Barclay, C. J. (2017) Energy demand and supply in human skeletal muscle. J. Muscle Res. Cell Motil., 38, 143–155
CAS
Article
Google Scholar
Gehlert, S., Bloch, W. and Suhr, F. (2015) Ca2+-dependent regulations and signaling in skeletal muscle: from electromechanical coupling to adaptation. Int. J. Mol. Sci., 16, 1066–1095
CAS
Article
Google Scholar
Chin, E. R. (2010) Intracellular Ca2+ signaling in skeletal muscle: decoding a complex message. Exerc. Sport. Sci. Rev., 38, 76–85
Article
Google Scholar
Nikolic, N., Skaret Bakke, S., Tranheim Kase, E., Rudberg, I., Flo Halle, I., Rustan, A. C., Thoresen, G. H. and Aas, V. (2012) Electrical pulse stimulation of cultured human skeletal muscle cells as an in vitro model of exercise. PLoS One, 7, e33203
CAS
Article
Google Scholar
Imamura, H., Huynh Nhat, K. P., Togawa, H., Saito, K., Iino, R., Kato-Yamada, Y., Nagai, T. and Noji, H. (2009) Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc. Natl. Acad. Sci. USA, 106, 15651–15656
CAS
Article
Google Scholar
Nakano, M., Imamura, H., Nagai, T. and Noji, H. (2011) Ca2+ regulation of mitochondrial ATP synthesis visualized at the single cell level. ACS Chem. Biol., 6, 709–715
CAS
Article
Google Scholar
Depaoli, M. R., Karsten, F., Madreiter-Sokolowski, C. T., Klec, C., Gottschalk, B., Bischof, H., Eroglu, E., Waldeck-Weiermair, M., Simmen, T., Graier, W. F., et al. (2018) Real-time imaging of mitochondrial ATP dynamics reveals the metabolic setting of single cells. Cell Rep., 25, 501–512.e3
CAS
Article
Google Scholar
Fujita, H., Nedachi, T. and Kanzaki, M. (2007) Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes. Exp. Cell Res., 313, 1853–1865
CAS
Article
Google Scholar
Nedachi, T., Fujita, H. and Kanzaki, M. (2008) Contractile C2C12 myotube model for studying exercise-inducible responses in skeletal muscle. Am. J. Physiol. Endocrinol. Metab., 295, E1191–E1204
CAS
Article
Google Scholar
Inoue, H., Kunida, K., Matsuda, N., Hoshino, D., Wada, T., Imamura, H., Noji, H. and Kuroda, S. (2018) Automatic quantitative segmentation of myotubes reveals single-cell dynamics of S6 kinase activation. Cell Struct. Funct., 43, 153–169
Article
Google Scholar
Herbison, G. J., Jaweed, M. M. and Ditunno, J. F. (1982) Muscle fiber types. Arch. Phys. Med. Rehabil., 63, 227–230
CAS
PubMed
Google Scholar
Stockdale, F. E. (1997) Mechanisms of formation of muscle fiber types Stockdale. Cell Struct. Funct., 22, 37–43
CAS
Article
Google Scholar
Egan, B. and Zierath, J. R. (2013) Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab., 17, 162–184
CAS
Article
Google Scholar
Ward, Jr., J. H. (1963) Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc., 58, 236–244
Article
Google Scholar
Matsuoka, Y. and Inoue, A. (2008) Controlled differentiation of myoblast cells into fast and slow muscle fibers. Cell Tissue Res., 332, 123–132
CAS
Article
Google Scholar
Chance, B. and Williams, G. R. (1955) Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J. Biol. Chem., 217, 383–393
CAS
PubMed
Google Scholar
Bohnensack, R. (1981) Control of energy transformation of mitochondria. Analysis by a quantitative model. Biochim. Biophys. Acta, 634, 203–218
CAS
Article
Google Scholar
Wu, F., Jeneson, J. A. L. and Beard, D. A. (2007) Oxidative ATP synthesis in skeletal muscle is controlled by substrate feedback. Am. J. Physiol. Cell Physiol., 292, C115–C124
CAS
Article
Google Scholar
Wüst, R. C. I., Grassi, B., Hogan, M. C., Howlett, R. A., Gladden, L. B. and Rossiter, H. B. (2011) Kinetic control of oxygen consumption during contractions in self-perfused skeletal muscle. J. Physiol., 589, 3995–4009
Article
Google Scholar
Korzeniewski, B. (1998) Regulation of ATP supply during muscle contraction: theoretical studies. Biochem. J. 330, 1189–1195
CAS
Article
Google Scholar
Brearley, M. C., Li, C., Daniel, Z. C. T. R., Loughna, P. T., Parr, T. and Brameld, J. M. (2019) Changes in expression of serine biosynthesis and integrated stress response genes during myogenic differentiation of C2C12 cells. Biochem. Biophys. Rep., 20, 100694
PubMed
PubMed Central
Google Scholar
Manabe, Y., Miyatake, S., Takagi, M., Nakamura, M., Okeda, A., Nakano, T., Hirshman, M. F., Goodyear, L. J. and Fujii, N. L. (2012) Characterization of an acute muscle contraction model using cultured C2C12 myotubes. PLoS One, 7, e52592
CAS
Article
Google Scholar
Fujita, K. A., Toyoshima, Y., Uda, S., Ozaki, Y., Kubota, H. and Kuroda, S. (2010) Decoupling of receptor and downstream signals in the Akt pathway by its low-pass filter characteristics. Sci. Signal., 3, ra56
Article
Google Scholar
Hubert, M. and Van Der Veeken, S. (2008) Outlier detection for skewed data. J. Chemometri., 22, 235–246
CAS
Article
Google Scholar
Brys, G., Hubert, M. and Struyf, A. (2004) A robust measure of skewness. J. Comput. Graph. Stat., 13, 996–1017
Article
Google Scholar
Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B, 57, 289–300
Google Scholar