Skip to main content

Copy number variation related disease genes

Abstract

Background

One of the most important and challenging issues in biomedicine and genomics is how to identify disease related genes. Datasets from high-throughput biotechnologies have been widely used to overcome this issue from various perspectives, e.g., epigenomics, genomics, transcriptomics, proteomics, metabolomics. At the genomic level, copy number variations (CNVs) have been recognized as critical genetic variations, which contribute significantly to genomic diversity. They have been associated with both common and complex diseases, and thus have a large influence on a variety of Mendelian and somatic genetic disorders.

Results

In this review, based on a variety of complex diseases, we give an overview about the critical role of using CNVs for identifying disease related genes, and discuss on details the different high-throughput and sequencing methods applied for CNV detection. Some limitations and challenges concerning CNV are also highlighted.

Conclusions

Reliable detection of CNVs will not only allow discriminating driver mutations for various diseases, but also helps to develop personalized medicine when integrating it with other genomic features.

References

  1. Schadt, E. E. (2009) Molecular networks as sensors and drivers of common human diseases. Nature, 461, 218–223

    PubMed  Article  CAS  Google Scholar 

  2. Goh, K. I., Cusick, M. E., Valle, D., Childs, B., Vidal, M. and Barabási, A. L. (2007) The human disease network. Proc. Natl. Acad. Sci. USA, 104, 8685–8690

    PubMed  Article  CAS  Google Scholar 

  3. Davies, R. J., Miller, R. and Coleman, N. (2005) Colorectal cancer screening: prospects for molecular stool analysis. Nat. Rev. Cancer, 5, 199–209

    PubMed  Article  CAS  Google Scholar 

  4. Beckmann, J. S., Estivill, X. and Antonarakis, S. E. (2007) Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat. Rev. Genet., 8, 639–646

    PubMed  Article  CAS  Google Scholar 

  5. Beroukhim, R., Mermel, C. H., Porter, D., Wei, G., Raychaudhuri, S., Donovan, J., Barretina, J., Boehm, J. S., Dobson, J., Urashima, M., et al. (2010) The landscape of somatic copynumber alteration across human cancers. Nature, 463, 899–905

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. Ritchie, M. D., Holzinger, E. R., Li, R., Pendergrass, S. A. and Kim, D. (2015) Methods of integrating data to uncover genotypephenotype interactions. Nat. Rev. Genet., 16, 85–97

    PubMed  Article  CAS  Google Scholar 

  7. Ionita-Laza, I., Rogers, A. J., Lange, C., Raby, B. A. and Lee, C. (2009) Genetic association analysis of copy-number variation (CNV) in human disease pathogenesis. Genomics, 93, 22–26

    PubMed  Article  CAS  Google Scholar 

  8. Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., Fiegler, H., Shapero, M. H., Carson, A. R., Chen, W., et al. (2006) Global variation in copy number in the human genome. Nature, 444, 444–454

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. Freeman, J. L., Perry, G. H., Feuk, L., Redon, R., McCarroll, S. A., Altshuler, D. M., Aburatani, H., Jones, K.W., Tyler-Smith, C., Hurles, M. E., et al. (2006) Copy number variation: new insights in genome diversity. Genome Res., 16, 949–961

    PubMed  Article  CAS  Google Scholar 

  10. Stankiewicz, P. and Lupski, J. R. (2010) Structural variation in the human genome and its role in disease. Annu. Rev. Med., 61, 437–455

    PubMed  Article  CAS  Google Scholar 

  11. Feuk, L., Carson, A. R. and Scherer, S. W. (2006) Structural variation in the human genome. Nat. Rev. Genet., 7, 85–97

    PubMed  Article  CAS  Google Scholar 

  12. Eichler, E. E., Nickerson, D. A., Altshuler, D., Bowcock, A. M., Brooks, L. D., Carter, N. P., Church, D. M., Felsenfeld, A., Guyer, M., Lee, C., et al. (2007) Completing the map of human genetic variation. Nature, 447, 161–165

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. Li, W. and Olivier, M. (2013) Current analysis platforms and methods for detecting copy number variation. Physiol. Genomics, 45, 1–16

    PubMed  Article  CAS  Google Scholar 

  14. Iafrate, A. J., Feuk, L., Rivera, M. N., Listewnik, M. L., Donahoe, P. K., Qi, Y., Scherer, S.W. and Lee, C. (2004) Detection of largescale variation in the human genome. Nat. Genet., 36, 949–951

    PubMed  Article  CAS  Google Scholar 

  15. Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P., Månér, S., Massa, H., Walker, M., Chi, M., et al. (2004) Largescale copy number polymorphism in the human genome. Science, 305, 525–528

    PubMed  Article  CAS  Google Scholar 

  16. Zhang, J., Feuk, L., Duggan, G. E., Khaja, R. and Scherer, S. W. (2006) Development of bioinformatics resources for display and analysis of copy number and other structural variants in the human genome. Cytogenet. Genome Res., 115, 205–214

    PubMed  Article  CAS  Google Scholar 

  17. Gonzalez, E., Kulkarni, H., Bolivar, H., Mangano, A., Sanchez, R., Catano, G., Nibbs, R., Freedman, B., Marlon P., Quinones, M., Bamshad, M., et al. (2005) The influence of CCL3L1 genecontaining segmental duplications on HIV-1/AIDS susceptibility. Science, 307, 1434–1440

    PubMed  Article  CAS  Google Scholar 

  18. McCarroll, S. A., Huett, A., Kuballa, P., Chilewski, S. D., Landry, A., Goyette, P., Zody, M. C., Hall, J. L., Brant, S. R., Cho, J. H., et al. (2008) Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn’s disease. Nat. Genet., 40, 1107–1112

    PubMed  PubMed Central  Article  Google Scholar 

  19. Craddock, N., Hurles, M. E., Cardin, N., Pearson, R. D., Plagnol, V., Robson, S., Vukcevic, D., Barnes, C., Conrad, D. F., Giannoulatou, E., et al. (2010) Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature, 464, 713–720

    PubMed  Article  CAS  Google Scholar 

  20. Aitman, T. J., Dong, R., Vyse, T. J., Norsworthy, P. J., Johnson, M. D., Smith, J., Mangion, J., Roberton-Lowe, C., Marshall, A. J., Petretto, E., et al. (2006) Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature, 439, 851–855

    PubMed  Article  CAS  Google Scholar 

  21. Cappuzzo, F., Hirsch, F. R., Rossi, E., Bartolini, S., Ceresoli, G. L., Bemis, L., Haney, J., Witta, S., Danenberg, K., Domenichini, I., et al. (2005) Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J. Natl. Cancer Inst., 97, 643–655

    PubMed  Article  CAS  Google Scholar 

  22. Glessner, J. T., Connolly, J. J. and Hakonarson, H. (2012) Rare genomic deletions and duplications and their role in neurodevelopmental disorders. Curr. Top. Behav. Neurosci., 12, 345–360

    PubMed  Article  Google Scholar 

  23. Glessner, J. T., Wang, K., Cai, G., Korvatska, O., Kim, C. E., Wood, S., Zhang, H., Estes, A., Brune, C. W., Bradfield, J. P., et al. (2009) Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature, 459, 569–573

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. Glessner, J. T., Reilly, M. P., Kim, C. E., Takahashi, N., Albano, A., Hou, C., Bradfield, J. P., Zhang, H., Sleiman, P. M., Flory, J. H., et al. (2010) Strong synaptic transmission impact by copy number variations in schizophrenia. Proc. Natl. Acad. Sci. USA, 107, 10584–10589

    PubMed  Article  Google Scholar 

  25. Glessner, J. T., Wang, K., Sleiman, P. M., Zhang, H., Kim, C. E., Flory, J. H., Bradfield, J. P., Imielinski, M., Frackelton, E. C., Qiu, H., et al. (2010) Duplication of the SLIT3 locus on 5q35.1 predisposes to major depressive disorder. PLoS One, 5, e15463

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. Goldmuntz, E., Paluru, P., Glessner, J., Hakonarson, H., Biegel, J. A., White, P. S., Gai, X. and Shaikh, T. H. (2011) Microdeletions and microduplications in patients with congenital heart disease and multiple congenital anomalies. Congenit. Heart Dis., 6, 592–602

    PubMed  PubMed Central  Article  Google Scholar 

  27. Glessner, J. T., Bradfield, J. P., Wang, K., Takahashi, N., Zhang, H., Sleiman, P. M., Mentch, F. D., Kim, C. E., Hou, C., Thomas, K. A., et al. (2010) A genome-wide study reveals copy number variants exclusive to childhood obesity cases. Am. J. Hum. Genet., 87, 661–666

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. Kuusisto, K. M., Akinrinade, O., Vihinen, M., Kankuri-Tammilehto, M., Laasanen, S. L. and Schleutker, J. (2013) copy number variation analysis in familial BRCA1/2-negative Finnish breast and ovarian cancer PLoS One, 8, e71802

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. Glessner, J. T., Smith, A. V., Panossian, S., Kim, C. E., Takahashi, N., Thomas, K. A., Wang, F., Seidler, K., Harris, T. B., Launer, L. J., et al. (2013) Copy number variations in alternative splicing gene networks impact lifespan. PLoS One, 8, e53846

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. Johansson Moller, M., Chaudhary, R., Hellmén, E., Höyheim, B., Chowdhary, B. and Andersson, L. (1996) Pigs with the dominant white coat color phenotype carry a duplication of the KIT gene encoding the mast/stem cell growth factor receptor. Mamm. Genome, 7, 822–830

    PubMed  Article  CAS  Google Scholar 

  31. Norris, B. J. and Whan, V. A. (2008) A gene duplication affecting expression of the ovine ASIP gene is responsible for white and black sheep. Genome Res., 18, 1282–1293

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. Wright, D., Boije, H., Meadows, J. R. S., Bed’hom, B., Gourichon, D., Vieaud, A., Tixier-Boichard, M., Rubin, C. J., Imsland, F., Hallböök, F., et al. (2009) Copy number variation in intron 1 of SOX5 causes the Pea-comb phenotype in chickens. PLoS Genet., 5, e1000512

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. Dorshorst, B., Harun-Or-Rashid, M., Bagherpoor, A. J., Rubin, C. J., Ashwell, C., Gourichon, D., Tixier-Boichard, M., Hallböök, F. and Andersson, L. (2015) A genomic duplication is associated with ectopic eomesodermin expression in the embryonic chicken comb and two duplex-comb phenotypes. PLoS Genet., 11, e1004947

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. Salmon Hillbertz, N. H. C., Isaksson, M., Karlsson, E. K., Hellmén, E., Pielberg, G. R., Savolainen, P., Wade, C. M., von Euler, H., Gustafson, U., Hedhammar, A., et al. (2007) Duplication of FGF3, FGF4, FGF19 and ORAOV1 causes hair ridge and predisposition to dermoid sinus in Ridgeback dogs. Nat. Genet., 39, 1318–1320

    PubMed  Article  CAS  Google Scholar 

  35. Drögemüller, C., Distl, O. and Leeb, T. (2001) Partial deletion of the bovine ED1 gene causes anhidrotic ectodermal dysplasia in cattle. Genome Res., 11, 1699–1705

    PubMed  PubMed Central  Article  Google Scholar 

  36. Capitan, A., Allais-Bonnet, A., Pinton, A., Marquant-Le Guienne, B., Le Bourhis, D., Grohs, C., Bouet, S., Clément, L., Salas-Cortes, L., Venot, E., et al. (2012) A 3.7 Mb deletion encompassing ZEB2 causes a novel polled and multisystemic syndrome in the progeny of a somatic mosaic bull. PLoS One, 7, e49084

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. Aten, E., White, S. J., Kalf, M. E., Vossen, R. H., Thygesen, H. H., Ruivenkamp, C. A., Kriek, M., Breuning, M. H. and den Dunnen, J. T. (2008) Methods to detect CNVs in the human genome. Cytogenet. Genome Res., 123, 313–321

    PubMed  Article  CAS  Google Scholar 

  38. Kim, T. M., Yim, S. H. and Chung, Y. J. (2008) Copy number variations in the human genome: potential source for individual diversity and disease association studies. Genomics Inform., 6, 1–7

    Article  Google Scholar 

  39. Carter, N. P. (2007) Methods and strategies for analyzing copy number variation using DNA microarrays. Nat. Genet., 39, S16–S21

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. Buysse, K., Delle Chiaie, B., Van Coster, R., Loeys, B., De Paepe, A., Mortier, G., Speleman, F., Menten, B. (2009) Challenges for CNV interpretation in clinical molecular karyotyping: lessons learned from a 1,001 sample experience. Eur. J. Med. Gene., 52, 398–403

    Article  Google Scholar 

  41. Lucito, R., Healy, J., Alexander, J., Reiner, A., Esposito, D., Chi, M., Rodgers, L., Brady, A., Sebat, J., Troge, J., et al. (2003) Representational oligonucleotide microarray analysis: a highresolution method to detect genome copy number variation. Genome Res., 13, 2291–2305

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. Chiang, D. Y., Getz, G., Jaffe, D. B., O’Kelly, M. J., Zhao, X., Carter, S. L., Russ, C., Nusbaum, C., Meyerson, M. and Lander, E. S. (2009) High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat. Methods, 6, 99–103

    PubMed  Article  CAS  Google Scholar 

  43. Geiss, G. K., Bumgarner, R. E., Birditt, B., Dahl, T., Dowidar, N., Dunaway, D. L., Fell, H. P., Ferree, S., George, R. D., Grogan, T., et al. (2008) Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol., 26, 317–325

    PubMed  Article  CAS  Google Scholar 

  44. Abel, H. J. and Duncavage, E. J. (2013) Detection of structural DNA variation from next generation sequencing data: a review of informatic approaches. Cancer Genet., 206, 432–440

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. Weksberg, R., Hughes, S., Moldovan, L., Bassett, A. S., Chow, E. W. and Squire, J. A. (2005) A method for accurate detection of genomic microdeletions using real-time quantitative PCR. BMC Genomics, 6, 180

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. Schouten, J. P., McElgunn, C. J., Waaijer, R., Zwijnenburg, D., Diepvens, F. and Pals, G. (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res., 30, e57

    PubMed  PubMed Central  Article  Google Scholar 

  47. Armour, J. A., Sismani, C., Patsalis, P. C. and Cross, G. (2000) Measurement of locus copy number by hybridisation with amplifiable probes. Nucleic Acids Res., 28, 605–609

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  48. Kumps, C., Van Roy, N., Heyrman, L., Goossens, D., Del-Favero, J., Noguera, R., Vandesompele, J., Speleman, F. and De Preter, K. (2010) Multiplex amplicon quantification (MAQ), a fast and efficient method for the simultaneous detection of copy number alterations in neuroblastoma. BMC Genomics, 11, 298

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. Fernandez-Jimenez, N., Castellanos-Rubio, A., Plaza-Izurieta, L., Gutierrez, G., Irastorza, I., Castaño, L., Vitoria, J. C. and Bilbao, J. R. (2011) Accuracy in copy number calling by qPCR and PRT: a matter of DNA. PLoS One, 6, e28910

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. Daser, A., Thangavelu, M., Pannell, R., Forster, A., Sparrow, L., Chung, G., Dear, P. H. and Rabbitts, T. H. (2006) Interrogation of genomes by molecular copy-number counting (MCC). Nat. Methods, 3, 447–453

    PubMed  Article  CAS  Google Scholar 

  51. Ceulemans, S., van der Ven, K. and Del-Favero, J. (2012) Targeted screening and validation of copy number variations. Methods Mol. Biol., 838, 311–328

    PubMed  Article  CAS  Google Scholar 

  52. Haraksingh, R. R., Abyzov, A., Gerstein, M., Urban, A. E. and Snyder, M. (2011) Genome-wide mapping of copy number variation in humans: comparative analysis of high resolution array platforms. PLoS One, 6, e27859

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. Oldridge, D. A., Banerjee, S., Setlur, S. R., Sboner, A. and Demichelis, F. (2010) Optimizing copy number variation analysis using genome-wide short sequence oligonucleotide arrays. Nucleic Acids Res., 38, 3275–3286

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. Olshen, A. B., Venkatraman, E. S., Lucito, R. and Wigler, M. (2004) Circular binary segmentation for the analysis of arraybased DNA copy number data. Biostatistics, 5, 557–572

    PubMed  Article  Google Scholar 

  55. Hupé, P., Stransky, N., Thiery, J. P., Radvanyi, F. and Barillot, E. (2004) Analysis of array CGH data: from signal ratio to gain and loss of DNA regions. Bioinformatics, 20, 3413–3422

    PubMed  Article  CAS  Google Scholar 

  56. Rigaill, G., Hupé, P., Almeida, A., La Rosa, P., Meyniel, J. P., Decraene, C. and Barillot, E. (2008) ITALICS: an algorithm for normalization and DNA copy number calling for Affymetrix SNP arrays. Bioinformatics, 24, 768–774

    PubMed  Article  CAS  Google Scholar 

  57. Scharpf, R. B., Ruczinski, I., Carvalho, B., Doan, B., Chakravarti, A. and Irizarry, R. A. (2011) A multilevel model to address batch effects in copy number estimation using SNP arrays. Biostatistics, 12, 33–50

    PubMed  Article  Google Scholar 

  58. Wang, K., Li, M., Hadley, D., Liu, R., Glessner, J., Grant, S. F., Hakonarson, H. and Bucan, M. (2007) PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res., 17, 1665–1674

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  59. Glessner, J. T., Li, J. and Hakonarson, H. (2013) ParseCNV integrative copy number variation association software with quality tracking. Nucleic Acids Res., 41, e64

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. Pique-Regi, R., Cáceres, A. and González, J. R. (2010) R-Gada: a fast and flexible pipeline for copy number analysis in association studies. BMC Bioinformatics, 11, 380

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  61. Alkan, C., Coe, B. P. and Eichler, E. E. (2011) Genome structural variation discovery and genotyping. Nat. Rev. Genet., 12, 363–376

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  62. Meyerson, M., Gabriel, S. and Getz, G. (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat. Rev. Genet., 11, 685–696

    PubMed  Article  CAS  Google Scholar 

  63. Zhao, M., Wang, Q., Wang, Q., Jia, P. and Zhao, Z. (2013) Computational tools for copy number variation (CNV) detection using next-generation sequencing data: fea-tures and perspectives. BMC Bioinformatics, 14 (Suppl 11), S1

  64. Xie, C. and Tammi, M. T. (2009) CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics, 10, 80

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  65. Boeva, V., Zinovyev, A., Bleakley, K., Vert, J. P., Janoueix-Lerosey, I., Delattre, O. and Barillot, E. (2011) Control-free calling of copy number alterations in deep-sequencing data using GC-content normalization. Bioinformatics, 27, 268–269

    PubMed  Article  CAS  Google Scholar 

  66. Abyzov, A., Urban, A. E., Snyder, M. and Gerstein, M. (2011) CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res., 21, 974–984

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  67. Chiang, D. Y., Getz, G., Jaffe, D. B., O’Kelly, M. J. T., Zhao, X., Carter, S. L., Russ, C., Nusbaum, C., Meyerson, M. and Lander, E. S. (2009) High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat. Methods, 6, 99–103

    PubMed  Article  CAS  Google Scholar 

  68. Yoon, S., Xuan, Z., Makarov, V., Ye, K. and Sebat, J. (2009) Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Res., 19, 1586–1592

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. Chen, K., Wallis, J. W., McLellan, M. D., Larson, D. E., Kalicki, J. M., Pohl, C. S., McGrath, S. D., Wendl, M. C., Zhang, Q., Locke, D. P., et al. (2009) BreakDancer: an algorithm for highresolution mapping of genomic structural variation. Nat. Methods, 6, 677–681

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. Sathirapongsasuti, J. F., Lee, H., Horst, B. A., Brunner, G., Cochran, A. J., Binder, S., Quackenbush, J. and Nelson, S. F. (2011) Exome sequencing-based copy-number variation and loss of heterozygosity detection: ExomeCNV. Bioinformatics, 27, 2648–2654

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. Fromer, M., Moran, J. L., Chambert, K., Banks, E., Bergen, S. E., Ruderfer, D. M., Handsaker, R. E., McCarroll, S. A., O’Donovan, M. C., Owen, M. J., et al. (2012) Discovery and statistical genotyping of copy-number variation from whole-exome sequencing depth. Am. J. Hum. Genet., 91, 597–607

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  72. Coin, L. J., Cao, D., Ren, J., Zuo, X., Sun, L., Yang, S., Zhang, X., Cui, Y., Li, Y., Jin, X., et al. (2012) An exome sequencing pipeline for identifying and genotyping common CNVs associated with disease with application to psoriasis. Bioinformatics, 28, i370–i374

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  73. Li, A., Liu, Z., Lezon-Geyda, K., Sarkar, S., Lannin, D., Schulz, V., Krop, I., Winer, E., Harris, L. and Tuck, D. (2011) GPHMM: an integrated hidden Markov model for identification of copy number alteration and loss of heterozygosity in complex tumor samples using whole genome SNP arrays. Nucleic Acids Res., 39, 4928–4941

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  74. Yu, Z., Liu, Y., Shen, Y., Wang, M. and Li, A. (2014) CLImAT: accurate detection of copy number alteration and loss of heterozygosity in impure and aneuploid tumor samples using whole-genome sequencing data. Bioinformatics, 30, 2576–2583

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  75. Iqbal, Z., Caccamo, M., Turner, I., Flicek, P. and McVean, G. (2012) De novo assembly and genotyping of variants using colored de Bruijn graphs. Nat. Genet., 44, 226–232

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  76. Nijkamp, J. F., van den Broek, M. A., Geertman, J. M., Reinders, M. J., Daran, J. M. and de Ridder, D. (2012) De novo detection of copy number variation by co-assembly. Bioinformatics, 28, 3195–3202

    PubMed  Article  CAS  Google Scholar 

  77. Beroukhim, R., Getz, G., Nghiemphu, L., Barretina, J., Hsueh, T., Linhart, D., Vivanco, I., Lee, J. C., Huang, J. H., Alexander, S., et al. (2007) Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc. Natl. Acad. Sci. USA, 104, 20007–20012

    PubMed  Article  Google Scholar 

  78. Mermel, C. H., Schumacher, S. E., Hill, B., Meyerson, M. L., Beroukhim, R. and Getz, G. (2011) GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol., 12, R41

    PubMed  PubMed Central  Article  Google Scholar 

  79. Sanchez-Garcia, F., Akavia, U. D., Mozes, E. and Pe’er, D. (2010) JISTIC: identification of significant targets in cancer. BMC Bioinformatics, 11, 189

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  80. Walter, V., Nobel, A.B., and Wright, F.A. (2011) DiNAMIC: A method to identify recurrent DNA copy number aberrations in tumors. Bioinformatics, 27, 678–685

    PubMed  Article  CAS  Google Scholar 

  81. Zhou, X., Liu, J., Wan, X. and Yu, W. (2014) Piecewise-constant and low-rank approximation for identification of recurrent copy number variations. Bioinformatics, 30, 1943–1949

    PubMed  Article  CAS  Google Scholar 

  82. Xi, J. and Li, A. (2016) Discovering recurrent copy number aberrations in complex patterns via non-negative sparse singular value decomposition. IEEE/ACM Trans. Comp. Biol. Bioinfo., (TCBB)., 13, 656–668

    Article  CAS  Google Scholar 

  83. Fanciulli, M., Petretto, E. and Aitman, T. J. (2010) Gene copy number variation and common human disease. Clin. Genet., 77, 201–213

    PubMed  Article  CAS  Google Scholar 

  84. Aldred, P. M., Hollox, E. J. and Armour, J. A. (2005) Copy number polymorphism and expression level variation of the human alpha-defensin genes DEFA1 and DEFA3. Hum. Mol. Genet., 14, 2045–2052

    PubMed  Article  CAS  Google Scholar 

  85. Breunis, W. B., van Mirre, E., Bruin, M., Geissler, J., de Boer, M., Peters, M., Roos, D., de Haas, M., Koene, H. R. and Kuijpers, T. W. (2008) Copy number variation of the activating FCGR2C gene predisposes to idiopathic thrombocytopenic purpura. Blood, 111, 1029–1038

    PubMed  Article  CAS  Google Scholar 

  86. Bayés, M., Magano, L. F., Rivera, N., Flores, R. and Pérez Jurado, L. A. (2003) Mutational mechanisms of Williams-Beuren syndrome deletions. Am. J. Hum. Genet., 73, 131–151

    PubMed  PubMed Central  Article  Google Scholar 

  87. Marshall, C. R., Young, E. J., Pani, A. M., Freckmann, M. L., Lacassie, Y., Howald, C., Fitzgerald, K. K., Peippo, M., Morris, C. A., Shane, K., et al. (2008) Infantile spasms is associated with deletion of the MAGI2 gene on chromosome 7q11.23-q21.11. Am. J. Hum. Genet., 83, 106–111

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  88. Baldini, A. (2004) DiGeorge syndrome: an update. Curr. Opin. Cardiol., 19, 201–204

    PubMed  Article  Google Scholar 

  89. Bi, W., Yan, J., Stankiewicz, P., Park, S. S., Walz, K., Boerkoel, C. F., Potocki, L., Shaffer, L. G., Devriendt, K., Nowaczyk, M. J., et al. (2002) Genes in a refined Smith-Magenis syndrome critical deletion interval on chromosome 17p11.2 and the syntenic region of the mouse. Genome Res., 12, 713–728

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  90. Potocki, L., Chen, K. S., Park, S. S., Osterholm, D. E., Withers, M. A., Kimonis, V., Summers, A. M., Meschino, W. S., Anyane-Yeboa, K., Kashork, C. D., et al. (2000) Molecular mechanism for duplication 17p11.2–the homologous recombination reciprocal of the Smith-Magenis microdeletion. Nat. Genet., 24, 84–87

    PubMed  Article  CAS  Google Scholar 

  91. Stone, J. L., O’Donovan, M. C., Gurling, H., Kirov, G. K., Blackwood, D. H. R., Corvin, A., Craddock, N. J., Gill, M., Hultman, C. M., Lichtenstein, P., et al. (2008) Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature, 455, 237–241

    Article  CAS  Google Scholar 

  92. Stefansson, H., Rujescu, D., Cichon, S., Pietiläinen, O. P., Ingason, A., Steinberg, S., Fossdal, R., Sigurdsson, E., Sigmundsson, T., Buizer–Voskamp, J. E., et al. (2008) Large recurrent microdeletions associated with schizophrenia. Nature, 455, 232–236

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  93. de Vries, B. B., Pfundt, R., Leisink, M., Koolen, D. A., Vissers, L. E., Janssen, I. M., Reijmersdal, S., Nillesen, W. M., Huys, E. H., Leeuw, N., et al. (2005) Diagnostic genome profiling in mental retardation. Am. J. Hum. Genet., 77, 606–616

    PubMed  PubMed Central  Article  Google Scholar 

  94. Friedman, J. M., Baross, Á., Delaney, A. D., Ally, A., Arbour, L., Asano, J., Bailey, D. K., Barber, S., Birch, P., Brown-John, M., et al. (2006) Oligonucleotide microarray analysis of genomic imbalance in children with mental retardation. Am. J. Hum. Genet., 79, 500–513

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  95. Marshall, C. R., Noor, A., Vincent, J. B., Lionel, A. C., Feuk, L., Skaug, J., Shago, M., Moessner, R., Pinto, D., Ren, Y., et al. (2008) Structural variation of chromosomes in autism spectrum disorder. Am. J. Hum. Genet., 82, 477–488

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  96. Koolen, D. A., Sharp, A. J., Hurst, J. A., Firth, H. V., Knight, S. J., Goldenberg, A., Saugier-Veber, P., Pfundt, R., Vissers, L. E., Destrée, A., et al. (2008) Clinical and molecular delineation of the 17q21.31 microdeletion syndrome. J. Med. Genet., 45, 710–720

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  97. Sharp, A. J., Mefford, H. C., Li, K., Baker, C., Skinner, C., Stevenson, R. E., Schroer, R. J., Novara, F., De Gregori, M., Ciccone, R., et al. (2008) A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures. Nat. Genet., 40, 322–328

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  98. Mefford, H. C., Sharp, A. J., Baker, C., Itsara, A., Jiang, Z., Buysse, K., Huang, S., Maloney, V. K., Crolla, J. A., Baralle, D., et al. (2008) Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N. Engl. J. Med., 359, 1685–1699

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  99. Shaffer, L. G., Theisen, A., Bejjani, B. A., Ballif, B. C., Aylsworth, A. S., Lim, C., McDonald, M., Ellison, J. W., Kostiner, D., Saitta, S., et al. (2007) The discovery of microdeletion syndromes in the post-genomic era: review of the methodology and characterization of a new 1q41q42 microdeletion syndrome. Genet. Med., 9, 607–616

    PubMed  Article  CAS  Google Scholar 

  100. Butler, M. G., Meaney, F. J., Palmer, C. G., Opitz, J. M. and Reynolds, J. F. (1986) Clinical and cytogenetic survey of 39 individuals with Prader-Labhart-Willi syndrome. Am. J. Med. Genet., 23, 793–809

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  101. Chen, K. S., Manian, P., Koeuth, T., Potocki, L., Zhao, Q., Chinault, A. C., Lee, C. C. and Lupski, J. R. (1997) Homologous recombination of a flanking repeat gene cluster is a mechanism for a common contiguous gene deletion syndrome. Nat. Genet., 17, 154–163

    PubMed  Article  CAS  Google Scholar 

  102. Pérez Jurado, L. A., Peoples, R., Kaplan, P., Hamel, B. C. and Francke, U. (1996) Molecular definition of the chromosome 7 deletion in Williams syndrome and parent-of-origin effects on growth. Am. J. Hum. Genet., 59, 781–792

    PubMed  PubMed Central  Google Scholar 

  103. Edelmann, L., Pandita, R. K., Spiteri, E., Funke, B., Goldberg, R., Palanisamy, N., Chaganti, R. S., Magenis, E., Shprintzen, R. J. and Morrow, B. E. (1999) A common molecular basis for rearrangement disorders on chromosome 22q11. Hum. Mol. Genet., 8, 1157–1167

    PubMed  Article  CAS  Google Scholar 

  104. Bassett, A. S. and Chow, E. W. C. (2008) Schizophrenia and 22q11.2 deletion syndrome. Curr. Psychiatry Rep., 10, 148–157

    PubMed  PubMed Central  Article  Google Scholar 

  105. Walters, R., Jacquemont, S., Valsesia, A., de Smith, A.J., Martinet, D., Andersson, J., Falchi, M., Chen, F., Andrieux, J., Lobbens, S., et al. (2010) A new highly penetrant form of obesity due to deletions on chromosome 16p11. 363 Nature. 463, 671–675

    Article  CAS  Google Scholar 

  106. Barbieri, C. E., Baca, S. C., Lawrence, M. S., Demichelis, F., Blattner, M., Theurillat, J. P., White, T. A., Stojanov, P., Van Allen, E., Stransky, N., et al. (2012) Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet., 44, 685–689

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  107. Kerdpon, D., Sriplung, H. and Kietthubthew, S. (2001) Expression of p53 in oral squamous cell carcinoma and its association with risk habits in southern Thailand. Oral Oncol., 37, 553–557

    PubMed  Article  CAS  Google Scholar 

  108. Topcu, Z., Chiba, I., Fujieda, M., Shibata, T., Ariyoshi, N., Yamazaki, H., Sevgican, F., Muthumala, M., Kobayashi, H. and Kamataki, T. (2002) CYP2A6 gene deletion reduces oral cancer risk in betel quid chewers in Sri Lanka. Carcinogenesis, 23, 595–598

    PubMed  Article  CAS  Google Scholar 

  109. India Project Team of the International Cancer Genome Consortium. (2013) Mutational landscape of gingivo-buccal oral squamous cell carcinoma reveals new recurrently-mutated genes and molecular subgroups. Nat Commun, 4, 2873

    Article  CAS  Google Scholar 

  110. Pickering, C. R., Zhang, J., Yoo, S. Y., Bengtsson, L., Moorthy, S., Neskey, D. M., Zhao, M., Ortega Alves, M. V., Chang, K., Drummond, J., et al. (2013) Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov., 3, 770–781

    PubMed  Article  CAS  Google Scholar 

  111. Stransky, N., Egloff, A. M., Tward, A. D., Kostic, A. D., Cibulskis, K., Sivachenko, A., Kryukov, G. V., Lawrence, M. S., Sougnez, C., McKenna, A., et al. (2011) The mutational landscape of head and neck squamous cell carcinoma. Science, 333, 1157–1160

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  112. Salahshourifar, I., Vincent-Chong, V. K., Kallarakkal, T. G. and Zain, R. B. (2014) Genomic DNA copy number alterations from precursor oral lesions to oral squamous cell carcinoma. Oral Oncol., 50, 404–412

    PubMed  Article  CAS  Google Scholar 

  113. Murugan, A. K., Munirajan, A. K. and Tsuchida, N. (2013) Genetic deregulation of the PIK3CA oncogene in oral cancer. Cancer Lett., 338, 193–203

    PubMed  Article  CAS  Google Scholar 

  114. Freier, K., Schwaenen, C., Sticht, C., Flechtenmacher, C., Mühling, J., Hofele, C., Radlwimmer, B., Lichter, P. and Joos, S. (2007) Recurrent FGFR1 amplification and high FGFR1 protein expression in oral squamous cell carcinoma (OSCC). Oral Oncol., 43, 60–66

    PubMed  Article  CAS  Google Scholar 

  115. Martín-Ezquerra, G., Salgado, R., Toll, A., Gilaberte, M., Baró, T., Alameda Quitllet, F., Yébenes, M., Solé, F., Garcia-Muret, M., Espinet, B., et al. (2010) Multiple genetic copy number alterations in oral squamous cell carcinoma: study of MYC, TP53, CCDN1, EGFR and ERBB2 status in primary and metastatic tumours. Br. J. Dermatol., 163, 1028–1035

    PubMed  Article  CAS  Google Scholar 

  116. Mendes, R. A. (2012) Oncogenic pathways in the development of oral cancer. J. Carcinog. Mutagen., 3, 2

    Article  CAS  Google Scholar 

  117. Lee, J. A. and Lupski, J. R. (2006) Genomic rearrangements and gene copy-number alterations as a cause of nervous system disorders. Neuron, 52, 103–121

    PubMed  Article  CAS  Google Scholar 

  118. Cook, E. H. Jr and Scherer, S.W. (2008) Copy-number variations associated with neuropsychiatric conditions. Nature, 455, 919–923

    PubMed  Article  CAS  Google Scholar 

  119. Kalatzis, V. and Antignac, C. (2002) Cystinosis: from gene to disease. Nephrol. Dial. Transplant., 17, 1883–1886

    PubMed  Article  CAS  Google Scholar 

  120. Stahl, E. A., Raychaudhuri, S., Remmers, E. F., Xie, G., Eyre, S., Thomson, B. P., Li, Y., Kurreeman, F. A., Zhernakova, A., Hinks, A., et al. (2010) Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat. Genet., 42, 508–514

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  121. Jung, S. H., Yim, S. H., Hu, H. J., Lee, K. H., Lee, J. H., Sheen, D. H., Lim, M. K., Kim, S. Y., Park, S. W., Kim, S. H., et al. (2014) Genome-wide copy number variation analysis identifies deletion variants associated with ankylosing spondylitis. Arthritis Rheumatol., 66, 2103–2112

    PubMed  Article  CAS  Google Scholar 

  122. Kim, J. H., Jung, S. H., Bae, J. S., Lee, H. S., Yim, S. H., Park, S. Y., Bang, S. Y., Hu, H. J., Shin, H. D., Bae, S. C., et al. (2013) Deletion variants of RABGAP1L, 10q21.3, and C4 are associated with the risk of systemic lupus erythematosus in Korean women. Arthritis Rheum., 65, 1055–1063

    PubMed  Article  CAS  Google Scholar 

  123. Okada, Y., Wu, D., Trynka, G., Raj, T., Terao, C., Ikari, K., Kochi, Y., Ohmura, K., Suzuki, A., Yoshida, S., et al. (2014) Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature, 506, 376–381

    PubMed  Article  CAS  Google Scholar 

  124. de Cid, R., Riveira-Munoz, E., Zeeuwen, P. L., Robarge, J., Liao, W., Dannhauser, E. N., Giardina, E., Stuart, P. E., Nair, R., Helms, C., et al. (2009) Deletion of the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for psoriasis. Nat. Genet., 41, 211–215

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  125. Hüffmeier, U., Bergboer, J. G., Becker, T., Armour, J. A., Traupe, H., Estivill, X., Riveira-Munoz, E., Mössner, R., Reich, K., Kurrat, W., et al. (2010) Replication of LCE3C-LCE3B CNV as a risk factor for psoriasis and analysis of interaction with other genetic risk factors. J. Invest. Dermatol., 130, 979–984

    PubMed  Article  CAS  Google Scholar 

  126. Xu, L., Li, Y., Zhang, X., Sun, H., Sun, D., Jia, X., Shen, C., Zhou, J., Ji, G., Liu, P., et al. (2011) Deletion of LCE3C and LCE3B genes is associated with psoriasis in a northern Chinese population. Br. J. Dermatol., 165, 882–887

    PubMed  Article  CAS  Google Scholar 

  127. Veal, C. D., Reekie, K. E., Lorentzen, J. C., Gregersen, P. K., Padyukov, L. and Brookes, A. J. (2014) A 129-kb deletion on chromosome 12 confers substantial protection against rheumatoid arthritis, implicating the gene SLC2A3. Hum. Mutat., 35, 248–256

    PubMed  Article  CAS  Google Scholar 

  128. Singleton, A. B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., et al. (2003) α-synuclein locus triplication causes Parkinson’s disease. Science, 302, 841–841

    PubMed  Article  CAS  Google Scholar 

  129. Nagao, Y. (2015) Copy number variations play important roles in heredity of common diseases: a novel method to calculate heritability of a polymorphism. Sci. Rep., 5, 17156

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61602386 and 61332014), the Natural Science Foundation of Shaanxi Province (No. 2017JQ6008), and the top university visiting foundation for excellent youth scholars of Northwestern Polytechnical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuequn Shang.

Additional information

Author summary: In this review, we introduce a type of critical genetic variations at the genomic level, copy number variations (CNVs), which contribute significantly to genomic diversity and have proven to be related with a variety of common and rare complex diseases, phenotypes and genetic syndromes as well. Detecting those CNVs plays important roles in these genetic diseases through: (i) identifying disease related genes, their loci and breakpoints, (ii) allowing discrimination of driver mutation for pathogenesis or diagnosis of complex diseases, and (iii) helping to develop personalized medicines. CNV and its integration with other genomic features will help us understand disease susceptibility and pathogenesis from various perspectives.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aouiche, C., Shang, X. & Chen, B. Copy number variation related disease genes. Quant Biol 6, 99–112 (2018). https://doi.org/10.1007/s40484-018-0137-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40484-018-0137-6

Keywords

  • CNV
  • disease gene
  • complex disease
  • targeted approach
  • genome-wide approach
  • whole exome sequencing