al. Quercetin accumulates in nuclear structures and triggers specific gene expression in epithelial cells. J Nutr Biochem. 2012;23(6):656–66. doi:10.1016/j.jnutbio.2011.03.010.

    Article  CAS  PubMed  Google Scholar 

  102. Nowell S, Falany CN. Pharmacogenetics of human cytosolic sulfotransferases. Oncogene. 2006;25(11):1673–8.

    Article  CAS  PubMed  Google Scholar 

  103. Omiecinski CJ, Vanden Heuvel JP, Perdew GH, Peters JM. Xenobiotic metabolism, disposition, and regulation by receptors: from biochemical phenomenon to predictors of major toxicities. Toxicol Sci. 2011;120(Suppl 1):S49–75.

    Article  CAS  PubMed  Google Scholar 

  104. Otake Y, Hsieh F, Walle T. Glucuronidation versus oxidation of the flavonoid galangin by human liver microsomes and hepatocytes. Drug Metab Dispos Biol Fate Chem. 2002;30(5):576–81.

    Article  CAS  PubMed  Google Scholar 

  105. Otake Y, Nolan AL, Walle UK, Walle T. Quercetin and resveratrol potently reduce estrogen sulfotransferase activity in normal human mammary epithelial cells. J Steroid Biochem Mol Biol. 2000;73(5):265–70.

    Article  CAS  PubMed  Google Scholar 

  106. Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999;284(5418):1365–8.

    Article  CAS  PubMed  Google Scholar 

  107. Peet DJ, Janowski BA, Mangelsdorf DJ. The LXRs: a new class of oxysterol receptors. Curr Opin Genet Dev. 1998a;8(5):571–5.

    Article  CAS  PubMed  Google Scholar 

  108. Peet DJ, Turley SD, Ma W, Janowski BA, Lobaccaro JMA, Hammer RE, et al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell. 1998b;93(93):693–704.

    Article  CAS  PubMed  Google Scholar 

  109. Polimanti R, Piacentini S, Manfellotto D, Fuciarelli M. Human genetic variation of CYP450 superfamily: analysis of functional diversity in worldwide populations. Pharmacogenomics. 2012;13(16):1951–60. doi:10.2217/pgs.12.163.

    Article  CAS  PubMed  Google Scholar 

  110. Prakash C, Zuniga B, Song CS, Jiang S, Cropper J, Park S, et al. Nuclear receptors in drug metabolism, drug response and drug interactions. Nucl Recept Res. 2015;2

  111. Prasain JK, Xu J, Kirk M, Smith JM, Sfakianos J, Barnes S. Differential biliary excretion of genistein metabolites following intraduodenal and intravenous infusion of genistin in female rats. J Nutr. 2007;136(12):2975–9.

    Google Scholar 

  112. Riches Z, Stanley EL, Bloomer JC, Coughtrie MWH. Quantitative evaluation of the expression and activity of five major sulfotransferases (SULTs) in human tissues: the SULT “pie”. Drug Metab Dispos Biol Fate Chem. 2009;37(11):2255–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Roberts DW, Doerge DR, Churchwell MI, Gamboa dCG, Marques MM, Tolleson WH. Inhibition of extrahepatic human cytochromes P450 1A1 and 1B1 by metabolism of isoflavones found in Trifolium pratense (red clover). J Agric Food Chem. 2004;52(21):6623–32.

    Article  CAS  PubMed  Google Scholar 

  114. Rowland A, Miners JO, Mackenzie PI. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol. 2013a;45(6):1121–32. doi:10.1016/j.biocel.2013.02.019.

    Article  CAS  PubMed  Google Scholar 

  115. Rowland A, Miners JO, Mackenzie PI. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol. 2013b;45(6):1121–32.

    Article  CAS  PubMed  Google Scholar 

  116. Salman ED, Kadlubar SA, Falany CN. Expression and localization of cytosolic sulfotransferase (SULT) 1A1 and SULT1A3 in normal human brain. Drug Metab Dispos Biol Fate Chem. 2009;37(4):706–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Savai J, Varghese A, Pandita N, Chintamaneni M. Investigation of CYP3A4 and CYP2D6 interactions of Withania somnifera and Centella asiatica in human liver Microsomes. Phytother Res. 2015;29(5):785–90. doi:10.1002/ptr.5308.

    Article  CAS  PubMed  Google Scholar 

  118. Schumacher M, Hautzinger A, Rossmann A, Holzhauser S, Popovic D, Hertrampf A, et al. Chrysin blocks topotecan-induced apoptosis in Caco-2 cells in spite of inhibition of ABC-transporters. Biochem Pharmacol. 2010;80(4):471–9.

    Article  CAS  PubMed  Google Scholar 

  119. Sergent T, Garsou S, Schaut A, De SS, Pussemier L, Van PC, et al. Differential modulation of ochratoxin A absorption across Caco-2 cells by dietary polyphenols, used at realistic intestinal concentrations. Toxicol Lett. 2005;159(1):60–70.

    Article  CAS  PubMed  Google Scholar 

  120. Sesink AL, Arts IC, de Boer VC, Breedveld P, Schellens JH, Hollman PC, et al. Breast cancer resistance protein (Bcrp1/Abcg2) limits net intestinal uptake of quercetin in rats by facilitating apical efflux of glucuronides. Mol Pharmacol. 2005;67(6):1999–2006. doi:10.1124/mol.104.009753.

    Article  CAS  PubMed  Google Scholar 

  121. Sfakianos J, Coward L, Kirk M, Barnes S. Intestinal uptake and biliary excretion of the isoflavone genistein in rats. J Nutr. 1997;127(7):1260–8.

    CAS  PubMed  Google Scholar 

  122. Shelby MK, Klaassen CD. Induction of rat UDP-glucuronosyltransferases in liver and duodenum by microsomal enzyme inducers that activate various transcriptional pathways. Drug Metab Dispos Biol Fate Chem. 2006;34(10):1772–8.

    Article  CAS  PubMed  Google Scholar 

  123. Shelnutt SR, Cimino CO, Wiggins PA, Badger TM. Urinary pharmacokinetics of the glucuronide and sulfate conjugates of genistein and daidzein. Cancer Epidemiol Biomark Prev. 2000;9(4):413–9.

    CAS  Google Scholar 

  124. Shi J, Zheng H, Yu J, Zhu L, Yan T, Wu P, et al. SGLT-1 transport and deglycosylation inside intestinal cells are key steps in the absorption and disposition of calycosin-7-O-β-d-glucoside in rats. Drug Metab Dispos Biol Fate Chem. 2016;44(3):283–96.

    Article  CAS  PubMed  Google Scholar 

  125. Sivaraman L, Leatham MP, Yee J, Wilkens LR, Lau AF, Le Marchand L. CYP1A1 genetic polymorphisms and in situ colorectal cancer. Cancer Res. 1994;54(14):3692–5.

    CAS  PubMed  Google Scholar 

  126. Skopec MM, Green AK, Karasov WH. Flavonoids have differential effects on glucose absorption in rats ( Rattus norvegicus) and American robins ( Turdis migratorius). J Chem Ecol. 2010;36(2):236–43.

    Article  CAS  PubMed  Google Scholar 

  127. Soldner A, Christians U, Susanto M, Wacher VJ, Silverman JA, Benet LZ. Grapefruit juice activates P-glycoprotein-mediated drug transport. Pharm Res. 1999;16(4):478–85.

    Article  CAS  PubMed  Google Scholar 

  128. Srinivas NR. Biochanin a: understanding the complexities in the paradoxical drug-drug interaction potential. Eur J Drug Metab Pharmacokinet. 2015;40(2):119–25. doi:10.1007/s13318-015-0279-0.

    Article  CAS  PubMed  Google Scholar 

  129. Steegmann JL, Moreno G, Alaez C, Osorio S, Granda A, De CR, et al. Nuclear receptor, pregname X receptor, is required for induction of UDP-glucuronosyltranferases in mouse liver by pregnenolone-16 alpha-carbonitrile. Drug Metab Dispos. 2003;31(7):908–15.

    Article  Google Scholar 

  130. Sun X, Plouzek C, Henry J, Wang T, Phang J. Increased UDP-glucuronosyltransferase activity and decreased prostate specific antigen production by biochanin A in prostate cancer cells. Cancer Res. 1998;58(11):2379–84.

    CAS  PubMed  Google Scholar 

  131. Synold TW, Dussault I, Forman BM. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med. 2001;7(5):584–90.

    Article  CAS  PubMed  Google Scholar 

  132. Tamura A, Watanabe M, Saito H, Nakagawa H, Kamachi T, Okura I, et al. Functional validation of the genetic polymorphisms of human ATP-binding cassette (ABC) transporter ABCG2: identification of alleles that are defective in porphyrin transport. Mol Pharmacol. 2006;70(1):287–96. doi:10.1124/mol.106.023556.

    CAS  PubMed  Google Scholar 

  133. Tan ZR, Zhou YX, Liu J, Huang WH, Chen Y, Wang YC, et al. The influence of ABCB1 polymorphism C3435T on the pharmacokinetics of silibinin. J Clin Pharm Ther. 2015;40(6):685–8. doi:10.1111/jcpt.12336.

    Article  CAS  PubMed  Google Scholar 

  134. Tang L, Ye L, Singh R, Wu B, Lv C, Zhao J, et al. Use of glucuronidation fingerprinting to describe and predict mono- and dihydroxyflavone metabolism by recombinant UGT isoforms and human intestinal and liver microsomes. Mol Pharm. 2010;7(3):664–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Tang L, Zhou J, Yang CH, Xia BJ, Hu M, Liu ZQ. Systematic studies of sulfation and glucuronidation of 12 flavonoids in the mouse liver S9 fraction reveal both unique and shared positional preferences. J Agric Food Chem. 2012a;60(12):3223–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tang L, Zhou J, Yang CH, Xia BJ, Hu M, Liu ZQ. Systematic studies of sulfation and glucuronidation of 12 flavonoids in the mouse liver S9 fraction reveals both unique and shared positional preferences. J Agric Food Chem. 2012b;60(12):3223–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Tien ES, Negishi M. Nuclear receptors CAR and PXR in the regulation of hepatic metabolism. Xenobiotica. 2006;36(10–11):1152–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tolson AH, Wang H. Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR. Adv Drug Deliv Rev. 2010a;62(13):1238–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tolson AH, Wang H. Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR. Adv Drug Deliv Rev. 2010b;62(13):1238–49. doi:10.1016/j.addr.2010.08.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tu H, Okamoto AY, Shan B. FXR, a bile acid receptor and biological sensor. Trends Cardiovasc Med. 2000;10(1):30–5.

    Article  CAS  PubMed  Google Scholar 

  141. Tukey RH, Strassburg CP, Mackenzie PI. Pharmacogenomics of human UDP-glucuronosyltransferases and irinotecan toxicity. Mol Pharmacol. 2002;62(3):446–50.

    Article  CAS  PubMed  Google Scholar 

  142. Tunbridge EM, Harrison PJ, Weinberger DR. Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biol Psychiatry. 2006;60(2):141–51.

    Article  CAS  PubMed  Google Scholar 

  143. Ueda A, Hamadeh HK, Webb HK, Yamamoto Y, Sueyoshi T, Afshari CA, et al. Diverse roles of the nuclear orphan receptor CAR in regulating hepatic genes in response to phenobarbital. Mol Pharmacol. 2002;61(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  144. Urquhart BL, Tirona RG, Kim RB. Nuclear receptors and the regulation of drug-metabolizing enzymes and drug transporters: implications for interindividual variability in response to drugs. J Clin Pharmacol. 2007;47(5):566–78. doi:10.1177/0091270007299930.

    Article  CAS  PubMed  Google Scholar 

  145. van de Wetering K, Burkon A, Feddema W, Bot A, de Jonge H, Somoza V, et al. Intestinal breast cancer resistance protein (BCRP)/Bcrp1 and multidrug resistance protein 3 (MRP3)/Mrp3 are involved in the pharmacokinetics of resveratrol. Mol Pharmacol. 2009;75(4):876–85. doi:10.1124/mol.108.052019.

    Article  PubMed  CAS  Google Scholar 

  146. Veronese ML, Gillen LP, Burke JP, Dorval EP, Hauck WW, Pequignot E, et al. Exposure-dependent inhibition of intestinal and hepatic CYP3A4 in vivo by grapefruit juice. J Clin Pharmacol. 2003;43(8):831–9.

    Article  CAS  PubMed  Google Scholar 

  147. Vilaca R, Mendes V, Mendes MV, Carreto L, Amorim MA, de Freitas V, et al. Quercetin protects Saccharomyces cerevisiae against oxidative stress by inducing trehalose biosynthesis and the cell wall integrity pathway. PLoS One. 2012;7(9):e45494. doi:10.1371/journal.pone.0045494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Viswakarma N, Jia Y, Bai L, Vluggens A, Borensztajn J, Xu J, et al. Coactivators in PPAR-regulated gene expression. PPAR Res. 2010;2010(1687–4757):142–57.

    Google Scholar 

  149. Volkova M, Forstova-Krizova V, Skalova L, Trejtnar F. Modulatory effects of quercetin and rutin on the activity, expression and inducibility of CYP1A1 in intestinal HCT-8 cells. Phytother Res. 2013;27(12):1889–93.

    Article  CAS  PubMed  Google Scholar 

  150. Wakeling LA, Ford D. Polymorphisms in genes involved in the metabolism and transport of soy isoflavones affect the urinary metabolite profile in premenopausal women following consumption of a commercial soy supplement as a single bolus dose. Mol Nutr Food Res. 2012;56(12):1794–802. doi:10.1002/mnfr.201200287.

    Article  CAS  PubMed  Google Scholar 

  151. Walgren RA, Lin JT, Kinne RKH, Walle T. Cellular uptake of dietary flavonoid quercetin 4′-beta-glucoside by sodium-dependent glucose transporter SGLT1. J Pharmacol Exp Ther. 2000;294(3):837–43.

    CAS  PubMed  Google Scholar 

  152. Walle T, Eaton EA, Walle UK. Quercetin, a potent and specific inhibitor of the human P-form phenosulfotransferase. Biochem Pharmacol. 1995;50(5):731–4.

    Article  CAS  PubMed  Google Scholar 

  153. Walle T, Otake Y, Galijatovic A, Ritter JK, Walle UK. Induction of UDP-glucuronosyltransferase UGT1A1 by the flavonoid chrysin in the human hepatoma cell line hep G2. Drug Metab Dispos Biol Fate Chem. 2000;28(9):1077–82.

    CAS  PubMed  Google Scholar 

  154. Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell. 1999;3(5):543–53.

    Article  CAS  PubMed  Google Scholar 

  155. Wang SW, Chen J, Jia X, Tam VH, Hu M. Disposition of flavonoids via enteric recycling: structural effects and lack of correlations between in vitro and in situ metabolic properties. Drug Metab Dispos. 2006;34(11):1837–48.

    Article  CAS  PubMed  Google Scholar 

  156. Wang SWJ, Chen Y, Joseph T, Hu M. Variable isoflavone contents of red clover products affect intestinal disposition of biochanin A, formononetin, genistein and daidzein. J Altern Complement Med. 2008;14(3):287–97.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Wang Y, Cao J, Zeng S. Involvement of P-glycoprotein in regulating cellular levels of ginkgo flavonols: quercetin, kaempferol, and isorhamnetin. J Pharm Pharmacol. 2005;57(6):751–8. doi:10.1211/0022357056299.

    Article  CAS  PubMed  Google Scholar 

  158. Wei P, Zhang J, Dowhan DH, Han Y, Moore DD. Specific and overlapping functions of the nuclear hormone receptors CAR and PXR in xenobiotic response. Pharmacogenomics J. 2002;2(2):117–26.

    Article  CAS  PubMed  Google Scholar 

  159. Wei Y, Wu B, Jiang W, Yin T, Jia X, Basu S, et al. Revolving door action of BCRP facilitates or controls the efflux of flavone glucuronides from UGT1A9-overexpressing HeLa cells. Mol Pharm. 2013;10(5):1736–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wein S, Cermak R, Wolffram S, Langguth P. Chronic quercetin feeding decreases plasma concentrations of salicylamide phase II metabolites in pigs following oral administration. Xenobiotica Fate Foreign Compd Biol Syst. 2012;42(5):477–82. doi:10.3109/00498254.2011.641607.

    Article  CAS  Google Scholar 

  161. Wilkinson AP, Gee JM, Dupont MS, Needs PW, Mellon FA, Williamson G, et al. Hydrolysis by lactase phlorizin hydrolase is the first step in the uptake of daidzein glucosides by rat small intestine in vitro. Xenobiotica Fate Foreign Compd Biol Syst. 2003;33(3):255–64.

    Article  CAS  Google Scholar 

  162. Williams JA, Ring BJ, Cantrell VE, Campanale K, Jones DR, Hall SD, et al. Differential modulation of UDP-glucuronosyltransferase 1A1 (UGT1A1)-catalyzed estradiol-3-glucuronidation by the addition of UGT1A1 substrates and other compounds to human liver microsomes. Drug Metab Dispos. 2002;30(11):1266–73.

    Article  CAS  PubMed  Google Scholar 

  163. Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA, Mangelsdorf DJ. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev. 1995;9(9):1033–45.

    Article  CAS  PubMed  Google Scholar 

  164. Wood AW, Smith DS, Chang RL, Huang MT, Conney AH. Effects of flavonoids on the metabolism of xenobiotics. Prog Clin Biol Res. 1986;213(10):195–210.

    CAS  PubMed  Google Scholar 

  165. Wu B, Basu S, Meng S, Wang X, Zhang S, Hu M. Regioselective sulfation and glucuronidation of phenolics: insights into the structural basis of conjugation. Curr Drug Metab. 2011a;12(9):900–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wu B, Xu B, Hu M. Regioselective glucuronidation of flavonols by six human UGT1A isoforms. Pharm Res. 2011b;28(8):1905–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Xia B, Zhou Q, Zheng Z, Ye L, Hu M, Liu Z. A novel local recycling mechanism that enhances enteric bioavailability of flavonoids and prolongs their residence time in the gut. Mol Pharm. 2012;9(11):3246–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Xiao J, Kai G, Yamamoto K, Chen X. Advance in dietary polyphenols as alpha-glucosidases inhibitors: a review on structure-activity relationship aspect. Crit Rev Food Sci Nutr. 2013;53(8):818–36. doi:10.1080/10408398.2011.561379.

    Article  CAS  PubMed  Google Scholar 

  169. Xie S, Chen Y, Chen S, Zeng S. Structure-metabolism relationships for the glucuronidation of flavonoids by UGT1A3 and UGT1A9. J Pharm Pharmacol. 2011;63(2):297–304.

    Article  CAS  PubMed  Google Scholar 

  170. Xie W, Yeuh MF, Radominskapandya A, Saini SP, Negishi Y, Bottroff BS, et al. Control of steroid, heme, and carcinogen metabolism by nuclear pregnane X receptor and constitutive androstane receptor. Proc Natl Acad Sci. 2003;100(7):4150–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Xu H, Kulkarni KH, Singh R, Yang Z, Wang SW, Tam VH, et al. Disposition of naringenin via glucuronidation pathway is affected by compensating efflux transporters of hydrophilic glucuronides. Mol Pharm. 2009;6(6):1703–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Yang K, Pfeifer ND, Hardwick RN, Yue W, Stewart PW, Brouwer KL. An experimental approach to evaluate the impact of impaired transport function on hepatobiliary drug disposition using Mrp2-deficient TR-rat sandwich-cultured hepatocytes in combination with Bcrp knockdown. Mol Pharm. 2014;11(3):766–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yang Z, Zhu W, Gao S, Yin T, Jiang W, Hu M. Breast cancer resistance protein (ABCG2) determines distribution of genistein phase II metabolites: reevaluation of the roles of ABCG2 in the disposition of genistein. Drug Metab Dispos Biol Fate Chem. 2012;40(10):1883–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Duanmu Z, Locke D, Smigelski J, Wu W, Dahn MS, Falany CN, et al. Effects of dexamethasone on aryl (SULT1A1)- and hydroxysteroid (SULT2A1)-sulfotransferase gene expression in primary cultured human hepatocytes. Drug Metab Dispos. 2002;30(9):997–1004.

    Article  CAS  PubMed  Google Scholar 

  175. Zanden JJV, Wortelboer HM, Bijlsma S, Punt A, Usta M, Bladeren PJV, et al. Quantitative structure activity relationship studies on the flavonoid mediated inhibition of multidrug resistance proteins 1 and 2. Biochem Pharmacol. 2005;69(4):699–708.

    Article  PubMed  CAS  Google Scholar 

  176. Zanden JJV, Woude HVD, Vaessen J, Usta M, Wortelboer HM, Cnubben NHP, et al. The effect of quercetin phase II metabolism on its MRP1 and MRP2 inhibiting potential. Biochem Pharmacol. 2007;74(2):345–51.

    Article  PubMed  CAS  Google Scholar 

  177. Zhang J, Moore DD. Modulation of acetaminophen-induced hepatotoxicity by the xenobiotic receptor CAR. Science. 2002;298(298):422–4.

    Article  CAS  PubMed  Google Scholar 

  178. Zhang L, Zuo Z, Lin G. Intestinal and hepatic glucuronidation of flavonoids. Mol Pharm. 2007;4(6):833–45.

    Article  CAS  PubMed  Google Scholar 

  179. Zhang S, Yang X, Morris ME. Combined effects of multiple flavonoids on breast cancer resistance protein (ABCG2)-mediated transport. Pharm Res. 2004;21(7):1263–73.

    Article  CAS  PubMed  Google Scholar 

  180. Zhang X, Dong D, Wang H, Ma Z, Wang Y, Wu B. Stable knockdown of efflux transporters leads to reduced glucuronidation in UGT1A1-overexpressing HeLa cells: the evidence for glucuronidation-transport interplay. Mol Pharm. 2015;12(4):1268–78.

    Article  CAS  PubMed  Google Scholar 

  181. Zhu W, Xu H, Wang SW, Hu M. Breast cancer resistance protein (BCRP) and sulfotransferases contribute significantly to the disposition of genistein in mouse intestine. AAPS J. 2010;12(4):525–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Zhu X, Wang Z, He J, Wang W, Xue W, Wang Y, et al. Associations between CYP1A1 rs1048943 A > G and rs4646903 T > C genetic variations and colorectal cancer risk: proof from 26 case-control studies. Oncotarget. 2016;7(32):51365–74. doi:10.18632/oncotarget.10331.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants of the National Natural Science Foundation of China (81120108025 and 81503466), Science and Technology Project of Guangzhou City (201509010004), and Guangdong Natural Science Foundation (2015AD030312012 and 2015B020233015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linlin Lu or Zhongqiu Liu.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Molecular Drug Disposition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Zheng, H., Sun, R. et al. Disposition of Flavonoids for Personal Intake . Curr Pharmacol Rep 3, 196–212 (2017). https://doi.org/10.1007/s40495-017-0095-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-017-0095-0

Keywords

Navigation