Advertisement

Quantitative Biology

, Volume 6, Issue 1, pp 1–14 | Cite as

Systems and synthetic biology approaches in understanding biological oscillators

  • Zhengda Li
  • Qiong YangEmail author
Review

Abstract

Background

Self-sustained oscillations are a ubiquitous and vital phenomenon in living systems. From primitive single-cellular bacteria to the most sophisticated organisms, periodicities have been observed in a broad spectrum of biological processes such as neuron firing, heart beats, cell cycles, circadian rhythms, etc. Defects in these oscillators can cause diseases from insomnia to cancer. Elucidating their fundamental mechanisms is of great significance to diseases, and yet challenging, due to the complexity and diversity of these oscillators.

Results

Approaches in quantitative systems biology and synthetic biology have been most effective by simplifying the systems to contain only the most essential regulators. Here, we will review major progress that has been made in understanding biological oscillators using these approaches. The quantitative systems biology approach allows for identification of the essential components of an oscillator in an endogenous system. The synthetic biology approach makes use of the knowledge to design the simplest, de novo oscillators in both live cells and cell-free systems. These synthetic oscillators are tractable to further detailed analysis and manipulations.

Conclusion

With the recent development of biological and computational tools, both approaches have made significant achievements.

Keywords

biological oscillators synthetic oscillators circuit design principles 

Notes

Acknowledgments

This work was supported by the National Science Foundation (Early CAREER Grant #1553031) and the National Institutes of Health (MIRA #GM119688).

References

  1. 1.
    Yang, Q. and Ferrell, J. E. Jr. (2013) The Cdk1-APC/C cell cycle oscillator circuit functions as a time-delayed, ultrasensitive switch. Nat. Cell Biol., 15, 519–525PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Ferrell, J. E. Jr, Tsai, T. Y. and Yang, Q. (2011) Modeling the cell cycle: why do certain circuits oscillate? Cell, 144, 874–885PubMedCrossRefGoogle Scholar
  3. 3.
    Periasamy, M., Bhupathy, P. and Babu, G. J. (2008) Regulation of sarcoplasmic reticulum Ca2+ ATPase pump expression and its relevance to cardiac muscle physiology and pathology. Cardiovasc. Res., 77, 265–273PubMedCrossRefGoogle Scholar
  4. 4.
    Liu, N. and Priori, S. G. (2008) Disruption of calcium homeostasis and arrhythmogenesis induced by mutations in the cardiac ryanodine receptor and calsequestrin. Cardiovasc. Res., 77, 293–301PubMedCrossRefGoogle Scholar
  5. 5.
    Bénazéraf, B. and Pourquié, O. (2013) Formation and segmentation of the vertebrate body axis. Annu. Rev. Cell Dev. Biol., 29, 1–26PubMedCrossRefGoogle Scholar
  6. 6.
    Mara, A. and Holley, S. A. (2007) Oscillators and the emergence of tissue organization during zebrafish somitogenesis. Trends Cell Biol., 17, 593–599PubMedCrossRefGoogle Scholar
  7. 7.
    Bell-Pedersen, D., Cassone, V. M., Earnest, D. J., Golden, S. S., Hardin, P. E., Thomas, T. L. and Zoran, M. J. (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat. Rev. Genet., 6, 544–556PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Hodgkin, A. L. and Huxley, A. F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117, 500–544PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Tomida, T., Takekawa, M. and Saito, H. (2015) Oscillation of p38 activity controls efficient pro-inflammatory gene expression. Nat. Commun., 6, 8350PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Zambrano, S., De Toma, I., Piffer, A., Bianchi, M. E. and Agresti, A. (2016) NF-κB oscillations translate into functionally related patterns of gene expression. eLife, 5, e09100PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Batchelor, E., Loewer, A., Mock, C. and Lahav, G. (2011) Stimulus-dependent dynamics of p53 in single cells. Mol. Syst. Biol., 7, 488PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Dunlap, J. C. (1999) Molecular bases for circadian clocks. Cell, 96, 271–290PubMedCrossRefGoogle Scholar
  13. 13.
    Gallego, M. and Virshup, D. M. (2007) Post-translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol., 8, 139–148PubMedCrossRefGoogle Scholar
  14. 14.
    Brown, H., Difrancesco, D. and Noble, S. (1979) Cardiac pacemaker oscillation and its modulation by autonomic transmitters. J. Exp. Biol., 81, 175–204PubMedGoogle Scholar
  15. 15.
    Paydarfar, D. and Eldridge, F. L. (1987) Phase resetting and dysrhythmic responses of the respiratory oscillator. Am. J. Physiol., 252, R55–R62PubMedCrossRefGoogle Scholar
  16. 16.
    Hartwell, L. H. and Kastan, M. B. (1994) Cell cycle control and cancer. Science, 266, 1821–1828PubMedCrossRefGoogle Scholar
  17. 17.
    McDonald, E. R. 3rd and El-Deiry, W. S. (2000) Cell cycle control as a basis for cancer drug development (Review). Int. J. Oncol., 16, 871–957PubMedGoogle Scholar
  18. 18.
    Kastan, M. B. and Bartek, J. (2004) Cell-cycle checkpoints and cancer. Nature, 432, 316–323PubMedCrossRefGoogle Scholar
  19. 19.
    Gelens, L., Anderson, G. A. and Ferrell, J. E. Jr. (2014) Spatial trigger waves: positive feedback gets you a long way. Mol. Biol. Cell, 25, 3486–3493PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Novák, B. and Bentrup, F. W. (1972) An electrophysiological study of regeneration in Acetabularia mediterranea. Planta, 108, 227–244PubMedCrossRefGoogle Scholar
  21. 21.
    Gerisch, G. (1968) Cell aggregation and differentiation in Dictyostelium. Curr. Top. Dev. Biol., 3, 157–197PubMedCrossRefGoogle Scholar
  22. 22.
    Chang, J. B. and Ferrell, J. E. Jr. (2013) Mitotic trigger waves and the spatial coordination of the Xenopus cell cycle. Nature, 500, 603–607PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Goodwin, B. C. and Cohen, M. H. (1969) A phase-shift model for the spatial and temporal organization of developing systems. J. Theor. Biol., 25, 49–107PubMedCrossRefGoogle Scholar
  24. 24.
    Oates, A. C., Morelli, L. G. and Ares, S. (2012) Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development, 139, 625–639PubMedCrossRefGoogle Scholar
  25. 25.
    Purvis, J. E., Karhohs, K.W., Mock, C., Batchelor, E., Loewer, A. and Lahav, G. (2012) p53 dynamics control cell fate. Science, 336, 1440–1444PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Isomura, A. and Kageyama, R. (2014) Ultradian oscillations and pulses: coordinating cellular responses and cell fate decisions. Development, 141, 3627–3636PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Ainsworth, M., Lee, S., Cunningham, M. O., Traub, R. D., Kopell, N. J. and Whittington, M. A. (2012) Rates and rhythms: a synergistic view of frequency and temporal coding in neuronal networks. Neuron, 75, 572–583PubMedCrossRefGoogle Scholar
  28. 28.
    Nelson, D. E., Ihekwaba, A. E., Elliott, M., Johnson, J. R., Gibney, C. A., Foreman, B. E., Nelson, G., See, V., Horton, C. A., Spiller, D. G., et al. (2004) Oscillations in NF-?B signaling control the dynamics of gene expression. Science, 306, 704–708PubMedCrossRefGoogle Scholar
  29. 29.
    Proctor, C. J. and Gray, D. A. (2008) Explaining oscillations and variability in the p53-Mdm2 system. BMC Syst. Biol., 2, 75PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Salazar, C., Politi, A. Z. and Höfer, T. (2008) Decoding of calcium oscillations by phosphorylation cycles: analytic results. Biophys. J., 94, 1203–1215PubMedCrossRefGoogle Scholar
  31. 31.
    Cai, L., Dalal, C. K. and Elowitz, M. B. (2008) Frequencymodulated nuclear localization bursts coordinate gene regulation. Nature, 455, 485–490PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hodgkin, A. L., Huxley, A. F. and Katz, B. (1952) Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol., 116, 424–448PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Hodgkin, A. L. and Katz, B. (1949) The effect of temperature on the electrical activity of the giant axon of the squid. J. Physiol., 109, 240–249PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hodgkin, A. L. and Huxley, A. F. (1952) The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol., 116, 497–506PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hodgkin, A. L. and Huxley, A. F. (1952) The components of membrane conductance in the giant axon of Loligo. J. Physiol., 116, 473–496PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hodgkin, A. L. and Huxley, A. F. (1952) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol., 116, 449–472PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Ghosh, A. and Chance, B. (1964) Oscillations of glycolytic intermediates in yeast cells. Biochem. Biophys. Res. Commun., 16, 174–181PubMedCrossRefGoogle Scholar
  38. 38.
    Chance, B., Hess, B. and Betz, A. (1964) DPNH oscillations in a cell-free extract of S. carlsbergensis. Biochem. Biophys. Res. Commun., 16, 182–187PubMedCrossRefGoogle Scholar
  39. 39.
    Chance, B., Schoener, B. and Elsaesser, S. (1965) Metabolic control phenomena involved in damped sinusoidal oscillations of reduced diphosphopyridine nucleotide in a cell-free extract of Saccharomyces carlsbergensis. J. Biol. Chem., 240, 3170–3181PubMedGoogle Scholar
  40. 40.
    Higgins, J. (1964) A chemical mechanism for oscillation of glycolytic intermediates in yeast cells. Proc. Natl. Acad. Sci. USA, 51, 989–994PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Pye, K. and Chance, B. (1966) Sustained sinusoidal oscillations of reduced pyridine nucleotide in a cell-free extract of Saccharomyces carlsbergensis. Proc. Natl. Acad. Sci. USA, 55, 888–894PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Gerisch, G., Fromm, H., Huesgen, A. and Wick, U. (1975) Control of cell-contact sites by cyclic AMP pulses in differentiating Dictyostelium cells. Nature, 255, 547–549PubMedCrossRefGoogle Scholar
  43. 43.
    Olsen, L. F. and Degn, H. (1978) Oscillatory kinetics of the peroxidase-oxidase reaction in an open system. Experimental and theoretical studies. Biochim. Biophys. Acta, 523, 321–334PubMedCrossRefGoogle Scholar
  44. 44.
    Goodwin, B. C. (1963) Temporal Organization in Cells. In A Dynamic Theory of Cellular Control Processes. New York: Academic PressGoogle Scholar
  45. 45.
    Liu, Y., Tsinoremas, N. F., Johnson, C. H., Lebedeva, N. V., Golden, S. S., Ishiura, M. and Kondo, T. (1995) Circadian orchestration of gene expression in cyanobacteria. Genes Dev., 9, 1469–1478PubMedCrossRefGoogle Scholar
  46. 46.
    Crosthwaite, S. K., Dunlap, J. C. and Loros, J. J. (1997) Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science, 276, 763–769PubMedCrossRefGoogle Scholar
  47. 47.
    Hamblen, M. J., White, N. E., Emery, P. T. J., Kaiser, K. and Hall, J. C. (1998) Molecular and behavioral analysis of four period mutants in Drosophila melanogaster encompassing extreme short, novel long, and unorthodox arrhythmic types. Genetics, 149, 165–178PubMedPubMedCentralGoogle Scholar
  48. 48.
    Antoch, M. P., Song, E. J., Chang, A. M., Vitaterna, M. H., Zhao, Y., Wilsbacher, L. D., Sangoram, A. M., King, D. P., Pinto, L. H. and Takahashi, J. S. (1997) Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell, 89, 655–667PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Millar, A.J. and Kay, S. A. (1997) The genetics of phototransduction and circadian rhythms in Arabidopsis. BioEssays, 19, 209–214PubMedCrossRefGoogle Scholar
  50. 50.
    Goldbeter, A. (1996) Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour. In Physics Today. New York: Cambridge University PressGoogle Scholar
  51. 51.
    Goldbeter, A. (2007) Biological Rhythms as Temporal Dissipative Structures. Special Volume in Memory of Ilya Prigogine: Advances in Chemical Physics. pp. 253–295. New York: John Wiley & Sons, Inc.CrossRefGoogle Scholar
  52. 52.
    Yang, Q., Pando, B. F., Dong, G., Golden, S. S. and van Oudenaarden, A. (2010) Circadian gating of the cell cycle revealed in single cyanobacterial cells. Science, 327, 1522–1526PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Bieler, J., Cannavo, R., Gustafson, K., Gobet, C., Gatfield, D. and Naef, F. (2014) Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells. Mol. Syst. Biol., 10, 739PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Feillet, C., van der Horst, G. T., Levi, F., Rand, D. A. and Delaunay, F. (2015) Coupling between the circadian clock and cell cycle oscillators: implication for healthy cells and malignant growth. Front. Neurol., 6, 96PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Sevim, V., Gong, X. and Socolar, J. E. S. (2010) Reliability of transcriptional cycles and the yeast cell-cycle oscillator. PLoS Comput. Biol., 6, e1000842PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Longtin, A. (1993) Stochastic resonance in neuron models. J. Stat. Phys., 70, 309–327CrossRefGoogle Scholar
  57. 57.
    Glass, L. (2001) Synchronization and rhythmic processes in physiology. Nature, 410, 277–284PubMedCrossRefGoogle Scholar
  58. 58.
    Prigogine, I., Lefever, R., Goldbeter, A. and Herschkowitz-Kaufman, M. (1969) Symmetry breaking instabilities in biological systems. Nature, 223, 913–916PubMedCrossRefGoogle Scholar
  59. 59.
    FitzHugh, R. (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys. J., 1, 445–466PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Morris, C. and Lecar, H. (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys. J., 35, 193–213PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Goodwin, B. C. (1965) Oscillatory behavior in enzymatic control processes. Adv. Enzyme Regul., 3, 425–428PubMedCrossRefGoogle Scholar
  62. 62.
    Friesen, W. O. and Block, G. D. (1984) What is a biological oscillator? Am. J. Physiol., 246, R847–R853PubMedGoogle Scholar
  63. 63.
    Barkai, N. and Leibler, S. (2000) Circadian clocks limited by noise. Nature, 403, 267–268PubMedCrossRefGoogle Scholar
  64. 64.
    Novák, B. and Tyson, J. J. (2008) Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol., 9, 981–991PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Tsai, T. Y., Choi, Y. S., Ma, W., Pomerening, J. R., Tang, C. and Ferrell, J. E. Jr. (2008) Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science, 321, 126–129PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Elowitz, M. B. and Leibler, S. (2000) A synthetic oscillatory network of transcriptional regulators. Nature, 403, 335–338PubMedCrossRefGoogle Scholar
  67. 67.
    Atkinson, M. R., Savageau, M. A., Myers, J. T. and Ninfa, A. J. (2003) Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell, 113, 597–607PubMedCrossRefGoogle Scholar
  68. 68.
    Stricker, J., Cookson, S., Bennett, M. R., Mather, W. H., Tsimring, L. S. and Hasty, J. (2008) A fast, robust and tunable synthetic gene oscillator. Nature, 456, 516–519PubMedCrossRefGoogle Scholar
  69. 69.
    Fung, E., Wong, W. W., Suen, J. K., Bulter, T., Lee, S. G. and Liao, J. C. (2005) A synthetic gene-metabolic oscillator. Nature, 435, 118–122PubMedCrossRefGoogle Scholar
  70. 70.
    Tigges, M., Marquez-Lago, T. T., Stelling, J. and Fussenegger, M. (2009) A tunable synthetic mammalian oscillator. Nature, 457, 309–312PubMedCrossRefGoogle Scholar
  71. 71.
    Tigges, M., Dénervaud, N., Greber, D., Stelling, J. and Fussenegger, M. (2010) A synthetic low-frequency mammalian oscillator. Nucleic Acids Res., 38, 2702–2711PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Mondragón-Palomino, O., Danino, T., Selimkhanov, J., Tsimring, L. and Hasty, J. (2011) Entrainment of a population of synthetic genetic oscillators. Science, 333, 1315–1319PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Butzin, N. C., Hochendoner, P., Ogle, C. T., Hill, P. and Mather, W. H. (2016) Marching along to an offbeat drum: entrainment of synthetic gene oscillators by a noisy stimulus. ACS Synth. Biol., 5, 146–153PubMedCrossRefGoogle Scholar
  74. 74.
    Hussain, F., Gupta, C., Hirning, A. J., Ott, W., Matthews, K. S., Josic, K. and Bennett, M. R. (2014) Engineered temperature compensation in a synthetic genetic clock. Proc. Natl. Acad. Sci. USA, 111, 972–977PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Potvin-Trottier, L., Lord, N. D., Vinnicombe, G. and Paulsson, J. (2016) Synchronous long-term oscillations in a synthetic gene circuit. Nature, 538, 514–517PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Danino, T., Mondragón-Palomino, O., Tsimring, L. and Hasty, J. (2010) A synchronized quorum of genetic clocks. Nature, 463, 326–330PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Chen, Y., Kim, J. K., Hirning, A. J., Josic, K. and Bennett, M. R. (2015) Emergent genetic oscillations in a synthetic microbial consortium. Science, 349, 986–989PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Toettcher, J. E., Mock, C., Batchelor, E., Loewer, A. and Lahav, G. (2010) A synthetic-natural hybrid oscillator in human cells. Proc. Natl. Acad. Sci. USA, 107, 17047–17052PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Niederholtmeyer, H., Sun, Z. Z., Hori, Y., Yeung, E., Verpoorte, A., Murray, R. M. and Maerkl, S. J. (2015) Rapid cell-free forward engineering of novel genetic ring oscillators. eLife, 4, e09771PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Purcell, O., Savery, N. J., Grierson, C. S. and di Bernardo, M. (2010) A comparative analysis of synthetic genetic oscillators. J. R. Soc. Interface, 7, 1503–1524PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Prindle, A., Samayoa, P., Razinkov, I., Danino, T., Tsimring, L. S. and Hasty, J. (2011) A sensing array of radically coupled genetic “biopixels”. Nature, 481, 39–44PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Scott, S. R. and Hasty, J. (2016) Quorum sensing communication modules for microbial consortia. ACS Synth. Biol., 5, 969–977PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Marguet, P., Tanouchi, Y., Spitz, E., Smith, C. and You, L. (2010) Oscillations by minimal bacterial suicide circuits reveal hidden facets of host-circuit physiology. PLoS One, 5, e11909PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Dies, M., Galera-Laporta, L. and Garcia-Ojalvo, J. (2016) Mutual regulation causes co-entrainment between a synthetic oscillator and the bacterial cell cycle. Integr. Biol., 8, 533–541CrossRefGoogle Scholar
  85. 85.
    Chen, A. H., Lubkowicz, D., Yeong, V., Chang, R. L. and Silver, P. A. (2015) Transplantability of a circadian clock to a noncircadian organism. Sci. Adv., 1, e1500358PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Din, M. O., Danino, T., Prindle, A., Skalak, M., Selimkhanov, J., Allen, K., Julio, E., Atolia, E., Tsimring, L. S., Bhatia, S. N., et al. (2016) Synchronized cycles of bacterial lysis for in vivo delivery. Nature, 536, 81–85PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Murray, A. W., Solomon, M. J. and Kirschner, M. W. (1989) The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature, 339, 280–286PubMedCrossRefGoogle Scholar
  88. 88.
    Murray, A. W. (1991) Cell cycle extracts. Methods Cell Biol., 36, 581–605PubMedCrossRefGoogle Scholar
  89. 89.
    Heald, R., Tournebize, R., Habermann, A., Karsenti, E. and Hyman, A. (1997) Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization. J. Cell Biol., 138, 615–628PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Kim, S. Y. and Ferrell, J. E. Jr. (2007) Substrate competition as a source of ultrasensitivity in the inactivation of Wee1. Cell, 128, 1133–1145PubMedCrossRefGoogle Scholar
  91. 91.
    Pomerening, J. R., Kim, S. Y. and Ferrell, J. E. Jr. (2005) Systems-level dissection of the cell-cycle oscillator: bypassing positive feedback produces damped oscillations. Cell, 122, 565–578PubMedCrossRefGoogle Scholar
  92. 92.
    Trunnell, N. B., Poon, A. C., Kim, S. Y. and Ferrell, J. E. Jr. (2011) Ultrasensitivity in the regulation of Cdc25C by Cdk1. Mol. Cell, 41, 263–274PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Lohka, M. J. and Maller, J. L. (1985) Induction of nuclear envelope breakdown, chromosome condensation, and spindle formation in cell-free extracts. J. Cell Biol., 101, 518–523PubMedCrossRefGoogle Scholar
  94. 94.
    Lohka, M. J., Hayes, M. K. and Maller, J. L. (1988) Purification of maturation-promoting factor, an intracellular regulator of early mitotic events. Proc. Natl. Acad. Sci. USA, 85, 3009–3013PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Sudakin, V., Ganoth, D., Dahan, A., Heller, H., Hershko, J., Luca, F. C., Ruderman, J. V. and Hershko, A. (1995) The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol. Biol. Cell, 6, 185–197PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kumagai, A. and Dunphy, W. G. (1992) Regulation of the cdc25 protein during the cell cycle in Xenopus extracts. Cell, 70, 139–151PubMedCrossRefGoogle Scholar
  97. 97.
    Mueller, P. R., Coleman, T. R. and Dunphy, W. G. (1995) Cell cycle regulation of a Xenopus Wee1-like kinase. Mol. Biol. Cell, 6, 119–134PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Novak, B. and Tyson, J. J. (1993) Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J. Cell. Sci., 106, 1153–1168PubMedGoogle Scholar
  99. 99.
    Thron, C. D. (1996) A model for a bistable biochemical trigger of mitosis. Biophys. Chem., 57, 239–251PubMedCrossRefGoogle Scholar
  100. 100.
    Pomerening, J. R., Sontag, E. D. and Ferrell, J. E. Jr. (2003) Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat. Cell Biol., 5, 346–351PubMedCrossRefGoogle Scholar
  101. 101.
    Ferrell, J. E. Jr. (2008) Feedback regulation of opposing enzymes generates robust, all-or-none bistable responses. Curr. Biol., 18, R244–R245PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Nakajima, M., Imai, K., Ito, H., Nishiwaki, T., Murayama, Y., Iwasaki, H., Oyama, T. and Kondo, T. (2005) Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science, 308, 414–415PubMedCrossRefGoogle Scholar
  103. 103.
    Rust, M. J., Markson, J. S., Lane,W. S., Fisher, D. S. and O’Shea, E. K. (2007) Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science, 318, 809–812PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Forster, A. C. and Church, G. M. (2007) Synthetic biology projects in vitro. Genome Res., 17, 1–6PubMedCrossRefGoogle Scholar
  105. 105.
    Nakano, M., Komatsu, J., Matsuura, S., Takashima, K., Katsura, S. and Mizuno, A. (2003) Single-molecule PCR using water-inoil emulsion. J. Biotechnol., 102, 117–124PubMedCrossRefGoogle Scholar
  106. 106.
    Tan, C., Saurabh, S., Bruchez, M. P., Schwartz, R. and Leduc, P. (2013) Molecular crowding shapes gene expression in synthetic cellular nanosystems. Nat. Nanotechnol., 8, 602–608PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Shin, J. and Noireaux, V. (2012) An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. ACS Synth. Biol., 1, 29–41PubMedCrossRefGoogle Scholar
  108. 108.
    Noireaux, V. and Libchaber, A. (2004) A vesicle bioreactor as a step toward an artificial cell assembly. Proc. Natl. Acad. Sci. USA, 101, 17669–17674PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Kim, J., White, K. S. and Winfree, E. (2006) Construction of an in vitro bistable circuit from synthetic transcriptional switches. Mol. Syst. Biol., 2, 68PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Ackermann, J., Wlotzka, B. and McCaskill, J. S. (1998) In vitro DNA-based predator-prey system with oscillatory kinetics. Bull. Math. Biol., 60, 329–354CrossRefGoogle Scholar
  111. 111.
    Fujii, T. and Rondelez, Y. (2013) Predator-prey molecular ecosystems. ACS Nano, 7, 27–34PubMedCrossRefGoogle Scholar
  112. 112.
    Kim, J. and Winfree, E. (2011) Synthetic in vitro transcriptional oscillators. Mol. Syst. Biol., 7, 465PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Montagne, K., Plasson, R., Sakai, Y., Fujii, T. and Rondelez, Y. (2011) Programming an in vitro DNA oscillator using a molecular networking strategy. Mol. Syst. Biol., 7, 466PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Franco, E., Friedrichs, E., Kim, J., Jungmann, R., Murray, R., Winfree, E. and Simmel, F. C. (2011) Timing molecular motion and production with a synthetic transcriptional clock. Proc. Natl. Acad. Sci. USA, 108, E784–E793PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Weitz, M., Kim, J., Kapsner, K., Winfree, E., Franco, E. and Simmel, F. C. (2014) Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator. Nat. Chem., 6, 295–302PubMedCrossRefGoogle Scholar
  116. 116.
    Hasatani, K., Leocmach, M., Genot, A. J., Estévez-Torres, A., Fujii, T. and Rondelez, Y. (2013) High-throughput and long-term observation of compartmentalized biochemical oscillators. Chem. Commun. (Camb.), 49, 8090–8092CrossRefGoogle Scholar
  117. 117.
    Epstein, I. R., Vanag, V. K., Balazs, A. C., Kuksenok, O., Dayal, P. and Bhattacharya, A. (2012) Chemical oscillators in structured media. Acc. Chem. Res., 45, 2160–2168PubMedCrossRefGoogle Scholar
  118. 118.
    Vanag, V. K. and Epstein, I. R. (2001) Pattern formation in a tunable medium: the Belousov-Zhabotinsky reaction in an aerosol OT microemulsion. Phys. Rev. Lett., 87, 228301PubMedCrossRefGoogle Scholar
  119. 119.
    Good, M. C., Vahey, M. D., Skandarajah, A., Fletcher, D. A. and Heald, R. (2013) Cytoplasmic volume modulates spindle size during embryogenesis. Science, 342, 856–860PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Telley, I. A., Gáspár, I., Ephrussi, A. and Surrey, T. (2013) A single Drosophila embryo extract for the study of mitosis ex vitro. Nat. Protoc., 8, 310–324PubMedCrossRefGoogle Scholar
  121. 121.
    Telley, I. A., Gáspár, I., Ephrussi, A. and Surrey, T. (2012) Aster migration determines the length scale of nuclear separation in the Drosophila syncytial embryo. J. Cell Biol., 197, 887–895PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Ho, K. K., Lee, J. W., Durand, G., Majumder, S. and Liu, A. P. (2017) Protein aggregation with poly(vinyl) alcohol surfactant reduces double emulsion-encapsulated mammalian cell-free expression. PLoS One, 12, e0174689PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Zemella, A., Thoring, L., Hoffmeister, C. and Kubick, S. (2015) Cell-free protein synthesis: pros and cons of prokaryotic and eukaryotic systems. ChemBioChem, 16, 2420–2431PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Richard, P. (2003) The rhythm of yeast. FEMS Microbiol. Rev., 27, 547–557PubMedCrossRefGoogle Scholar
  125. 125.
    Lu, Y., Lee, B. H., King, R. W., Finley, D. and Kirschner, M. W. (2015) Substrate degradation by the proteasome: a singlemolecule kinetic analysis. Science, 348, 1250834PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Lu, Y., Wang, W. and Kirschner, M. W. (2015) Specificity of the anaphase-promoting complex: a single-molecule study. Science, 348, 1248737PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Shimizu, Y., Kanamori, T. and Ueda, T. (2005) Protein synthesis by pure translation systems. Methods, 36, 299–304PubMedCrossRefGoogle Scholar
  128. 128.
    Nevin, D. E. and Pratt, J. M. (1991) A coupled in vitro transcription-translation system for the exclusive synthesis of polypeptides expressed from the T7 promoter. FEBS Lett., 291, 259–263PubMedCrossRefGoogle Scholar
  129. 129.
    Garamella, J., Marshall, R., Rustad, M. and Noireaux, V. (2016) The all E. coli TX-TL Toolbox 2.0: a platform for cell-free synthetic biology. ACS Synth. Biol., 5, 344–355PubMedCrossRefGoogle Scholar
  130. 130.
    Genot, A. J., Baccouche, A., Sieskind, R., Aubert-Kato, N., Bredeche, N., Bartolo, J. F., Taly, V., Fujii, T. and Rondelez, Y. (2016) High-resolution mapping of bifurcations in nonlinear biochemical circuits. Nat. Chem., 8, 760–767PubMedCrossRefGoogle Scholar
  131. 131.
    Wang, F. and Fan, C. (2016) DNA reaction networks: providing a panoramic view. Nat. Chem., 8, 738–740PubMedCrossRefGoogle Scholar
  132. 132.
    Semenov, S. N., Kraft, L. J., Ainla, A., Zhao, M., Baghbanzadeh, M., Campbell, V. E., Kang, K., Fox, J. M. and Whitesides, G. M. (2016) Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions. Nature, 537, 656–660PubMedCrossRefGoogle Scholar
  133. 133.
    Tyson, J. J. and Novák, B. (2010) Functional motifs in biochemical reaction networks. Annu. Rev. Phys. Chem., 61, 219–240PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Nguyen, L. K. (2012) Regulation of oscillation dynamics in biochemical systems with dual negative feedback loops. J. R. Soc. Interface, 9, 1998–2010PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Lomnitz, J. G. and Savageau, M. A. (2014) Strategy revealing phenotypic differences among synthetic oscillator designs. ACS Synth. Biol., 3, 686–701PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Guantes, R. and Poyatos, J. F. (2006) Dynamical principles of two-component genetic oscillators. PLoS Comput. Biol., 2, e30PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Wagner, A. (2005) Circuit topology and the evolution of robustness in two-gene circadian oscillators. Proc. Natl. Acad. Sci. USA, 102, 11775–11780PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Noman, N., Monjo, T., Moscato, P. and Iba, H. (2015) Evolving robust gene regulatory networks. PLoS One, 10, e0116258PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Castillo-Hair, S. M., Villota, E. R. and Coronado, A. M. (2015) Design principles for robust oscillatory behavior. Syst. Synth. Biol., 9, 125–133PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Woods, M. L., Leon, M., Perez-Carrasco, R. and Barnes, C. P. (2016) A statistical approach reveals designs for the most robust stochastic gene oscillators. ACS Synth. Biol., 5, 459–470PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Mukherji, S. and van Oudenaarden, A. (2009) Synthetic biology: understanding biological design from synthetic circuits. Nat. Rev. Genet., 10, 859–871PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Anafi, R. C., Lee, Y., Sato, T. K., Venkataraman, A., Ramanathan, C., Kavakli, I. H., Hughes, M. E., Baggs, J. E., Growe, J., Liu, A. C., et al. (2014) Machine learning helps identify CHRONO as a circadian clock component. PLoS Biol., 12, e1001840PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Caschera, F., Bedau, M. A., Buchanan, A., Cawse, J., de Lucrezia, D., Gazzola, G., Hanczyc, M. M. and Packard, N. H. (2011) Coping with complexity: machine learning optimization of cell-free protein synthesis. Biotechnol. Bioeng., 108, 2218–2228PubMedCrossRefGoogle Scholar
  144. 144.
    Trejo Banos, D., Millar, A. J. and Sanguinetti, G. (2015) A Bayesian approach for structure learning in oscillating regulatory networks. Bioinformatics, 31, 3617–3624PubMedPubMedCentralGoogle Scholar
  145. 145.
    Malumbres, M. and Barbacid, M. (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer, 9, 153–166PubMedCrossRefGoogle Scholar
  146. 146.
    Dart, A. (2016) Tumorigenesis: cancer goes tick tock. Nat. Rev. Cancer, 16, 409PubMedCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Department of BiophysicsUniversity of MichiganAnn ArborUSA
  2. 2.Department of Computational Medicine & BioinformaticsUniversity of MichiganAnn ArborUSA

Personalised recommendations