Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Quantitative Biology
  3. Article

Predicting enhancer-promoter interaction from genomic sequence with deep neural networks

  • Research Article
  • Published: 04 June 2019
  • Volume 7, pages 122–137, (2019)
  • Cite this article
Download PDF
Quantitative Biology
Predicting enhancer-promoter interaction from genomic sequence with deep neural networks
Download PDF
  • Shashank Singh1,
  • Yang Yang2,
  • Barnabás Póczos1 &
  • …
  • Jian Ma2 
  • 2234 Accesses

  • 71 Citations

  • Explore all metrics

Abstract

Background

In the human genome, distal enhancers are involved in regulating target genes through proximal promoters by forming enhancer-promoter interactions. Although recently developed high-throughput experimental approaches have allowed us to recognize potential enhancer-promoter interactions genome-wide, it is still largely unclear to what extent the sequence-level information encoded in our genome help guide such interactions.

Methods

Here we report a new computational method (named “SPEID”) using deep learning models to predict enhancer-promoter interactions based on sequence-based features only, when the locations of putative enhancers and promoters in a particular cell type are given.

Results

Our results across six different cell types demonstrate that SPEID is effective in predicting enhancer-promoter interactions as compared to state-of-the-art methods that only use information from a single cell type. As a proof-of-principle, we also applied SPEID to identify somatic non-coding mutations in melanoma samples that may have reduced enhancer-promoter interactions in tumor genomes.

Conclusions

This work demonstrates that deep learning models can help reveal that sequence-based features alone are sufficient to reliably predict enhancer-promoter interactions genome-wide.

Article PDF

Download to read the full article text

Similar content being viewed by others

CVGAE: A Self-Supervised Generative Method for Gene Regulatory Network Inference Using Single-Cell RNA Sequencing Data

Article 23 May 2024

RNA-Seq Data Analysis in Galaxy

Chapter © 2021

RNA sequencing: new technologies and applications in cancer research

Article Open access 04 December 2020
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Sexton, T. and Cavalli, G. (2015) The role of chromosome domains in shaping the functional genome. Cell, 160, 1049–1059

    Article  CAS  PubMed  Google Scholar 

  2. Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., et al. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326, 289–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fullwood, M. J. and Ruan, Y. (2009) ChIP-based methods for the identification of long-range chromatin interactions. J. Cell. Biochem., 107, 30–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tang, Z., Luo, O. J., Li, X., Zheng, M., Zhu, J. J., Szalaj, P., Trzaskoma, P., Magalska, A., Włodarczyk, J., Ruszczycki, B., et al. (2015) CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription. Cell, 163, 1611–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, Y., Wong, C.-H., Birnbaum, R. Y., Li, G., Favaro, R., Ngan, C. Y., Lim, J., Tai, E., Poh, H. M., Wong, E., et al. (2013) Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations. Nature, 504, 306–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dixon, J. R., Jung, I., Selvaraj, S., Shen, Y., Antosiewicz-Bourget, J. E., Lee, A. Y., Ye, Z., Kim, A., Rajagopal, N., Xie, W., et al. (2015) Chromatin architecture reorganization during stem cell differentiation. Nature, 518, 331–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guo, Y., Xu, Q., Canzio, D., Shou, J., Li, J., Gorkin, D. U., Jung, I., Wu, H., Zhai, Y., Tang, Y., et al. (2015) CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell, 162, 900–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sanyal, A., Lajoie, B. R., Jain, G. and Dekker, J. (2012) The long-range interaction landscape of gene promoters. Nature, 489, 109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, G., Ruan, X., Auerbach, R. K., Sandhu, K. S., Zheng, M., Wang, P., Poh, H. M., Goh, Y., Lim, J., Zhang, J., et al. (2012) Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell, 148, 84–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rao, S. S., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S., et al. (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 159, 1665–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roy, S., Siahpirani, A. F., Chasman, D., Knaack, S., Ay, F., Stewart, R., Wilson, M. and Sridharan, R. (2015) A predictive modeling approach for cell line-specific long-range regulatory interactions. Nucleic Acids Res., 43, 8694–8712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Whalen, S., Truty, R. M. and Pollard, K. S. (2016) Enhancer-promoter interactions are encoded by complex genomic signatures on looping chromatin. Nat. Genet., 48, 488–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schreiber, J., Libbrecht, M., Bilmes, J. and Noble, W. (2018) Nucleotide sequence and DNaseI sensitivity are predictive of 3D chromatin architecture. bioRxiv, 103614

  14. Zhu, Y., Chen, Z., Zhang, K., Wang, M., Medovoy, D., Whitaker, J. W., Ding, B., Li, N., Zheng, L. and Wang, W. (2016) Constructing 3D interaction maps from 1D epigenomes. Nat. Commun., 7, 10812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cao, Q., Anyansi, C., Hu, X., Xu, L., Xiong, L., Tang, W., Mok, M. T. S., Cheng, C., Fan, X., Gerstein, M., et al. (2017) Reconstruction of enhancer-target networks in 935 samples of human primary cells, tissues and cell lines. Nat. Genet., 49, 1428–1436

    Article  CAS  PubMed  Google Scholar 

  16. Yang, Y., Zhang, R., Singh, S., and Ma, J. (2017) Exploiting sequence-based features for predicting enhancer-promoter interactions. Bioinformatics 33, i252–i260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Friedman, J. H. (2001) Greedy function approximation: a gradient boosting machine. Ann. Stat., 29, 1189–1232

    Article  Google Scholar 

  18. Zhou, J. and Troyanskaya, O. G. (2015) Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods, 12, 931–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Park, Y. and Kellis, M. (2015) Deep learning for regulatory genomics. Nat. Biotechnol., 33, 825–826

    Article  CAS  PubMed  Google Scholar 

  20. Alipanahi, B., Delong, A., Weirauch, M. T. and Frey, B. J. (2015) Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol., 33, 831–838

    Article  CAS  PubMed  Google Scholar 

  21. Quang, D. and Xie, X. (2016) DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Res., 44, e107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, Y., Shi, W. and Wasserman, W. W. (2018) Genome-wide prediction of cis-regulatory regions using supervised deep learning methods. BMC Bioinformatics, 19, 202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kelley, D. R., Snoek, J. and Rinn, J. L. (2016) Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res., 26, 990–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, S., Hu, H., Jiang, T., Zhang, L. and Zeng, J. (2017) TITER: predicting translation initiation sites by deep learning. Bioinformatics, 33, i234–i242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cuperus, J. T., Groves, B., Kuchina, A., Rosenberg, A. B., Jojic, N., Fields, S. and Seelig, G. (2017) Deep learning of the regulatory grammar of yeast 5′ untranslated regions from 500,000 random sequences. Genome Res., 27, 2015–2024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Singh, R., Lanchantin, J., Sekhon, A. and Qi, Y. (2017) Attend and predict: understanding gene regulation by selective attention on chromatin. In: Advances in Neural Information Processing Systems 30

  27. Zhang, S., Hu, H., Jiang, T., Zhang, L. and Zeng, J. (2017) TITER: predicting translation initiation sites by deep learning. Bioinformatics, 33, i234–i242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boža, V., Brejová, B., and Vinař, T. (2017) DeepNano: deep recurrent neural networks for base calling in MinION nanopore reads. PloS one, 12, e0178751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, S., Sun, S., Li, Z., Zhang, R. and Xu, J. (2017) Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Comput. Biol., 13, e1005324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., Way, G. P., Ferrero, E., Agapow, P.-M., Zietz, M., Hoffman, M. M., et al. (2018) Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface, 15, 142760

    Article  Google Scholar 

  31. Angermueller, C., Pärnamaa, T., Parts, L. and Stegle, O. (2016) Deep learning for computational biology. Mol. Syst. Biol., 12, 878

    Article  PubMed  PubMed Central  Google Scholar 

  32. ENCODE Project Consortium. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74

    Article  CAS  Google Scholar 

  33. Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J., Ziller, M. J., et al. (2015) Integrative analysis of 111 reference human epigenomes. Nature, 518, 317–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kulakovskiy, I. V., Vorontsov, I. E., Yevshin, I. S., Soboleva, A. V., Kasianov, A. S., Ashoor, H., Ba-Alawi, W., Bajic, V. B., Medvedeva, Y. A., Kolpakov, F. A., et al. (2016) HOCOMOCO: expansion and enhancement of the collection of transcription factor binding sites models. Nucleic Acids Res., 44, D116–D125

    Article  CAS  PubMed  Google Scholar 

  35. Xu, J., Sankaran, V. G., Ni, M., Menne, T. F., Puram, R. V., Kim, W. and Orkin, S. H. (2010) Transcriptional silencing of γ-globin by BCL11A involves long-range interactions and cooperation with SOX6. Genes Dev., 24, 783–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Frank, C. L., Liu, F., Wijayatunge, R., Song, L., Biegler, M. T., Yang, M. G., Vockley, C. M., Safi, A., Gersbach, C. A., Crawford, G. E., et al. (2015) Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum. Nat. Neurosci., 18, 647–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Krivega, I. and Dean, A. (2017) LDB1-mediated enhancer looping can be established independent of mediator and cohesin. Nucleic Acids Res., 45, 8255–8268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bowman, C. J., Ayer, D. E. and Dynlacht, B. D. (2014) Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs. Nat. Cell Biol., 16, 1202–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. van Riel, B. and Rosenbauer, F. (2014) Epigenetic control of hematopoiesis: the PU.1 chromatin connection. Biol. Chem., 395, 1265–1274

    Article  CAS  PubMed  Google Scholar 

  40. Steidl, U., Rosenbauer, F., Verhaak, R. G., Gu, X., Ebralidze, A., Otu, H. H., Klippel, S., Steidl, C., Bruns, I., Costa, D. B., et al. (2006) Essential role of Jun family transcription factors in PU.1 knockdown-induced leukemic stem cells. Nat. Genet., 38, 1269–1277

    Article  CAS  PubMed  Google Scholar 

  41. Gupta, S., Stamatoyannopoulos, J. A., Bailey, T. L. and Noble, W. S. (2007) Quantifying similarity between motifs. Genome Biol., 8, R24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hodis, E., Watson, I. R., Kryukov, G. V., Arold, S. T., Imielinski, M., Theurillat, J.-P., Nickerson, E., Auclair, D., Li, L., Place, C., et al. (2012) A landscape of driver mutations in melanoma. Cell, 150, 251–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xi, W. and Beer, M. A. (2018). Local epigenomic state cannot discriminate interacting and non-interacting enhancer-promoter pairs with high accuracy. PLoS Comput. Biol., 14, e1006625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cao, Q., Anyansi, C., Hu, X., Xu, L., Xiong, L., Tang, W., Mok, M. T.S., Cheng, C., Fan, X., Gerstein, M. et al. (2017) Reconstruction of enhancer–target networks in 935 samples of human primary cells, tissues and cell lines. Nat. Genet., 49, 1428–1436

    Article  CAS  PubMed  Google Scholar 

  45. Shrikumar, A., Greenside, P., Shcherbina, A. and Kundaje, A. (2016) Not just a black box: learning important features through propagating activation differences. arXiv, 1605.01713

  46. Li, Y., Chen, C.-Y. and Wasserman, W. W. (2016) Deep feature selection: theory and application to identify enhancers and promoters. J. Comput. Biol., 23, 322–336

    Article  CAS  PubMed  Google Scholar 

  47. Glorot, X., Bordes, A. and Bengio, Y. (2011) Deep sparse rectifier neural networks. In: International Conference on Artificial Intelligen Vol. 15, pp. 275

    Google Scholar 

  48. LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep learning. Nature, 521, 436–444

    Article  CAS  PubMed  Google Scholar 

  49. Hochreiter, S. and Schmidhuber, J. (1997) Long short-term memory. Neural Comput., 9, 1735–1780

    Article  CAS  PubMed  Google Scholar 

  50. Graves, A., Jaitly, N. and Mohamed, A.-R. (2013) Hybrid speech recognition with deep bidirectional LSTM. In: Automatic Speech Recognition and Understanding (ASRU), 2013 IEEE Workshop on IEEE pp. 273–278

  51. Chollet, F. (2015) Keras. https://doi.org/github.com/fchollet/keras, accessed on April 10, 2018

    Google Scholar 

  52. Kingma, D. and Ba, J. (2014) Adam: a method for stochastic optimization. arXiv, 1412.6980

  53. Ioffe, S. and Szegedy, C. (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of The 32nd International Conference on Machine Learning pp. 448–456

  54. Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012) Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems pp. 1097–1105

  55. Grant, C. E., Bailey, T. L. and Noble, W. S. (2011) FIMO: scanning for occurrences of a given motif. Bioinformatics, 27, 1017–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the Ma lab, especially Yang Zhang, Yuchuan Wang, Ruochi Zhang, and Dechao Tian, for helpful discussions. We also thank Yihang Shen for technical assistance. This work was supported in part by the National Science Foundation (1252522 to Shashank Singh, 1054309 and 1262575 to Jian Ma) and the National Institutes of Health (HG007352 and DK107965 to Jian Ma).

Author information

Authors and Affiliations

  1. Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA

    Shashank Singh & Barnabás Póczos

  2. Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA

    Yang Yang & Jian Ma

Authors
  1. Shashank Singh
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Yang Yang
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Barnabás Póczos
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Jian Ma
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Jian Ma.

Additional information

Author summary: Distal enhancers in the human genome regulate target genes by interacting with promoters, forming enhancer-promoter interactions (EPIs). Experimental approaches have allowed us to recognize potential EPIs genome-wide, but it is unclear how the sequence information encoded in our genome helps guide such interactions. Here we report a novel machine learning tool (named SPEID) using deep neural networks that predicts EPIs directly from the DNA sequences, given locations of putative enhancers and promoters. We also apply SPEID to identify mutations that may have reduced EPIs in melanoma genomes. This work demonstrates that sequence-based features are sufficient to predict EPIs genome-wide.

Supplementary Materials

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Yang, Y., Póczos, B. et al. Predicting enhancer-promoter interaction from genomic sequence with deep neural networks. Quant Biol 7, 122–137 (2019). https://doi.org/10.1007/s40484-019-0154-0

Download citation

  • Received: 05 February 2018

  • Revised: 10 April 2018

  • Accepted: 10 April 2018

  • Published: 04 June 2019

  • Issue Date: June 2019

  • DOI: https://doi.org/10.1007/s40484-019-0154-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • chromatin interaction
  • enhancer-promoter interaction
  • deep neural network
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

103.230.141.187

Not affiliated

Springer Nature

© 2024 Springer Nature