Skip to main content
Log in

Recent advances and application in whole-genome multiple displacement amplification

  • Review
  • Published:
Quantitative Biology

Abstract

Background

The extremely small amount of DNA in a cell makes it difficult to study the whole genome of single cells, so whole-genome amplification (WGA) is necessary to increase the DNA amount and enable downstream analyses. Multiple displacement amplification (MDA) is the most widely used WGA technique.

Results

Compared with amplification methods based on PCR and other methods, MDA renders high-quality DNA products and better genome coverage by using phi29 DNA polymerase. Moreover, recently developed advanced MDA technologies such as microreactor MDA, emulsion MDA, and micro-channel MDA have improved amplification uniformity. Additionally, the development of other novel methods such as TruePrime WGA allows for amplification without primers.

Conclusion

Here, we reviewed a selection of recently developed MDA methods, their advantages over other WGA methods, and improved MDA-based technologies, followed by a discussion of future perspectives. With the continuous development of MDA and the successive update of detection technologies, MDA will be applied in increasingly more fields and provide a solid foundation for scientific research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feinerman, O., Veiga, J., Dorfman, J. R., Germain, R. N. and Altan-Bonnet, G. (2008) Variability and robustness in T cell activation from regulated heterogeneity in protein levels. Science, 321, 1081–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hoey, T. (2010) Drug resistance, epigenetics, and tumor cell heterogeneity. Sci. Transl. Med., 2, 28ps19

    Article  PubMed  Google Scholar 

  3. Yan, L., Huang, L., Xu, L., Huang, J., Ma, F., Zhu, X., Tang, Y., Liu, M., Lian, Y., Liu, P., et al. (2015) Live births after simultaneous avoidance of monogenic diseases and chromosome abnormality by next-generation sequencing with linkage analyses. Proc. Natl. Acad. Sci. USA, 112, 15964–15969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ni, X., Zhuo, M., Su, Z., Duan, J., Gao, Y., Wang, Z., Zong, C., Bai, H., Chapman, A. R., Zhao, J., et al. (2013) Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc. Natl. Acad. Sci. USA, 110, 21083–21088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, L., Cui, X., Schmitt, K., Hubert, R., Navidi, W., and Arnheim, N. (1992) Whole genome amplification from a single cell: implications for genetic analysis. Proc. Natl. Acad. Sci. USA, 89, 5847–5851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Telenius, H., Carter, N. P., Bebb, C. E., Nordenskjöld, M., Ponder, B. A. J. and Tunnacliffe, A. (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics, 13, 718–725

    Article  CAS  PubMed  Google Scholar 

  7. Lizardi, P. M., Huang, X., Zhu, Z., Bray-Ward, P., Thomas, D. C. and Ward, D. C. (1998) Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat. Genet., 19, 225–232

    Article  CAS  PubMed  Google Scholar 

  8. Dean, F. B., Hosono, S., Fang, L., Wu, X., Faruqi, A. F., Bray-Ward, P., Sun, Z., Zong, Q., Du, Y., Du, J., et al. (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl. Acad. Sci. USA, 99, 5261–5266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zong, C., Lu, S., Chapman, A. R. and Xie, X. S. (2012) Genomewide detection ofsingle-nucleotide and copy-numbervariations of a single human cell. Science, 338, 1622–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen, C., Xing, D., Tan, L., Li, H., Zhou, G., Huang, L. and Xie, X. S. (2017) Single-cell whole-genome analyses by Linear Amplification via Transposon Insertion (LIANTI). Science, 356, 189–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang, L., Ma, F., Chapman, A., Lu, S. and Xie, X. S. (2015) Single-cell whole-genome amplification and sequencing: methodology and applications. Annu. Rev. Genomics Hum. Genet., 16, 79–102

    Article  CAS  PubMed  Google Scholar 

  12. Gawad, C., Koh, W. and Quake, S. R. (2016) Single-cell genome sequencing: current state of the science. Nat. Rev. Genet., 17, 175–188

    Article  CAS  PubMed  Google Scholar 

  13. Detter, J. C., Jett, J. M., Lucas, S. M., Dalin, E., Arellano, A. R., Wang, M., Nelson, J. R., Chapman, J., Lou, Y., Rokhsar, D., et al. (2002) Isothermal strand-displacement amplification applications for high-throughput genomics. Genomics, 80, 691–698

    Article  CAS  PubMed  Google Scholar 

  14. Fu, Y., Li, C., Lu, S., Zhou, W., Tang, F., Xie, X. S. and Huang, Y. (2015) Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification. Proc. Natl. Acad. Sci. USA, 112, 11923–11928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ballantyne, K. N., van Oorschot, R. A. H., John Mitchell, R. and Koukoulas, I. (2006) Molecular crowding increases the amplification success of multiple displacement amplification and short tandem repeat genotyping. Anal. Biochem., 355, 298–303

    Article  CAS  PubMed  Google Scholar 

  16. de Cesare, G., Nascetti, A. and Caputo, D. (2015) Amorphous silicon p-i-n structure acting as light and temperature sensor. Sensors (Basel), 15, 12260–12272

    Article  CAS  Google Scholar 

  17. Bruijns, B. B., Costantini, F., Lovecchio, N., Tiggelaar, R. M., Di Timoteo, G., Nascetti, A., de Cesare, G., Gardeniers, J. G. E. and Caputo, D. (2019) On-chip real-time monitoring of multiple displacement amplification of DNA. Sens. Actuators B Chem., 293, 16–22

    Article  CAS  Google Scholar 

  18. Li, X. Y., Du, Y. C., Zhang, Y. P. and Kong, D. M. (2017) Dual functional Phi29 DNA polymerase-triggered exponential rolling circle amplification for sequence-specific detection of target DNA embedded in long-stranded genomic DNA. Sci. Rep., 7, 6263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Toley, B. J., Covelli, I., Belousov, Y., Ramachandran, S., Kline, E., Scarr, N., Vermeulen, N., Mahoney, W., Lutz, B. R. and Yager, P. (2015) Isothermal strand displacement amplification (iSDA): a rapid and sensitive method of nucleic acid amplification for point-of-care diagnosis. Analyst (Lond.), 140, 7540–7549

    Article  CAS  Google Scholar 

  20. Blanco, L., Bernad, A., Lázaro, J. M., Martín, G., Garmendia, C. and Salas, M. (1989) Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J. Biol. Chem., 264, 8935–8940

    CAS  PubMed  Google Scholar 

  21. Handyside, A. H., Robinson, M. D., Simpson, R. J., Omar, M. B., Shaw, M. A., Grudzinskas, J. G. and Rutherford, A. (2004) Isothermal whole genome amplification from single and small numbers of cells: a new era for preimplantation genetic diagnosis of inherited disease. Mol. Hum. Reprod., 10, 767–772

    Article  CAS  PubMed  Google Scholar 

  22. Banér, J., Nilsson, M., Mendel-Hartvig, M. and Landegren, U. (1998) Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res., 26, 5073–5078

    Article  PubMed  PubMed Central  Google Scholar 

  23. Krzywkowski, T., Kühnemund, M., Wu, D. and Nilsson, M. (2018) Limited reverse transcriptase activity of phi29 DNA polymerase. Nucleic Acids Res., 46, 3625–3632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Coskun, S. and Alsmadi, O. (2007) Whole genome amplification from a single cell: a new era for preimplantation genetic diagnosis. Prenat. Diagn., 27, 297–302

    Article  CAS  PubMed  Google Scholar 

  25. Spits, C., Le Caignec, C., De Rycke, M., Van Haute, L., Van Steirteghem, A., Liebaers, I. and Sermon, K. (2006) Optimization and evaluation of single-cell whole-genome multiple displacement amplification. Hum. Mutat., 27, 496–503

    Article  CAS  PubMed  Google Scholar 

  26. del Prado, A., Rodríguez, I., Lázaro, J. M., Moreno-Morcillo, M., de Vega, M. and Salas, M. (2019) New insights into the coordination between the polymerization and 3′-5′ exonuclease activities in φ29 DNA polymerase. Sci. Rep., 9, 923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Xu, M. (2015) Patent CN 104560950A

  28. Huang, W., Cai, H., Wei, S., Bo, X. and Li, F. (2016) MDAGenera: an efficient and accurate simulator for multiple displacement amplification. In: Intelligent Computing Theories and Application, Huang, D.S., Bevilacqua, V., Premaratne, P. (eds.), pp. 258–267. Springer, Cham

    Chapter  Google Scholar 

  29. Tenaglia, E., Imaizumi, Y., Miyahara, Y. and Guiducci, C. (2018) Isothermal multiple displacement amplification of DNA templates in minimally buffered conditions using phi29 polymerase. Chem. Commun. (Camb.), 54, 2158–2161

    Article  CAS  Google Scholar 

  30. Wang, G., Brennan, C., Rook, M., Wolfe, J. L., Leo, C., Chin, L., Pan, H., Liu, W. H., Price, B. and Makrigiorgos, G. M. (2004) Balanced-PCR amplification allows unbiased identification of genomic copy changes in minute cell and tissue samples. Nucleic Acids Res., 32, e76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Bergen, A. W., Haque, K. A., Qi, Y., Beerman, M. B., Garcia-Closas, M., Rothman, N. and Chanock, S. J. (2005) Comparison of yield and genotyping performance of multiple displacement amplification and OmniPlex whole genome amplified DNA generated from multiple DNA sources. Hum. Mutat., 26, 262–270

    Article  CAS  PubMed  Google Scholar 

  32. Lovmar, L., Fredriksson, M., Liljedahl, U., Sigurdsson, S. and Syvänen, A. C. (2003) Quantitative evaluation by minisequencing and microarrays reveals accurate multiplexed SNP genotyping of whole genome amplified DNA. Nucleic Acids Res., 31, e129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Hawkins, T. L., Detter, J. C. and Richardson, P. M. (2002) Whole genome amplification—applications and advances. Curr. Opin. Biotechnol., 13, 65–67

    Article  CAS  PubMed  Google Scholar 

  34. Lasken, R. S., Egholm, M. and Alsmadi, O. A. (2004) Patent US 9487823B2

  35. Theunissen, G. M. G., Rolf, B., Gibb, A. and Jäger, R. (2017) DNA profiling of sperm cells by using micromanipulation and whole genome amplification. Forensic Sci. International. Genet. Suppl. Ser., 6, e497–e499

    Article  Google Scholar 

  36. Lasken, R. S. (2013) Single-cell sequencing in its prime. Nat. Biotechnol., 31, 211–212

    Article  CAS  PubMed  Google Scholar 

  37. de Bourcy, C. F., De Vlaminck, I., Kanbar, J. N., Wang, J., Gawad, C. and Quake, S. R. (2014) A quantitative comparison of single-cell whole genome amplification methods. PLoS One, 9, e105585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Liu, W., Zhang, H., Hu, D., Lu, S. and Sun, X. (2018) The performance of MALBAC and MDA methods in the identification of concurrent mutations and aneuploidy screening to diagnose beta-thalassaemia disorders at the single- and multiple-cell levels. J. Clin. Lab. Anal., 32, e22267

    Article  CAS  Google Scholar 

  39. del Rey, J., Vidal, F., Ramírez, L., Borrás, N., Corrales, I., Garcia, I., Martinez-Pasarell, O., Fernandez, S. F., Garcia-Cruz, R., Pujol, A., et al. (2018) Novel Double Factor PGT strategy analyzing blastocyst stage embryos in a single NGS procedure. PLoS One, 13, e0205692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. He, F., Zhou, W., Cai, R., Yan, T. and Xu, X. (2018) Systematic assessment of the performance of whole-genome amplification for SNP/CNV detection and β-thalassemia genotyping. J. Hum. Genet., 63, 407–416

    Article  CAS  PubMed  Google Scholar 

  41. Li, C., Yu, Z., Fu, Y., Pang, Y. and Huang, Y. (2017) Single-cell-based platform for copy number variation profiling through digital counting of amplified genomic DNA fragments. ACS Appl. Mater. Interfaces, 9, 13958–13964

    Article  CAS  PubMed  Google Scholar 

  42. Pan, X. and Liang, X. (2014) Principle of whole genome amplification technology and its progress. Biotechnology Bulletin, 12, 47–54, in Chinese

    Google Scholar 

  43. Hou, Y., Fan, W., Yan, L., Li, R., Lian, Y., Huang, J., Li, J., Xu, L., Tang, F., Xie, X. S., et al. (2013) Genome analyses of single human oocytes. Cell, 155, 1492–1506

    Article  CAS  PubMed  Google Scholar 

  44. Chu, W. K., Edge, P., Lee, H. S., Bansal, V., Bafna, V., Huang, X. and Zhang, K. (2017) Ultraaccurate genome sequencing and haplotyping of single human cells. Proc. Natl. Acad. Sci. USA, 114, 12512–12517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Blainey, P. C. and Quake, S. R. (2011) Digital MDA for enumeration of total nucleic acid contamination. Nucleic Acids Res., 39, e19

    Article  PubMed  CAS  Google Scholar 

  46. Wang, W., Ren, Y., Lu, Y., Xu, Y., Crosby, S. D., Di Bisceglie, A. M. and Fan, X. (2017) Template-dependent multiple displacement amplification for profiling human circulating RNA. Biotechniques, 63, 21–27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Guria, A., Velayudha Vimala Kumar, K., Srikakulam, N., Krishnamma, A., Chanda, S., Sharma, S., Fan, X. and Pandi, G. (2019) Circular RNA profiling by Illumina sequencing via template-dependent multiple displacement amplification. BioMed Res. Int., 2019, 2756516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Picher, Á. J., Budeus, B., Wafzig, O., Krüger, C., García-Gémez, S., Martínez-Jimónez, M. I., Díaz-Talavera, A., Weber, D., Blanco, L. and Schneider, A. (2016) TruePrime is a novel method for whole-genome amplification from single cells based on TthPrim-Pol. Nat. Commun., 7, 13296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N. N., Anderson, I. J., Cheng, J. F., Darling, A., Malfatti, S., Swan, B. K., Gies, E. A., et al. (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature, 499, 431–437

    Article  CAS  PubMed  Google Scholar 

  50. Stepanauskas, R., Fergusson, E. A., Brown, J., Poulton, N. J., Tupper, B., Labonté, J. M., Becraft, E. D., Brown, J. M., Pachiadaki, M. G., Povilaitis, T., et al. (2017) Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat. Commun., 8, 84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Gawad, C., Easton, J. and Gonzalez-pena, V. (2019) Patent WO 2019/148119 A1

  52. Marcy, Y., Ishoey, T., Lasken, R. S., Stockwell, T. B., Walenz, B. P., Halpern, A. L., Beeson, K. Y., Goldberg, S. M. D. and Quake, S. R. (2007) Nanoliter reactors improve multiple displacement amplification of genomes from single cells. PLoS Genet., 3, 1702–1708

    Article  CAS  PubMed  Google Scholar 

  53. Gole, J., Gore, A., Richards, A., Chiu, Y. J., Fung, H. L., Bushman, D., Chiang, H. I., Chun, J., Lo, Y. H. and Zhang, K. (2013) Massively parallel polymerase cloning and genome sequencing of single cells using nanoliter microwells. Nat. Biotechnol., 31, 1126–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hosokawa, M., Nishikawa, Y., Kogawa, M. and Takeyama, H. (2017) Massively parallel whole genome amplification for single-cell sequencing using droplet microfluidics. Sci. Rep., 7, 5111–5199

    Article  CAS  Google Scholar 

  55. Sidore, A. M., Lan, F., Lim, S. W. and Abate, A. R. (2016) Enhanced sequencing coverage with digital droplet multiple displacement amplification. Nucleic Acids Res., 44, e66

    Article  PubMed  CAS  Google Scholar 

  56. Rhee, M., Light, Y. K., Meagher, R. J. and Singh, A. K. (2016) Digital Droplet Multiple Displacement Amplification (ddMDA) for whole genome sequencing of limited DNA samples. PLoS One, 11, e0153699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Chen, Z., Fu, Y., Zhang, F., Liu, L., Zhang, N., Zhou, D., Yang, J., Pang, Y. and Huang, Y. (2016) Spinning micropipette liquid emulsion generator for single cell whole genome amplification. Lab Chip, 16, 4512–4516

    Article  CAS  PubMed  Google Scholar 

  58. Fu, Y., Zhang, F., Zhang, X., Yin, J., Du, M., Jiang, M., Liu, L., Li, J., Huang, Y. and Wang, J. (2019) High-throughput single-cell whole-genome amplification through centrifugal emulsification and eMDA. Commun. Biol., 2, 147

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kim, S. C., Premasekharan, G., Clark, I. C., Gemeda, H. B., Paris, P. L. and Abate, A. R. (2017) Measurement of copy number variation in single cancer cells using rapid-emulsification digital droplet MDA. Microsyst. Nanoeng., 3, 17018

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chen, Z., Liao, P., Zhang, F., Jiang, M., Zhu, Y. and Huang, Y. (2017) Centrifugal micro-channel array droplet generation for highly parallel digital PCR. Lab Chip, 17, 235–240

    Article  CAS  PubMed  Google Scholar 

  61. Li, J., Lu, N., Shi, X., Qiao, Y., Chen, L., Duan, M., Hou, Y., Ge, Q., Tao, Y., Tu, J., et al. (2017) 1D-reactor decentralized MDA for uniform and accurate whole genome amplification. Anal. Chem., 89, 10147–10152

    Article  CAS  PubMed  Google Scholar 

  62. Li, J., Lu, N., Tao, Y., Duan, M., Qiao, Y., Xu, Y., Ge, Q., Bi, C., Fu, J., Tu, J., et al. (2018) Accurate and sensitive single-cell-level detection of copy number variations by micro-channel multiple displacement amplification (μcMDA). Nanoscale, 10, 17933–17941

    Article  CAS  PubMed  Google Scholar 

  63. Zhu, D., Yan, Y., Lei, P., Shen, B., Cheng, W., Ju, H. and Ding, S. (2014) A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA-AuNPs probe. Anal. Chim. Acta, 846, 44–50

    Article  CAS  PubMed  Google Scholar 

  64. Bowers, R. M., Kyrpides, N. C., Stepanauskas, R., Harmon-Smith, M., Doud, D., Reddy, T. B. K., Schulz, F., Jarett, J., Rivers, A. R., Eloe-Fadrosh, E. A., et al. (2017) Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol., 35, 725–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu, Y., Yao, J. and Walther-Antonio, M. (2019) Whole genome amplification of single epithelial cells dissociated from snap-frozen tissue samples in microfluidic platform. Biomicrofluidics, 13, 034109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Chen, M., Zhang, J., Zhao, J., Chen, T., Liu, Z., Cheng, F., Fan, Q. and Yan, J. (2020) Comparison of CE- and MPS-based analyses of forensic markers in a single cell after whole genome amplification. Forensic Sci. Int. Genet., 45, 102211

    Article  CAS  PubMed  Google Scholar 

  67. Bruijns, B., Veciana, A., Tiggelaar, R. and Gardeniers, H. (2019) Cyclic olefin copolymer microfluidic devices for forensic applications. Biosensors (Basel), 9, 85

    Article  CAS  Google Scholar 

  68. Lipinski, K. A., Barber, L. J., Davies, M. N., Ashenden, M., Sottoriva, A. and Gerlinger, M. (2016) Cancer evolution and the limits of predictability in precision cancer medicine. Trends Cancer, 2, 49–63

    Article  PubMed  PubMed Central  Google Scholar 

  69. Xu, X., Hou, Y., Yin, X., Bao, L., Tang, A., Song, L., Li, F., Tsang, S., Wu, K., Wu, H., et al. (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell, 148, 886–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hou, Y., Song, L., Zhu, P., Zhang, B., Tao, Y., Xu, X., Li, F., Wu, K., Liang, J., Shao, D., etal. (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell, 148, 873–885

    Article  CAS  PubMed  Google Scholar 

  71. Wang, Y., Waters, J., Leung, M. L., Unruh, A., Roh, W., Shi, X., Chen, K., Scheet, P., Vattathil, S., Liang, H., et al. (2014) Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature, 512, 155–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu, H. E., Triboulet, M., Zia, A., Vuppalapaty, M., Kidess-Sigal, E., Coller, J., Natu, V. S., Shokoohi, V., Che, J., Renier, C., et al. (2017) Workflow optimization of whole genome amplification and targeted panel sequencing for CTC mutation detection. NPJ Genom. Med., 2, 34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Edwards, A., Civitello, A., Hammond, H. A. and Caskey, C. T. (1991) DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am. J. Hum. Genet., 49, 746–756

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Deleye, L., Vander Plaetsen, A. S., Weymaere, J., Deforce, D. and Van Nieuwerburgh, F. (2018) Short tandem repeat analysis after whole genome amplification of single B-lymphoblastoid cells. Sci. Rep., 8, 1255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Michikawa, Y., Sugahara, K., Suga, T., Ohtsuka, Y., Ishikawa, K., Ishikawa, A., Shiomi, N., Shiomi, T., Iwakawa, M. and Imai, T. (2008) In-gel multiple displacement amplification of long DNA fragments diluted to the single molecule level. Anal. Biochem., 383, 151–158

    Article  CAS  PubMed  Google Scholar 

  76. Deleye, L., Gansemans, Y., De Coninck, D., Van Nieuwerburgh, F., and Deforce, D. (2018) Massively parallel sequencing of micromanipulated cells targeting a comprehensive panel of disease-causing genes: A comparative evaluation of upstream whole-genome amplification methods. PLoS One, 13, e0196334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Edwards, R. G. and Gardner, R. L. (1967) Sexing of live rabbit blastocysts. Nature, 214, 576–577

    Article  CAS  PubMed  Google Scholar 

  78. Hellani, A., Coskun, S., Benkhalifa, M., Tbakhi, A., Sakati, N., Al-Odaib, A. and Ozand, P. (2004) Multiple displacement amplification on single cell and possible PGD applications. Mol. Hum. Reprod., 10, 847–852

    Article  CAS  PubMed  Google Scholar 

  79. Hellani, A., Coskun, S., Tbakhi, A. and Al-Hassan, S. (2005) Clinical application of multiple displacement amplification in preimplantation genetic diagnosis. Reprod. Biomed. Online, 10, 376–380

    Article  PubMed  Google Scholar 

  80. Lu, Y., Peng, H., Jin, Z., Cheng, J., Wang, S., Ma, M., Lu, Y., Han, D., Yao, Y., Li, Y., et al. (2013) Preimplantation genetic diagnosis for a Chinese family with autosomal recessive Meckel-Gruber syndrome type 3 (MKS3). PLoS One, 8, e73245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shen, X., Chen, D., Xu, Y., Fu, Y. and Zhou, C. (2019) Preimplantation genetic testing of achondroplasia by two haplo-typing systems: short tandem repeats and single nucleotide polymorphism. Biochip J., 13, 165–173.

    Article  CAS  Google Scholar 

  82. Chen, L., Diao, Z., Xu, Z., Zhou, J., Yan, G. and Sun, H. (2017) The clinical application of NGS-based SNP haplotyping for PGD of Hb H disease. Syst. Biol. Reprod. Med., 63, 212–217

    Article  PubMed  CAS  Google Scholar 

  83. Chen, S. C., Xu, X. L., Zhang, J. Y., Ding, G. L., Jin, L., Liu, B., Sun, D. M., Mei, C. L., Yang, X. N., Huang, H. F., et al. (2016) Identification of PKD2 mutations in human preimplantation embryos in vitro using a combination of targeted next-generation sequencing and targeted haplotyping. Sci. Rep., 6, 25488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Konstantinidis, M., Prates, R., Goodall, N. N., Fischer, J., Tecson, V., Lemma, T., Chu, B., Jordan, A., Armenti, E., Wells, D., et al. (2015) Live births following Karyomapping of human blastocysts: experience from clinical application of the method. Reprod. Biomed. Online, 31, 394–403

    Article  PubMed  Google Scholar 

  85. Thornhill, A. R., Handyside, A. H., Ottolini, C., Natesan, S. A., Taylor, J., Sage, K., Harton, G., Cliffe, K., Affara, N., Konstantinidis, M., et al. (2015) Karyomapping—a comprehensive means of simultaneous monogenic and cytogenetic PGD: comparison with standard approaches in real time for Marfan syndrome. J. Assist. Reprod. Genet., 32, 347–356

    Article  PubMed  PubMed Central  Google Scholar 

  86. Davison, M., Hall, E., Zare, R. and Bhaya, D. (2015) Challenges of metagenomics and single-cell genomics approaches for exploring cyanobacterial diversity. Photosynth. Res., 126, 135–146

    Article  CAS  PubMed  Google Scholar 

  87. Tu, J., Chen, L., Gao, S., Zhang, J., Bi, C., Tao, Y., Lu, N. and Lu, Z. (2019) Obtaining genome sequences of mutualistic bacteria in single Microcystis colonies. Int. J. Mol. Sci., 20, 5047

    Article  CAS  PubMed Central  Google Scholar 

  88. Parras-Moltó, M., Rodríguez-Galet, A., Suárez-Rodríguez, P. and López-Bueno, A. (2018) Evaluation of bias induced by viral enrichment and random amplification protocols in metagenomic surveys of saliva DNA viruses. Microbiome, 6, 119

    Article  PubMed  PubMed Central  Google Scholar 

  89. Brinkman, N. E., Villegas, E. N., Garland, J. L. and Keely, S. P. (2018) Reducing inherent biases introduced during DNA viral metagenome analyses of municipal wastewater. PLoS One, 13, e0195350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Hammond, M., Homa, F., Andersson-Svahn, H., Ettema, T. J. G. and Joensson, H. N. (2016) Picodroplet partitioned whole genome amplification of low biomass samples preserves genomic diversity for metagenomic analysis. Microbiome, 4, 52

    Article  PubMed  PubMed Central  Google Scholar 

  91. Veltkamp, H. W., Akegawa Monteiro, F., Sanders, R., Wiegerink, R. and Lötters, J. (2020) Disposable DNA amplification chips with integrated low-cost heaters dagger. Micromachines (Basel), 11, 238

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by project 61971125 of the National Natural Science Foundation of China and the Fundamental Research Funds for the Central Universities of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Tu or Zuhong Lu.

Additional information

Author summary

The extremely small amount of DNA in a cell makes it difficult to study the whole genome of single cells, multiple displacement amplification (MDA), as the most widely used whole-genome amplification (WGA) technique, is necessary to increase the DNA amount and enable downstream analyses. In this review, we focus on the principles and characteristics of MDA and summarize the advantages and disadvantages of MDA compared with other WGA methods. We also discuss a selection of recently developed MDA methods, their advantages over other WGA methods, and improved MDA-based technologies, followed by a discussion of future perspectives.

Compliance with Ethics Guidelines

The authors Naiyun Long, Yi Qiao, Zheyun Xu, Jing Tu and Zuhong Lu declare that they have no conflict of interests.

This article is a review article and does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, N., Qiao, Y., Xu, Z. et al. Recent advances and application in whole-genome multiple displacement amplification. Quant Biol 8, 279–294 (2020). https://doi.org/10.1007/s40484-020-0217-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40484-020-0217-2

Keywords

Navigation